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Abstract

This paper investigates the network growth pattern of young firms and its macroe-
conomic implications. Using panel data of firm-to-firm trade and financial surveys
in Japan, we show that young firms face delays in acquiring new partners, even af-
ter accounting for typical age-dependent growth factors. To explain this pattern, we
develop a general equilibrium model incorporating dynamic network formation of het-
erogeneous firms, distorted by an age-specific networking wedge. Using the calibrated
model, we identify the macroeconomic significance of the wedge. Elimination of the
wedge improves welfare by 2.4% by accelerating the network formation of young firms
and restructuring supply chains in the economy.

Keywords: Firm Dynamics, Production Networks, Misallocation

JEL Classification: D21, D24, D57, D85, E22, E23, E61

∗This study results from the CREPE-TSR research project of TOKYO SHOKO RESEARCH, LTD. and
the Center for Research and Education in Program Evaluation at the University of Tokyo. This work was
supported by JSPS KAKENHI Grant Number 23KJ0716.

†Graduate School of Economics, The University of Tokyo, hiroyuki.asai.2021@gmail.com.

1



1 Introduction

Young firms are pivotal drivers of macroeconomic dynamism and productivity growth. Yet,
their integration into supply chain networks—a cornerstone of modern economies—requires
a gradual accumulation of business partners after market entry. Unlike established firms,
young firms typically lack pre-existing connections, making the post-entry networking pro-
cess crucial to their growth. These dynamics not only shape the growth trajectory of individ-
ual firms but also have broader aggregate implications because the structure of macro-level
production networks ultimately arises from the cumulative networking decisions of individual
firms.

Despite the ubiquity and macroeconomic importance of this mechanism, the literature
has not fully explored its micro-level empirical foundations nor their corresponding macro-
level implications. There are two primary reasons for this. The first reason is the limited
availability of comprehensive data. Although the availability of network data has been im-
proving in recent years, datasets that span a sufficient time horizon to estimate the life
cycle of firms are still limited. Furthermore, to establish reliable stylized facts, network data
must be combined with large-scale panel data to account for several factors commonly dis-
cussed in the firm dynamics literature. The second reason involves the inherent complexity
of modeling. To analyze macroeconomic implications, it is necessary to model the dynamic
decision-making processes underlying firms’ network formation. However, production net-
works firms face are inherently infinite-dimensional, as a firm’s business is influenced not
only by its partners but also by the partners of those partners, and so forth. This leads
to a curse of dimensionality, where the number of state variables in firms’ decision-making
becomes unmanageable.

This paper is the first to shed light on the network growth patterns of young firms and
their macroeconomic implications through the use of unique datasets and an innovative
modeling approach. First, leveraging unique panel data on firm-to-firm trade and financial
statements, we empirically show that young firms exhibit several network growth patterns,
which persist despite accounting for typical age-dependent growth factors. Second, building
on these findings, we construct a novel general equilibrium model that incorporates dynamic
network formation decisions of heterogeneous firms while overcoming the curse of dimension-
ality associated with network complexity. Finally, by calibrating the model to the empirical
findings, we quantitatively identify misallocation stemming from young firms’ networking
decisions and room for welfare improvement through policies targeted at young firms.

We first present key findings regarding the network growth patterns over the firm life
cycle, using proprietary datasets. We combine yearly transaction network data with firm
survey panel data to build a comprehensive firm-year dataset covering nearly all Japanese
firms with more than five employees from 2007 to 2022. Running fixed-effect regressions on
the panel, we derive two main findings. First, while the number of suppliers and customers
eventually converges to a mature level over the life cycle, young firms can only increase
these connections slowly, even after controlling for typical age-dependent growth factors.
This implies there are sources that prevent young firms from acquiring a sufficient number
of partners, and the sources are different from the typical age-dependent variables like pro-
ductivity or financial slackness. Second, once a supplier-buyer relationship is established, the
churn rate remains stable throughout the firm’s life cycle. This suggests that young firms’
difficulty in achieving a mature network size stems not from post-matching mechanisms,
such as high churn rates, but rather from pre-matching mechanisms related to matching
with potential partners.
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Next, we develop a general equilibrium (GE) model that incorporates dynamic network
formation decisions of heterogeneous firms. Our model is a dynamic extension of Arkolakis
et al. (2023), where firms search for suppliers and buyers using network advertisement. In
our model, firms make dynamic advertising decisions to accumulate suppliers and buyers
after market entry. We suppose two sources that prevent young firms from acquiring a
sufficient number of partners immediately after entry. The first source comes from the
convexity of advertisement cost. In order to advertise all at once when firms enter, they
have to pay a higher marginal cost. This incentivizes firms to smooth their advertising over
their life cycle, leading to a gradual expansion of their networks. For the second source, we
assume a hypothetical age-specific networking wedge that creates a gap between perceived
and actual advertisement costs, similar to the framework of Hsieh and Klenow (2009). If
this wedge makes the perceived cost of young firms’ advertising higher (as indicated by our
calibration), then this hampers partner acquisition of the young firms. The dynamic network
formation decisions introduce complexity that could lead to a curse of dimensionality in the
value function. We overcome this challenge by adopting a truncation approach following
Le Grand and Ragot (2022). The approach enables us to define the value function efficiently
and solve it with a straightforward method.

Finally, we calibrate the model to the estimated network growth patterns and derive
several macroeconomic implications. First, our model yields a good match to the empiri-
cal findings on network growth pattern over firm life-cycle. The R2 for the network growth
pattern between the data and the calibrated model is 0.99, indicating that 99% of the empir-
ically estimated pattern is accounted for by our model. Next, we quantitatively analyze the
welfare impact of distorted dynamic network formation. By comparing the baseline economy
with a wedge-free economy (where the age-specific networking wedge is eliminated), we find a
2.4% welfare improvement in the wedge-free environment. Furthermore, we analytically de-
compose these welfare impacts. The results suggest that network-related channels—such as
economy-wide production network restructuring and its spillovers—are more impactful than
traditionally studied factors such as entry and wage adjustments. Lastly, we conduct policy
simulations using the calibrated model. We first consider two policies: one that promotes
supplier accumulation and another that promotes buyer accumulation for young firms. The
two policies show an interesting asymmetric effect in that supporting supplier accumulation
is more effective than supporting buyer accumulation. This is because supplier acquisition
by young firms increases their exposure to the entire supply chain and their productivity
by improved access to inputs or resources of the new suppliers at the same time, whereas
buyer acquisition of young firms increases only their exposure to the entire supply chain
without entailing productivity gain. Next, we consider a policy that promotes entry. Our
experiment indicates that this policy becomes more effective under the existing distorted
dynamic decisions of young firms than in a wedge-free economy. With the distortion, young
firms have inefficiently low level of expected profits due to the lack of their partners, and
this discourages entry. Hence, entry subsidies that make up for the discouragement become
more effective in the environment distorted by the networking wedge.

Related Literature

This paper is linked to different strands of literature. First, this paper belongs to the
extensive literature on firm dynamics (e.g., Hopenhayn, 1992; Foster et al., 2001; Klette
and Kortum, 2004; Luttmer, 2007; Foster et al., 2016; Sterk et al., 2021). Our research
particularly contributes to recent studies on customer accumulation (Alfaro-Urena et al.,
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2022; Eslava et al., 2023; Ignaszak and Sedlácek, 2023). Leveraging detailed panel data on
firm-to-firm trades and financial surveys, we extend the previous studies by providing robust
empirical findings on both supplier and customer accumulation in a unified framework.1

Moreover, we demonstrate that these supplier- and customer-side dynamics have asymmetric
macroeconomic effects from a network perspective. Our policy simulations indicate that
promoting supplier accumulation in young firms can be twice as effective as those targeting
customer accumulation.

Second, this paper is related to the recently growing literature on endogenous production
network formation in general equilibrium (e.g., Oberfield, 2018; Eaton et al., 2022; Acemoglu
and Azar, 2020; Lim, 2018; Bernard et al., 2022; Tintelnot et al., 2018; Dhyne et al., 2021;
Kopytov et al., 2022; Elliott et al., 2022; Arkolakis et al., 2023; Miyauchi, 2024). Our
model extends the literature by representing the dynamic decision-making processes behind
firms’ networking behavior. We address the curse of dimensionality associated with the
complexity of the production networks considered by firms in their decision-making process,
using a truncation approach adopted by Le Grand and Ragot (2022)2 in HANK literature.
Given that production networks exhibit rich dynamic patterns, as evidenced by empirical
data from various industries and regions (Huneeus, 2020; Carvalho et al., 2021; Liu and
Tsyvinski, 2024), our model has potential applications in a wide range of research in this
field by capturing the firm-level decisions that yield the network dynamism.

Lastly, this paper is related to the extensive literature on resource misallocation.3 Ex-
tending recent analyses of misallocation and its spillover effects in fixed production networks
(Liu, 2019; Osotimehin and Popov, 2023), we endogenize network formation and examine
how distorted networking decisions by young firms contribute to misallocation.4 This ex-
tension allows us to analyze the wedge that distorts the networking pattern of individual
firms. Our findings illustrate the broader macroeconomic implications of the wedge, since
it not only affects networking behavior of individual firms, but also shapes the structure of
production networks in the entire economy, through which distortions propagate.

Outline

The remainder of this paper proceeds as follows. Section 2 explains the data and empirical
findings about networking behavior of young firms. Section 3 presents a model consistent
with the findings. Section 4 calibrates the model parameters and explores the aggregate
implications. Section 5 concludes.

1A contemporaneous study Aekka and Khanna (2024) explores partner acquisition patterns across age
groups using cross-sectional firm-to-firm trade records from India in 2018, whereas our research utilizes
long-term panel data to identify age-specific networking patterns that are not driven by typical age-related
factors discussed in the literature.

2In the paper, they solve the planner’s problem in the environment where both aggregate shocks and
idiosyncratic shocks exist and the wealth distribution of household is a natural state variable for the planner.
Instead of having wealth distribution of household, which is infinite-dimensional object, they adopt the
history of aggregate shocks as a state variable with truncation, which is a finite-dimensional object up to
truncated length.

3For an extensive survey of various channels, check Hopenhayn (2014) and Restuccia and Rogerson
(2017).

4Contemporaneous studies Boehm et al. (2024) and Koike-Mori and Okumura (2024) analyze similar
mechanisms through a model incorporating endogenous network formation among firms within the frame-
work of a balanced growth path. By focusing on steady state analysis in our research, we provide a more
detailed representation of firms’ networking decision, enabling replication of empirically observed patterns
in a calibrated model.
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2 Empirical Findings

2.1 Data

We use a primary dataset obtained from Tokyo Shoko Research (TSR), a major credit
reporting company in Japan.5 TSR collects comprehensive information of firms through
personal interviews or phone surveys, supplemented by public resources such as financial
statements, corporate registrations, and public relations documents. The information is
updated at an annual frequency, and the datasets compiled between 2007 and 2022 are
used.

In addition to standard financial information of firms including the number of employees
and sales, four-digit industry classification, year of establishment, and address, the TSR
data have unique information about transaction partners. Each firm reports its suppliers,
customers, and major shareholders up to 24 firms, respectively. Despite this truncation
threshold, we do not regard the censoring as restrictive for two reasons. First, the share of
firms that report exactly 24 suppliers or customers and can be potentially regarded as being
bounded by the truncation is fewer than 0.1%. Second, we merge self-reported data and
other-reported data following Bernard et al. (2019) and Carvalho et al. (2021). Specifically,
we combine the list of suppliers (buyers) reported by the firm itself and the reports of others
that report the firm as their buyer (supplier). Hence, even if the self-reported number of
partner links is truncated, as long as the partners report the truncated links, the truncation
issue is insignificant.

We build a firm-by-year panel including both financial information and network informa-
tion for our analysis by combining the two sources. We use this panel data to examine the
relationship between supplier/customer dynamics and firm age, and to calibrate a general
equilibrium model using firm-level data. Descriptive statistics are shown in Appendix A.2.

2.2 Network Measure

To capture network dynamics by firm age, we first define several measures that sum-
marize networking behavior of firms. For firm i and year t, using set notation Si,t :=
set of suppliersi,t, we define four scalar measures as follows.6

LogDegreeSi,t := log(#Si,t) (2.1)

GrossGrowthS
i,t :=

#(Si,t\Si,t−1)

#Si,t−1
(2.2)

GrossDepreciationS
i,t :=

#(Si,t−1\Si,t)

#Si,t−1
(2.3)

NetGrowthS
i,t :=

#Si,t −#Si,t−1

#Si,t−1
(2.4)

=
#(Si,t\Si,t−1)−#(Si,t−1\Si,t)

#Si,t−1
(2.5)

= GrossGrowthS
i,t −GrossDepreciationS

i,t (2.6)

5This dataset is used in previous studies, including Fujii et al. (2017), Bernard et al. (2019), Carvalho
et al. (2021) and Miyauchi (2024). Check Carvalho and Tahbaz-Salehi (2019) and Bacilieri et al. (2023) for
comparison with production network data in other countries.

6# denotes cardinality of a set and \ denotes difference of sets.
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Supplier log degree measure (LogDegreeSi,t) indicates the number of suppliers firm i has at

year t. Gross supplier growth measure (GrossGrowthS
i,t) captures the ratio of the number

of new suppliers firm i gained in year t to the number of suppliers last year t − 1. Simi-
larly, Gross supplier depreciation measure (GrossDepreciatioSi,t) captures the ratio of the
number of suppliers firm i did not carry over from the previous year t − 1 to the number
of supplier last year t− 1. Net supplier growth measure (NetGrowthS

i,t) captures the ratio
of net increase in the number of suppliers to the number of supplier last year t − 1. This
measure is identical to growth rate of the number of suppliers, and by definition, it is calcu-
lated as the gross supplier growth measure minus gross supplier depreciation measure. Also
for Bi,t := set of buyersi,t, we define corresponding four measures (buyer degree measure

(LogDegreeSi,t), gross buyer growth measure (GrossGrowthB
i,t), gross buyer depreciation

measure (GrossDepreciationB
i,t) and net buyer growth measure (NetGrowthB

i,t) ) in the
same procedure.

Table 1 presents the summary statistics of the network measures by firm age, defined
as the years since registration as a corporation. Columns (1) and (2) report the mean
and standard deviation (SD) for young firms (less than 20 years old) and old firms (20
years or older). Column (3) provides the difference between young and old firms and the
corresponding standard error (SE).

Networking behavior differs clearly between young and old firms, as shown in Table 1.
First, young firms have fewer partners than old firms as the log degree measures (the first
and second rows) suggest. On average, young firms have 36% fewer suppliers and 26% fewer
buyers. Second, the growth rate of the number of the partner is higher for young firms
as the net growth measures (the third row and the sixth row) suggest. On average, the
number of suppliers for young firms grows 4 percentage points faster than that of old firms,
which is approximately twice as fast, and a similar pattern is observed for the number of
buyers. Third, the age difference in the growth rate of the number of partners is mainly
driven by the difference in partner acquisition, not partner churn, as suggested by the gross
growth rate and the gross depreciation rate (from the third row to the fifth row, and from
the sixth row to the eighth row). From its construction (2.6), large net growth is achieved
by large gross growth or small gross depreciation. While both the gross growth and gross
depreciation measures are higher for young firms and they have countervailing effects on
the net growth, the net growth is larger for young firms because variation by age in gross
depreciation is much milder than variation in gross growth; the latter is about 700% larger
than the former in the supplier direction and about 250% larger in the buyer direction.

2.3 Key Facts

While the above observation highlights a clear relationship between production networks
and firm age, it might just reflect other typical age-dependent patterns in firm performance
measures. For example, accumulation of the internal reserves and associated relaxed finan-
cial constraints can allow firms to expand their business only gradually (Midrigan and Xu,
2014) and the observed pattern of network measure might be a simple consequence of it.
Another possible explanation is learning-by-doing and the associated gradual productivity
growth, as pointed out in the firm dynamics literature such as Haltiwanger et al. (2013) and
Haltiwanger et al. (2016).

To isolate network-specific aging patterns from the effects of these typical age-dependent
factors, we estimate the following fixed effect models for each measure ∈ {LogDegree,
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(1) Young (2) Old (3) Young - Old
Mean SD Mean SD Difference SE

Level-related Measure

LogDegreeS 1.099 0.827 1.459 0.963 -0.360 0.001

LogDegreeB 1.238 0.823 1.501 1.000 -0.264 0.001

Growth-related Measure

NetGrowthS 0.083 0.600 0.042 0.306 0.041 0.000

GrossGrowthS 0.150 0.606 0.103 0.305 0.047 0.000

GrossDepreciationS 0.067 0.184 0.061 0.136 0.006 0.000

NetGrowthB 0.090 0.670 0.049 0.400 0.040 0.000

GrossGrowthB 0.177 0.684 0.121 0.404 0.056 0.000

GrossDepreciationB 0.088 0.224 0.072 0.183 0.016 0.000

Table 1: Summary Statistics: Networking Measures

Notes: Summary statistics for networking measures by the age of the firms. Columns (1) and (2) provide
mean and standard deviations (SD) for young firms and old firms, respectively. Column (3) shows the
difference between young and old firms and standard error (SE). We define a firm as young if years that
have passed after its birth is shorter than 20 years, and as an old firm otherwise.
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NetGrowth, GrossGrowth, GrossDepreciation} and each direction ∈ {Supplier, Buyer}.

measuredirectioni,s,t =
∑
a<50

βa1agei,t=a +X ′
itΘ+ αi + ηs,t + εi,s,t (2.7)

where i denotes the firm, t denotes the year, s denotes the industry (4-digit), Xit controls
for typical growth factors of firms that affect the above age-dependent growth patterns
independently of network-specific effects, αi controls firm fixed effect, ηs,t is the sector-year
fixed effect, and εi,s,t is an error term. As the growth factors of young firms, we include labor
productivity (defined as value added divided by the number of employees) following Decker
et al. (2020), financial leverage (defined as the amount of debt divided by the amount of
equity) following Cavenaile and Roldan-Blanco (2021), and the inverse Mills ratio to correct
for a sample selection bias following the procedure of Hansen (2022). The construction of
the variables and their summary statistics are shown in Appendix A.1 and A.2, respectively.

From its construction, βa can be interpreted as an average value of the measure7 of
firm with age a relative to that of firm with age 50 after eliminating effects from the age-
dependent growth variables and the firm’s unique characteristics. Hence, age-specific pattern
in βa indicates that as a firm ages, the firm changes its networking behaviors captured by
our measures even without the change in the typical age-specific growth factors.

Figure 1 shows the estimation results for panel regression of equation (2.7) for log degree

measures. For each direction of links, we plot estimated coefficients on each age β̂a with its
99% corresponding confidence intervals shaded in gray. As the figure shows, age-dependent
patterns clearly survive the control of typical age-specific growth variables. Even if a hypo-
thetical young firm has the same level of productivity and financial slackness as old firms,
it experiences a significant shortage of suppliers and buyers and it takes time to accumulate
a mature number of partners. Quantitatively, the hypothetical firm starts its business with
80% fewer suppliers and 60% fewer buyers than in its matured level. In Appendix B.1, we
show the details of the regression results.

Figure 2 shows the estimation results for panel regression of equation (2.7) for remain-
ing growth-related measures, NetGrowth, GrossGrowth, and GrossDepreciation. Gross
depreciation measures are multiplied by -1, so small values in the figure imply large shares
of partner churn. The age-dependent patterns observed in the summary statistics survive
the control of typical age-dependent variables also among the growth measures. First, as
the age-specific pattern of the net growth measure implies, the number of partners grows
rapidly when firms are young, which is consistent with the regression result for the log degree
measures. Next, the mild dynamics in the gross depreciation measure and the corresponding
similarity between the net growth measure and the gross growth measure from its construc-
tion (2.6) are also confirmed. This suggests that the difficulty for young firms to reach a
mature network size is not due to post-matching mechanisms such as high churn rates, but
to pre-matching mechanisms related to the matching with potential partners. In Appendix
B.1, we show the details of the regression results.

In summary, the regression results with firm fixed effects and controlled by the growth
factor confirm that it takes time for young firms to establish a sufficient number of partners,

7Note that for a dependent variable vector Y and an independent variable matrix X with each column
representing dummy for each age (so the row sum does not exceed 1) we obtain

β̂ = (X′X)−1X′Y =

diag−1

 ∑
ait = 0

1, · · · ,
∑

ait = A

1

−1  ∑
ait = 0

Yit, · · · ,
∑

ait = A

Yit

′

=(
Ȳa=0, · · · , Ȳa=A

)′
.
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Figure 1: Number of Networks and Age

Notes: Estimation results for panel regression expressed in equation (2.7) using LogDegree measure. For

each direction, we plot the estimated coefficient on each age β̂a with its 99% confidence interval in a
shadow. Controls include firm fixed effect, sector * year fixed effect, typical growth factors of young firms
including labor productivity (value added per employee) and leverage (debt/equity).

Figure 2: Growth of Networks and Age

Notes: Estimation results for panel regression expressed in equation (2.7) using the three growth-related
measure, NetGrowth, GrossGrowth, and GrossDepreciation. For each measure and direction, we plot the
estimated coefficient on each age β̂a with its 99% confidence interval in a shadow. For clarity, we plot drop
measures after multiplying -1. Controls include firm fixed effect, sector * year fixed effect, typical growth
factors of young firms including labor productivity (value added per employee) and leverage (debt/equity).
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mainly due to the difficulty in matching with potential partners. This finding is robust to a
series of robustness checks. We show that our empirical results are robust to the exclusion of
firms in financial industries, to the exclusion of links between firms with capital ownership,
and to alternative measures of financial constraints and productivity. The details of those
robustness checks are found in Appendix B.2.

3 Model

In this section, we develop a dynamic general equilibrium model that incorporates dynamic
network formation decisions of heterogeneous firms over their life cycle.

3.1 Model environment

The economy consists of a representative household, representative advertisement goods
producer, and a continuum of firms, each producing a unique good. Firms are owned by the
household, and heterogeneous across states χ = (ϕ, a), where ϕ and a are the fundamental
productivity of a firm’s production process and the age of the firm (years passed after its
entry), respectively. The measure of firms over the states is denoted by F (χ), and its
corresponding density is given by f(χ). For brevity, a firm with state χ is also referred to
as χ-firm. We assume household income is numeraire.

3.2 Household

The representative household supplies a unit of labor inelastically and has constant-elasticity-
of-substitution (CES) preferences over all goods in the economy, given by:

U =

[∫
xH(χ)

σ−1
σ dF (χ)

] σ
σ−1

. (3.1)

Here, σ denotes the elasticity of substitution across varieties, and xH(χ) is the household’s
consumption of χ-firm varieties. Given the price pH(χ) charged by χ-firms to the household,
household demand is given by:

xH(χ) = ∆HpH(χ)−σ (3.2)

where ∆H denotes the household demand shifter:

∆H =

(
1

PH

)−σ

U (3.3)

and PH denotes the consumer price index:

PH =

[∫ (
pH(χ)

)1−σ
dF (χ)

] 1
1−σ

. (3.4)

Note that since household income is the numeraire, household utility is the inverse of the
CPI:

U =
1

PH
. (3.5)
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3.3 Production

Each firm produces its output using labor and an input bundle combining intermediate
goods sourced from its suppliers. The production function is given by:

X(χ) = ζϕl(χ)αB(χ)1−α (3.6)

Here, X(χ) is output (in quantities) of χ-firm, ϕ is the fundamental productivity, l(χ) is the
amount of labor used by χ-firm, α is the labor share, and ζ is a normalization constant.8

B(χ) is a CES input bundle given by:

B(χ) =

[∫
(x(χ, χ′))

1− 1
σ kS(χ, χ′)dχ′

] σ
σ−1

(3.7)

Here, x(χ, χ′) is the quantity that χ-buyer purchases from χ′-supplier, kS(χ, χ′) is the
density of χ′-supplier χ-buyer has, and σ is the elasticity of substitution across supplies.

The unit cost of χ-firm is given by:

η(χ) =
1

ϕ
wαP (χ)1−α (3.8)

Here, w is the wage rate and the producer price index is equal to:

P (χ) =

[∫
(p(χ, χ′))

1−σ
kS(χ, χ′)dχ′

] 1
1−σ

(3.9)

Here, p(χ, χ′) is the price charged by χ′-suppliers to χ-buyer.
Hence, the unit cost becomes

η(χ) =
1

ϕ

[∫
(p(χ, χ′))

1−σ
kS(χ, χ′)dχ′

] 1−α
1−σ

. (3.10)

3.4 Advertisement Goods Producer

The representative advertisement goods producer combines all goods in the economy and
produce advertisement goods with its production function being

XAdv =

[∫ (
xAdv(χ)

)σ−1
σ dF (χ)

] σ
σ−1

. (3.11)

Given the price pAdv(χ) charged by χ-firms to the advertisement goods producer, advertise-
ment goods producer demand is given by:

xAdv(χ) = ∆AdvpAdv(χ)−σ (3.12)

where ∆Adv denotes the advertisement demand shifter

∆Adv =

(
1

PAdv

)−σ

XAdv. (3.13)

8ζ =
1

αα(1− α)1−α
. This normalization constant simplifies the expresssion for the cost function, without

any bearing on the equilibrium results.
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and PAdv is its unit cost given by

PAdv =

[∫ (
pAdv(χ)

)1−σ
dF (χ)

] 1
1−σ

. (3.14)

3.5 Market Structure

We assume monopolistic competition when a χ-firm sells its good to the representative
household, the representative advertisement goods producer, or its buyers. Given the iden-
tity of the elasticity of substitution over varieties, the markups that the χ-firm charges over
marginal cost becomes identical. The profit-maximizing prices charged by each firm are
given by:

pH(χ) = pAdv(χ) = p(χ′, χ) = µη(χ) (3.15)

where µ =
σ

σ − 1
is the markup rate over marginal cost.9 For the advertisement goods

market, we assume perfect competition so the original price charged by the representative
advertisement goods producer to each χ-firms is PAdv.

3.6 Network Formation

There are search and matching frictions to obtain new suppliers and buyers. To search
for buyers and suppliers, firms post advertisements by purchasing advertisement goods to
maximize their expected lifetime profit. The probability of successful matches depends on
an aggregate matching technology and the number of searching suppliers and buyers. Our
model extends the static framework in Arkolakis et al. (2023) by incorporating dynamic
decision-making, leading to an age-specific networking pattern over firm life cycle.

3.6.1 Timeline

Time is discrete in the model. At the beginning of each period, firms face an exogenous
exit shock with probability 1 − φ. Links that existed in the last period are exogenously
terminated on a link termination shock with probability 1 − δ, on exit of its counterpart,
or on its terminal link age Al large enough.10 After that, firms post advertisement nS , nB

respectively for suppliers and buyers. For firms newly entering the market (a = 0), we
simply assume fixed initial number of supplier and buyer advertisements, determined by their
fundamental productivity ϕ, at no cost. Links newly created in the period are determined
by the amount of advertisements and the aggregate matching rates mS and mB . Combined
with the links succeeded from the last period, the networks in the period realize. Then,
firms produce goods given the network structure at the period.

9Constant markup is derived from the assumption that each firm is an atomic object for its partners,
which implies that its behavior does not change the partners behavior as in Lim (2018) and Huneeus (2020).
We assume it since strategic behavior over the network is out of our scope. For these strategic environment,
please check Oberfield (2018), Acemoglu and Tahbaz-Salehi (2020) and Kopytov et al. (2022).

10Note that due to the structure of the exogenous shocks, this model yields a stable gross depreciation
measure over firm life cycle, which is observed in the empirical part.
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3.6.2 Profit from Network

We define a history of advertisement na−1 = (nS
a−1, n

S
a−2, ..., n

S
a−Al, n

B
a−1, n

B
a−2, ..., n

B
a−Al)

where nS
a−τ is the advertisement for suppliers paid by the firm when firm is a− τ years old

and nB
a−τ is that for buyers. We also suppose that firms cannot make advertisement before

they enter the market, i.e., nS
a′<0 = nB

a′<0 = 0.
Then, one-period operating profit of a firm can be written as:

π(ϕ,na−1,na) =Cϕσ−1wα

[
mS

Al∑
τ=0

wS
τ n

S
a−τ

]1−α

︸ ︷︷ ︸
upstream factor

×

[
∆+mB

Al∑
τ=0

wB
τ nB

a−τ

]
︸ ︷︷ ︸

downstream factor

(3.16)

where C is a constant scalar, ∆ is an aggregate demand shifter defined by ∆ := ∆H +∆Adv.
mS and mB are aggregate matching rate for supplier and buyer endogenously determined in
equilibrium. Weight variables wS

τ and wB
τ are also endogenously determined in equilibrium,

and they govern the profitability of a link created at τ -period ago each for supplier and
buyer. We put closed-form expressions of them in Appendix C.1.

Intuitively, the (nominal) profit of a firm is determined by 4 factor: its own fundamental
productivity ϕ, wage level w, the upstream factor, and the downstream factor. The upstream
factor captures the supplier-side networks, which determine production efficiency, and the
downstream factor captures the buyer-side networks and the aggregate demand, which deter-
mine how widely a firm can access its customer base. The profit is large when the upstream

factor

[
mS

Al∑
τ=0

wS
τ n

S
a−τ

]1−α

is large, which happens when the aggregate matching rate to

the supplier mS is high, the weight variable for supplier wS
τ is large,11 or the firms have

invested in the supplier advertisement a lot. Similarly, the profit is large when the down-

stream factor

[
∆+mB

Al∑
τ=0

wB
τ nB

a−τ

]
is large, which happens when the aggregate demand

shifter ∆ is large, the aggregate matching rate to the buyer mB is high, the weight variable
for buyer wB

τ is large, or the firms have invested in the buyer advertisement a lot.

3.6.3 Cost for Network Formation

To search for partners, firms must purchase advertisement goods from the advertisement
goods producer. We assume a convex structure for advertisement technology, where posting

nS units of supplier advertisements requires fS
(nS)γ

S

γS
units of advertisement goods with

γS > 1.12 Additionally, we incorporate an age-specific upstream networking wedge ξSa , which
creates a gap between the original advertisement goods price P adv and the price faced by
firms of age a, following Hsieh and Klenow (2009). Under this setting, young firms face
difficulties in acquiring sufficient partners after entry due to the two factors. First, the
convexity of the cost structure results in higher marginal costs for firms that attempt to

11As Appendix C.1 shows, we can interpret wS reflects suppliers’ average productivity and wB reflects
buyers’ average demand.

12In the calibration section, we show γS > 1 holds true in the data using variation of the number of
suppliers among firms.
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advertise intensively upon entry. Consequently, young firms are discouraged from acquiring
a large number of partners at once. Second, the age-specific networking wedge, which is
estimated as a decreasing function in age in the calibration part, increases the effective
advertisement cost for young firms. This also hampers their partner acquisition. Similarly,

we assume that nB units of buyer advertisements requires fB
(nB)γ

B

γB
units of advertisement

goods with an age-specific downstream networking wedge ξBa .

3.6.4 Firm Problem

Given the one-period operating profit function (3.16) and advertisement costs above, the
firm problem for a > 0 becomes

V (ϕ, a,na−1) = max
na=(nS

a ,nB
a )
π(ϕ,na−1,na)− ξSaP

AdvfS
(nS

a )
γS

γS
− ξBa PAdvfB

(nB
a )

γB

γB
+ βφV (ϕ, a+ 1,na)

(3.17)

where β denotes the time discount rate, and φ denotes the exogenous survival rate. The
key technique we adopt is to use the history of advertisement na−1, a finite-dimensional
object, instead of storing all network information around the firm, which would render the
state space of the value function infinite-dimensional. This approach is analogous to the
truncation method used by Le Grand and Ragot (2022) to solve high-dimensional value
functions. In the paper, they solve the planner’s problem in the environment where both
aggregate shocks and idiosyncratic shocks exist and the wealth distribution of household
is a natural state variable for the planner. Rather than using the wealth distribution of
households, an infinite-dimensional object, they adopt a truncated history of aggregate
shocks as a finite-dimensional state variable. This approach is particularly effective in our
network formation context due to the observed churn rate of approximately 0.08 for each link.
This relatively high churn rate ensures that the cumulative contribution of links exceeding
an age of Al periods, proportional to (1 − 0.08)Al, diminishes rapidly, making truncation
computationally valid with negligible error. Hence, we can solve the above firm problem
using the standard value function iteration defined on the finite dimensional state space.
Further details are provided in Appendix D.1.

Note that, conditional on survival to age a, firms differ only in their fundamental pro-
ductivity. Therefore, we can specify value function V (χ), policy function nS(χ) and nB(χ)
and its history nS

a′(χ) and nB
a′(χ) using χ = (ϕ, a).13

3.7 Matching

Following a long tradition in the literature of labor search and matching (Diamond, 1982;
Mortensen, 1986; Pissarides, 1985) and its application to supplier-buyer matching by Arko-
lakis et al. (2023), we assume that the aggregate number of successful matches between a
supplier advertisement and a buyer advertisement is determined by matching technology
represented by a matching function with constant elasticity

M = (MS)λ
S

(MB)λ
B

(3.18)

13In the stationary equilibrium we are going to focus on, nS
a′ ((ϕ, a))q = nS((ϕ, a′)) and nB

a′ ((ϕ, a)) =

nB((ϕ, a′)) hold true for χ = (ϕ, a) firm.
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where λS and λB are elasticity of the matching to each of the aggregate advertisement

MS =

∫
nS(χ)dG(χ) and MB =

∫
nB(χ)dG(χ).

Then, matching rates can be written as:

mS = M/MB = (MB)λ
B−1(MS)λ

S

(3.19)

mB = M/MS = (MB)λ
B

(MS)λ
S−1. (3.20)

3.8 Entry

We assume potential entrants can enter the market by paying a sunk cost fe in units of
labor. Zero profit condition for entry yields

wfe = E[V (χ)|a = 0] (3.21)

=

∫
V (ϕ, a = 0)dH(ϕ) (3.22)

where h(ϕ) is a distribution of fundamental productivity ϕ.

3.9 Market Clearing

Market clearing for the output of a χ-firm is given by:

X(χ) = xH(χ) + xAdv(χ) +

∫
x(χ′, χ)kB(χ, χ′)dχ′ (3.23)

where kB(χ, χ′) is the mass of χ′-buyer χ-supplier has.
Market clearing for the advertisement goods is given by:

XAdv =

∫
fS

(nS(χ))γ
S

γS
dF (χ) +

∫
fB

(nB(χ))γ
B

γB
dF (χ). (3.24)

Combined with demand shifter of household and demand shifter of advertisement goods
producer, (3.23) can be reduced to

X(χ) = p(χ)−σ∆+

∫
x(χ′, χ)kB(χ, χ′)dχ′. (3.25)

Market clearing for labor is given by:

1 =

∫
lp(χ)dG(χ) + feMe. (3.26)

Lastly, we assume a direct transfer of a margin generated by the networking wedge to
household income as follows

T =

∫
(ξSa − 1)fSP

Adv (n
S(χ))γ

S

γS
dF (χ) +

∫
(ξBa − 1)fBP

Adv (n
B(χ))γ

B

γB
dF (χ). (3.27)
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3.10 Distribution and Network Structure

Every period, Me mass of firms enter the market following the zero profit condition (3.22),
and incumbents exit with probability 1 − φ. Combined with the assumption that fun-
damental productivity does not grow after entry, we have a τ -period transition equation
gτ ((ϕ, a)|(ϕ, a− 1)) = φτ .14 Then, the measure of firm over χ follows

f(χa=0) = Meh(ϕ) (3.28)

f(χa≥1) = gτ ((ϕ, a)|(ϕ, a− 1))f(χa−1) = φf(χa−1). (3.29)

We also define the distribution of χ-suppliers (buyers) that a firm posting supplier (buyer)
advertisement faces in a period. From the duality of matching structure, the probability
that χ-suppliers (buyers) match a buyer (supplier) is proportional to the number of the
buyer (supplier) advertisement the χ-suppliers (buyers) make. Hence, we obtain

gB(χ) = nS(χ)f(χ)/

∫
nS(χ)dF (χ) (3.30)

gS(χ) = nB(χ)f(χ)/

∫
nB(χ)dF (χ). (3.31)

Since links from the last period remain connected with probability δ, the entire production
network structure of the economy is given by

kS(χ, χ′) =

Al∑
τ=0

nS
a−τ (χ)

∫
mSgS(χ

′′)δτgτ (χ
′|χ′′)dχ′′ =

Al∑
τ=0

nS
a−τ (χ)m

S(φδ)τgS(χ
′) (3.32)

kB(χ, χ′) =

Al∑
τ=0

nB
a−τ (χ)

∫
mBgS(χ

′′)δτgτ (χ
′|χ′′)dχ′′ =

Al∑
τ=0

nB
a−τ (χ)m

B(φδ)τgB(χ
′).

(3.33)

3.11 Two Fixed Points over Production Networks

It is worth discussing how production networks shape the structure of the entire economy.
First, from the unit cost of firm (3.10) and markup pricing (3.15), we obtain

η(χ)1−σ =

(
1

ϕ

)1−σ

wα(1−σ)

[∫
(µη(χ′))1−σkS(χ, χ′)dχ′

]1−α

. (3.34)

By defining an inverse measure of unit cost as network productivity Φ(χ) = η1−σ, (3.34)
becomes

Φ(χ) =

(
1

ϕ

)1−σ

wα(1−σ)µ1−α

[∫
Φ(χ′)kS(χ, χ′)dχ′

]1−α

. (3.35)

This corresponds to the backward fixed point problem in Bernard et al. (2022). Network
productivity Φ(χ) of χ-firm depends on its fundamental productivity ϕ and the wage rate
w, and network productivity of all its suppliers χ′ and the number of supplier kS(χ, χ′).

14χa=a′ is identical to (ϕ, a′). For visibility, we use both expressions interchangeably.
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Note that an increase in the number of suppliers enhances productivity even without an
increase in the productivity of each suppliers. This stems from love of variety of production
function, and empirically observed by Bernard et al. (2019).

Second, from the unit cost of firm (3.10) and goods market clearing condition (3.25), we
obtain

X(χ) = p(χ)−σ

(
∆+ (1− α)

∫ (
η(χ′)

P (χ′)1−σ

)
X(χ′)kB(χ, χ′)dχ′

)
. (3.36)

This corresponds to the forward fixed point problem in Bernard et al. (2022). Demands
for χ-firm depends on its price p(χ), aggregate demand ∆, its buyers’ demand determined

by

(
η(χ′)

P (χ′)1−σ

)
X(χ′), and the number of buyers kB(χ, χ′). Note that an increase in the

number of buyers increases demand for X(χ) even without an increase in the demand of
each buyers. This is empirically observed by papers analyzing the contribution of demand
accumulation to firm growth like Ignaszak and Sedlácek (2023) and Alfaro-Urena et al.
(2022).

3.12 Equilibrium

We can now define the equilbirium. For tractability, this paper focuses on stationary equi-
librium.

Definition 1 (Stationary Equilibrium). Given a household income as a numeraire (I = 1), a
stationary equilibrium is w, production network structure kS(χ, χ′), kB(χ, χ′), price function
p(χ) and output function X(χ) such that the production network structure is consistent
with policy function of firms, price and output of each firms respectively is a solution to the
backward fixed point equation and the forward fixed point equation, zero profit condition
for potential entrants satisfy, and all the markets clear.

Our model addresses two well-known difficulties in solving the equilibrium of a general
equilibrium model with endogenous network formation: the curse of dimensionality and
the simultaneity of decision making. First, as discussed in Section 3.6.4, the curse of di-
mensionality in firms’ network formation decisions is addressed by a truncation approach,
leveraging the observed churn rate of links. Second, we handle the simultaneity of decision
making by assuming that each firm is treated as an atomic entity by its partners. This
assumption allows decision of each firm independent of the decision of other firms while
keeping the interconnectedness over production networks as in the backward fixed point
(3.35) and forward fixed point (3.36) like Lim (2018) and Bernard et al. (2022).15

Leveraging these tractable structures, our computational strategy is both efficient and
conceptually straightforward. First, given an initial guess for the equilibrium object, we
solve the firms’ value function problem to determine their advertising investment and the
resulting production network structure. Second, solving backward fixed point equation and
the forward fixed point equation over production networks, we obtain price and allocation

15Several approaches that can directly treat formation process of discrete network are worth mention-
ing. Taschereau-Dumouchel (2022) proposes a new solution technique to solve the nonconvex optimization
problems with binary simultaneous decision of firms utilizing relaxed problems. Elliott et al. (2022) mod-
els continuous investment choice that determines the probability of each discrete link being active, which
avoids the computational intractability of discrete networks. Both of the approaches are attractive to solve
one-period problem, but hard to apply to our situation where firms’ decision making is dynamic.
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over firms. Third, we adjust mass of entrants and the wage level so that the zero profit
condition of potential entrants and the labor market clearing condition hold, and continue
to its convergence. For the detail of the algorithm, see Appendix D.

4 Quantitative Analysis

In this section, we combine the empirical findings in Section 2 and the model developed
in Section 3 to quantitatively assess the macroeconomic significance of network frictions
young firms face and derive implications for welfare-improving industry policies. Section 4.1
calibrates the model, and section 4.2 performs several counterfactual simulations.

4.1 Calibration

4.1.1 Aggregate Parameters

Table 2 summarizes aggregate parameter values, their source/reference, and data for setting
targets. The time discount rate β is set to 0.94 which matches the average cost of capital for
Japanese firms shown by Suto and Takehara (2017). The elasticity of substitution between
varieties of the household consumption bundle and the intermediate good bundle of firms
is set to 5 following Bernard et al. (2022). This yields markup rate µ = 1.25, which is
close but slightly higher than the previous estimation of the markup rate of Japanese firms
estimated by Nakamura and Ohashi (2022). The labor inputs share α in the production
function is set to 0.45 so that the ratio of the aggregate intermediate inputs sales to the sum
of aggregate intermediate inputs sales and aggregate consumption sales matches the value
in input-output table in Japan at 2015 (0.46).16

Following Lim (2018) and Bernard et al. (2022), we assume fundamental productivity
follows a log-normal distribution with mean 0, i.e., log(ϕ) ∼ N (0, (σϕ)2). The dispersion
parameter σϕ is set to 0.46 so that the standard deviation of the log sales match the data
at 2015 in our sample (2.37).

The exogenous survival rate φ is set to 0.962 so that the entry rate in the model matches
the annual business entry rate (5.2%) in Japan at 2015.17 The exogenous network survival
rate is set to 0.92, which is an average probability of a link surviving two consecutive periods
when both supplier and buyer continue to operate in the data at 2015 in our sample.

The elasticity of advertisement costs for supplier γS and buyer γB are set to 2.73 and
3.51 so that the standard deviation of the log number of suppliers and customers matches
the data in our sample. (0.92 and 0.93, respectively) The matching function elasticity λS

and λB are borrowed from Miyauchi (2024) and set to 0.9 and 1.0, respectively. Since λS +
λB = 1.9 > 1, the matching function exhibits increasing-return-to-scale characters, which
is consistent with the observed empirical patterns about supplier acquisition pattern after
an anticipated supplier bankruptcy shown in Miyauchi (2024). We normalize advertisement
cost fS = fB = 1 and entry cost fe = 1.

4.1.2 Wedge Parameters

We determine remaining parameters related to network growth so that the model yields a
matched pattern observed in the empirical part. To make estimation simple, we assume

16See https://www.soumu.go.jp/english/dgpp_ss/data/io/io15_00001.htm.
17See https://www.chusho.meti.go.jp/pamflet/hakusyo/H28/PDF/2016shohaku_eng.pdf.
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Parameter Description Value Target

β Time discounting 0.94 Suto and Takehara (2017)
σ Elasticity of substitution 5 Bernard et al. (2022)
α Labor share 0.45 expenditure share of IMD goods

σϕ Dispersion of fundamental prod. 0.46 dispersion of log sales
φ Exogenous exit rate 0.962 aggregate exit rate
δ Network destruction rate 0.92 average network destruction rate

γS Elast. of ad. cost for new suppliers 2.73 dispersion of log # suppliers

γB Elast. of ad. cost for new buyers 3.51 dispersion of log # buyers

λS Elast. of matching for supplier 0.9 Miyauchi (2024)

λB Elast. of matching for buyer 1.0 Miyauchi (2024)

Table 2: Summary of aggregate parameter values, their source/reference, and data for setting
targets.

the age-specific network formation cost parameters ξSa and ξBa have a following exponential
parametric form for a > 0:

ξSa = 1 + αS
ξ

(
βS
ξ

)a
(4.1)

ξBa = 1 + αB
ξ

(
βB
ξ

)a
(4.2)

where αS
ξ and αB

ξ determine the size of wedge, and βS
ξ (< 1) and βB

ξ (< 1) determine the speed
of its decay. We also assume that a fixed initial number of suppliers/buyer advertisement
is proportional to its (firm-level) steady state level of advertisement (i.e., nS(a = 0, ϕ) =
ιSnS(a = ∞, ϕ) and nB(a = 0, ϕ) = ιBnB(a = ∞, ϕ) given a coefficient parameter ιS and
ιB).

We calibrate these parameters so that the model yields the same network growth pattern
of young firms with the data. Remember that the age pattern of βa in equation (2.7) for
LogDegree measures can be interpreted as a network growth pattern. Hence, we estimate
the wedge parameters so that βa in equation (2.7) for LogDegree measures using the real

data and model-generated data yield matched result. Let β̂S,data
a denote the estimated

coefficient in equation (2.7) for the supplier LogDegree measure using real data,
¯̂
βS,data

denote the average across all ages, and β̂S,model
a for the estimated coefficient using model-

generated data, with a corresponding notation for the buyer direction. Then, we set an
objective function below that consists of population-weighted R2 between model and data
for supplier and buyer, R2

S and R2
B , respectively.

Obj. := R2
S +R2

B (4.3)

:=

1−

∑
a≥1(1− φ)φa−1

(
β̂S,model
a − β̂S,data

a

)2
∑

a≥1(1− φ)φa−1
(
β̂S,data
a − ¯̂

βS,data
)2


+

1−

∑
a≥1(1− φ)φa−1

(
β̂B,model
a − β̂B,data

a

)2
∑

a≥1(1− φ)φa−1
(
β̂B,data
a − ¯̂

βB,data
)2
 (4.4)

Table 3 summarize the estimated parameters that minimize the above objective function.
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We observe larger αξ and βξ in supplier direction compared to buyer direction. This implies
the wedge that young firms are facing to build networks is more serious and more prolonged
with respect to supplier acquisition.

Parameter Description Value

αS
ξ Level of age-specific ad. cost for new supplier 2

βS
ξ Decay of age-specific ad. cost for new supplier 0.85

αB
ξ Level of age-specific ad. cost for new buyer 0.65

βB
ξ Decay of age-specific ad. cost for new buyer 0.235

ιS Coeff. of the initial ad. for new supplier 2.6

ιB Coeff. of the initial ad. for new buyer 4

Table 3: Summary of network-specific parameter values

We plot the estimated coefficients of βa in equation (2.7) for LogDegree measures using
the real data and model-generated data, respectively. While we make a strong parametric
assumption on ξa, Figure 3 shows a good fit between the data and the model. Quantitatively,
the weighted R2 is 0.994 for supplier direction and 0.986 for buyer direction, which implies
approximately 99% of the empirically estimated network growth pattern is accounted for by
our calibrated model.

Figure 3: β̂a in Data and Model

Notes: The comparison of observed/model-generated relationships between LogDegree measures and firm
age. We plots estimated coefficients of βa in equation (2.7) for LogDegree measures using the real data and
model-generated data, respectively. The shadow is the 99% confidence interval for the coefficients using
real data.

4.2 Counterfactual Simulations

4.2.1 Evaluation of the size of wedge

In this first simulation, we analyze wedge-free economy, a counterfactual economy without
networking wedge, i.e., ξSa = ξBa = 1 for all a. Comparing it with the baseline economy
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calibrated above, we quantitatively assess the significance of the estimated networking wedge
on networking behavior of firms and macroeconomy.

Figure 4 compares network growth patterns in the two economies. We plot estimated co-
efficients of βa in equation (2.7) for LogDegree measures using data generated by the baseline
model and one by the counterfactual model, respectively. As clearly shown in the left figure,
supplier accumulation becomes much faster in the wedge-free economy. While somewhat
milder, buyer accumulation is also accelerated in the wedge-free economy. These results
confirm the networking wedge in the real economy certainly affects micro-level networking
decisions of young firms and delays their partner accumulation.

Figure 4: β̂a in the Baseline and Wedge-Free Economy

Table 4 shows the effects on macroeconomic variables as percentage changes from the
baseline economy. k is the average number of suppliers (or equivalently the average number
of buyers, due to network duality). kSy and kSo are the average number of suppliers for

young firms (a < 20) and old firms (a ≥ 20), respectively. kBy and kBo are the same for
the number of buyers. First, we observe a sizable impact on aggregate variables. Welfare
improves by 2.35% and the mass of entrants increases by 2.91% and wage rises by 1.29%.
Network-related measures also increase, but with asymmetry with respect to its direction
and beneficiary. Since the wedge in the baseline mainly hampers supplier accumulation of
young firms, eliminating it fosters supplier acquisition efforts by young firms. This results in
the highest increase in the average number of suppliers for young firms kSy , directly. At the
same time in the matching market, increased mass of supplier advertisement increase the
buyer matching rate. This equally increase the number of buyer for both young kBy and old

firms kBo . To summarize, this result highlights the macroeconomic significance of networking
wedge. While its nature is totally micro-level wedge that distorts the networking decision
of each of the young firms, its macroeconomic effect become sizable in the equilibrium.

U Me w k mS mB kSy kSo kBy kBo
Wedge-Free 2.351 2.914 1.289 9.955 1.882 9.912 20.149 2.301 11.380 8.690

Table 4: Wedge-Free Economy (percentage change from the baseline economy)

Next, to investigate the mechanism of the welfare improvement, we develop Proposition
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1, which decomposes welfare changes by discretizing the state space of χ and representing
variables in the linear space using bold symbols. Here, 1 is an unit column vector, and we

abuse the fraction bar − as
x

y
:=

(
x1

y1
, · · · , xn

yn

)
or equivalently := x◦y◦−1 in the hadamard

expression. The proof is in Appendix C.2.� �
Proposition 1 (Decomposition of change in U): Given the expenditure share of household
wE and network matrix weighted by transaction value W S , change in the welfare U
can be decomposed as follows.

dU

U
= −dPH

PH
=

1

σ − 1

dMe

Me︸ ︷︷ ︸
LofV effect

+
1

σ − 1
wE ′ · dΦ

Φ︸ ︷︷ ︸
Price effect

(4.5)

dΦ

Φ
= −α(σ − 1)

dw

w︸ ︷︷ ︸
Wage effect

+(1− α)

(
W S ◦ dKs

Ks

)
1︸ ︷︷ ︸

Networking effect

+(1− α)W S dΦ

Φ︸ ︷︷ ︸
Spillover effect

(4.6)

� �
The interpretation is quite intuitive. The first equality in (4.5) applies because the

household income is numeraire in this economy.18 The second equality decomposes the
change in the price index into the love of variety effect, the increase in the mass of firms
(extensive margin), and the price effect, the price change of each firm weighted by the
household’s exposure (intensive margin).

The second equation (4.6) further decomposes the price change of each firm. The first
term is a direct path-through of labor cost. The second term captures the effect of acquisition
of new suppliers.19 Since the increase in the number of suppliers enable firms to produce
goods more efficiently due to the love of variety structure in the production function, the
unit costs of production decrease. Furthermore, due to the spillover effects of supply chain
networks captured by the third term, the wage and networking effects are amplified by
multiplier (1− α)W S .

Table 5 shows the decomposition of the welfare change U based on Proposition 1.20 First,
we observe a sizable impact from the love of variety effect. Since firms in the wedge-free
economy can access abundant suppliers and customers from an early stage, the value of entry
is improved and mass of entrant increases. The second, and more significant impact comes
from the price effect. While the increased mass of firms raises the wage w and negatively
impacts welfare U , the networking effect, which is approximately three times larger than the
wage effect in absolute terms and twice as large as the love of variety effect, can surpass the
negative effect. Furthermore, these effects propagate through the supply chain and amplified
as the spillover effect, which is also larger than the love of variety effect and the wage effect.

18This technique to set the nominal GDP as numeraire and focus on the change in the price index is
widely used in the literature of aggregation of shocks like Baqaee (2018), Baqaee and Farhi (2020) and
Baqaee and Rubbo (2023).

19When the production network structure remain unchanged, i.e.,
dKs

Ks = 0, this equation simply captures

the effect of the change in wage (labor costs) and productivity of upstream firms (intermediate goods costs)
on the productivity of firms over supply chains, as studied in a wide range of the literature on production
networks such as Oberfield (2018).

20There is a slight difference in the change of U between Table 4 and 5, which stems from the linearization
in the proposition. While we do not investigate the difference since its out of the scope of our analysis, check
Baqaee and Farhi (2019) for the detail.
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To summarize, this decomposition result demonstrates the macroeconomic importance of
accounting for the production network. The networking effect and the spillover effects,
which arises only when we consider production network, have at least comparable impacts
on welfare compared to the conventional channels like the love of variety effect and wage
effect.

U LofV Price Wage Networking Spillover
Wedge-Free 2.387 0.728 1.658 -0.580 1.465 0.833

Table 5: Wedge-Free Economy (Decomposition of the change in U)

We further decompose the expression in Proposition 1 by age as follows. Suppose the
state space is indexed by age in an ascending order, without loss of generality. Then, given
a generic bivariate function A(χ, χ′) and its associated matrix A, and a generic univariate
function x(χ) and its associated vector x, we have block matrix expression as follows.

A =

(
Ay,y Ay,o

Ao,y Ao,o

)
(4.7)

x =

(
xy

xo

)
(4.8)

where Ay,y,Ao,y,Ay,o,Ao,o correspond to discretized expression of a bivariate function
A(χ, χ′) with a < 20∧ a′ < 20, a ≥ 20∧ a′ < 20, a < 20∧ a′ ≥ 20, and a ≥ 20∧ a′ ≥ 20, re-
spectively, and xy and xo correspond to a univariate function x(χ) with a < 20 and a ≥ 20,
respectively. This block matrix expression leads to the next proposition.� �

Proposition 2 (Decomposition of change in U by firm age): Suppose the state space is
indexed by its age element a in an ascending order. Then, change in the welfare U can
be decomposed as follows.

dU

U
=

1

σ − 1

dMe

Me︸ ︷︷ ︸
LofV Effect

− α
dw

w︸ ︷︷ ︸
Wage Effect

+
1− α

σ − 1
(wE′

y wE′

o )




W S
y,y ◦

dKS
y,y

KS
y,y

W S
y,o ◦

dKS
y,o

KS
y,o

W S
o,y ◦

dKS
o,y

KS
o,y

W S
o,o ◦

dKS
o,o

KS
o,o

1


︸ ︷︷ ︸

Networking Effect

+
1− α

σ − 1
(wE′

y wE′

o )

(
W S

y,y W S
y,o

W S
o,y W S

o,o

)
dΦy

Φy
dΦo

Φo


︸ ︷︷ ︸

Spillover Effect

(4.9)

� �
By examining the elements of the block matrix in (4.9), we can clarify from which age group
to which age group network growth contributed to the welfare change (networking effect)
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and from which age group to which age group propagation of these changes contributes to
the welfare change (spillover effect) going beyond the aggregate-level analysis of network
growth and propagation. The proof is in Appendix C.2.

Table 6 presents the age decomposition results of the networking effect and spillover
effect. The results exhibit asymmetry across both firm age and network directions, but
remain intuitive. First, the age decomposition of networking effect shows that the networking
effect arises mainly from the growth in the number of young and old suppliers of young firms
(the first and second columns). Second, this asymmetry leads to the next asymmetry in the
spillover effect. Since the young firms can increase their productivity due to the increase
in the number of suppliers, their buyers benefit from the spillover effect due to cheaper
intermediate goods. The buyers could be either young firms and old firms, so the spillover
effect from young firms is shared equally between young and old buyers (the fifth and seventh
columns).

Networking Spillover
yy yo oy oo yy yo oy oo

Wedge-Free 0.624 0.665 0.078 0.098 0.339 0.075 0.326 0.093

Table 6: Wedge-Free Economy (Decomposition of the change in U by age group)

Lastly, to clarify which direction of networking wedge is driving the above result, we
analyze upstream wedge-free economy where only the upstream networking wedge is removed
(ξSa = 1 and ξBa = 1 + αB

ξ

(
βB
ξ

)a
) and downstream wedge-free economy where only the

downstream networking wedge is removed (ξSa = 1 + αS
ξ

(
βS
ξ

)a
and ξBa = 1).

Figure 5 compares the network growth pattern in the several economies. Consistent with
the previous analysis, the elimination of the upstream networking wedge yields a similar pat-
tern to the wedge-free economy. In contrast, the elimination of the downstream networking
wedge leads to a pattern nearly identical to the baseline economy. The macroeconomic impli-
cation is also similar. As Table 7 shows, elimination of the upstream networking wedge has
a similar impact on macro variables, whereas the elimination of the downstream networking
wedge leads to only minor changes, reflecting differences in the magnitude of changes in the
networking behavior of young firms. To summarize, the upstream networking wedge creates
greater distortions in young firms’ networking behavior, leading to worse macroeconomic
outcomes compared to the downstream networking wedge.

U Me w k mS mB kSy kSo kBy kBo
Wedge-Free 2.351 2.914 1.289 9.955 1.882 9.912 20.149 2.301 11.380 8.690

Upstream Wedge-Free 2.209 2.459 1.208 9.510 1.343 9.595 19.663 1.887 10.649 8.499
Downstream Wedge-Free 0.131 0.384 0.071 0.425 0.529 0.253 0.429 0.422 0.732 0.152

Table 7: Several Wedge-Free Economies (percentage change from the baseline economy)

4.2.2 Network Subsidy

In this exercise, we examine which direction of subsidy has greater macroeconomic impacts
from perspectives of policy makers. The observed larger impacts of the elimination of
upstream networking wedge compared to the elimination of downstream networking wedge
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Figure 5: β̂a in several Wedge-Free Economies

may directly result from the larger size of the existing wedge, or the different effectiveness of
the wedge on the macroeconomy. If the former mechanism alone explains the previous result
and the effectiveness between the two directions is identical, subsidies in either direction
should be able to improve welfare to the same degree by giving the same level of subsidies.
To test this, we conduct two network subsidy policy experiments, financed by a lump-sum
tax.

We consider age- and direction-dependent network subsidy policies denoted by sSa and
sBa . This changes firm problem as follows.

V (ϕ, a,na−1) = max
na=(nS

a ,nB
a )

π(ϕ,na−1,na)− (1− sSa )ξ
S
aP

AdvfS
(nS

a )
γS

γS
− (1− sBa )ξ

B
a PAdvfB

(nB
a )

γB

γB

+ βφV (ϕ, a+ 1,na) (4.10)

The first policy we consider is to subsidize supplier acquisition of young firms by 1− sSa =
1

ξSa
=

1

1 + αS
ξ

(
βS
ξ

)a with sBa = 1 (upstream subsidy policy), and the second one is to

subsidize buyer acquisition of young firms by 1 − sBa =
1

ξSa
=

1

1 + αS
ξ

(
βS
ξ

)a with sSa = 1

(downstream subsidy policy). From its construction, the upstream subsidy yields exactly
the same result as the upstream wedge-free economy. On the other hand, the downstream
subsidy yields a different result from the downstream wedge-free economy because its subsidy
level aligned with the size of the upstream networking wedge surpasses that of the existing
downstream networking wedge.

Figure 6 compares the effects of the two policies on the network growth. As the fig-
ure clearly shows, the two contrasting policies achieve symmetric patterns, i.e., subsidizing
supplier/buyer acquisition promotes faster supplier/buyer accumulation.

Table 8 shows the macroeconomic consequences. While both policies improve welfare and
promote entry, the upstream subsidy has twice the impact of the downstream subsidy. The
network-related variables exhibit symmetry consistent with the growth patterns in Figure
6.
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Figure 6: β̂a under Network Subsidy Poilcy

U Me w k mS mB kSy kSo kBy kBo
Upstream Subsidy 2.209 2.459 1.208 9.510 1.343 9.595 19.663 1.887 10.649 8.499

Downstream Subsidy 1.238 1.171 1.154 7.996 8.027 1.020 8.409 7.687 15.082 1.710

Table 8: Network Subsidy (percentage change from the baseline economy)

To identify the source of the quantitative differences in welfare impacts, we compare the
associated decomposition results in Table 9. First, reflecting the different impacts in the mass
of entrants Me, the love of variety effect is larger for the upstream subsidy. Furthermore, the
networking and spillover effects are much larger for the upstream subsidy. One explanation
of the difference is the different efficiency of the newly created networks structure. The
upstream subsidy encourages young firms to acquire both more young and old suppliers,
boosting their productivity by leveraging the new suppliers’ productivity. On the other hand,
under the downstream subsidy policy, young firms accelerate its buyer acquisition, without
increasing their suppliers and the corresponding productivity gain. From the perspective of
the buyers added by the young firms, the newly added young suppliers have not accumulated
their own suppliers yet and have low productivity. Hence, the productivity gains of new
buyers remain limited due to their reliance on low-productivity suppliers. The difference in
the productivity gain is further amplified by the spillover effect across the entire production
networks.

U LofV Price Wage Networking Spillover
Upstream Subsidy 2.243 0.615 1.628 -0.543 1.412 0.816

Downstream Subsidy 1.250 0.293 0.957 -0.519 0.969 0.522

Table 9: Network Subsidy (Decomposition of the change in U)

We can confirm the mechanism explained above by age decomposition result in Table 10.
The downstream subsidy mainly increases the young buyer-young supplier links (second row,
first column) and the old buyer-young supplier links (second row, third column). Since these
young suppliers have not accumulated sufficient suppliers yet, their contribution to buyer
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productivity is limited compared to that in the upstream subsidy economy. The difference
is amplified as shown in the spillover effect.

Networking Spillover
yy yo oy oo yy yo oy oo

Upstream Subsidy 0.603 0.659 0.060 0.090 0.336 0.071 0.322 0.088
Downstream Subsidy 0.459 0.042 0.399 0.070 0.127 0.121 0.124 0.151

Table 10: Network Subsidy (Decomposition of the change in U by age group)

4.2.3 Implication for Entry Subsidy

In this counterfactual simulation, we analyze the effect of entry subsidy. As the previous
simulation results suggest, the existing networking wedge hinders partner acquisition during
young ages and leads to weaker business performance, thereby suppressing entry. Here, by
comparing the effects of entry subsidy in the baseline economy and counterfactual wedge-
free economy, we evaluate the margin of the entry subsidy impact that is attributable to the
networking wedge.

Table 11 shows the effects of the entry subsidy that increases entry by 10% for each
economy. We observe higher growth in welfare U in the baseline economy. In the baseline
economy, where the decision of young firms are distorted by the existing networking wedge,
the suppressed original entry level leads to milder wage growth from the additional labor
demand yielded by the subsidy. This leads to greater growth in network-related variables
in the baseline economy due to the lower advertisement cost. Note that this entry subsidy
policy does not alter age-specific growth pattern of network as Figure 6 shows. So the growth
in kSy , k

S
o , k

B
y and kBo is proportional in the both economies.

U Me w k mS mB kSy kSo kBy kBo
Baseline 2.250 10.000 1.419 4.179 6.998 6.368 4.179 4.179 4.179 4.179

Wedge-Free 2.191 10.000 1.466 4.141 6.981 6.346 4.141 4.141 4.141 4.141

Table 11: Entry Subsidy (percentage change)

Table 12 shows the decomposed change in welfare U . Since we compare the policies
that achieve the same level of growth in entry, the love of variety effect is the same. The
smaller negative wage effect, larger positive networking effect, and corresponding spillover
effect contribute to the lower negative price effects. As a result, the higher growth in welfare
U is achieved in the baseline economy. To summarize, the entry subsidy policy can be more
effective under the distorted network formation of young firms because the original entry
level without the policy is inefficiently low in the environment.

U LofV Price Wage Networking Spillover
Baseline 2.343 2.500 -0.157 -0.638 0.575 -0.087

Wedge-Free 2.285 2.500 -0.215 -0.660 0.569 -0.118

Table 12: Entry Subsidy (Decomposition of the change in U)
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Figure 7: β̂a under Entry Subsidy

5 Conclusion

This paper presents the network growth patterns of young firms and their macroeconomic
implications. First, using fixed-effect regressions on a comprehensive firm-by-year dataset,
which combines yearly transaction network data and firm survey panel data, we derive two
main findings. The first one is that while the number of suppliers and customers eventually
converges to a mature level over the firm’s life cycle, young firms can only increase these con-
nections slowly, even after accounting for typical age-dependent growth factors. This implies
there are sources that prevent young firms from acquiring a sufficient number of partners
immediately after entry, and these sources differ from the typical age-dependent components
like productivity or financial slackness. The second one is that the churn rate of supplier
and buyer relationships remains stable across the firm life cycle once the relationships are
established. This suggests that the difficulty for young firms to reach a mature network
size is not due to post-matching mechanisms such as high churn rates, but to pre-matching
mechanisms related to the matching with potential partners.

Second, we develop a general equilibrium model that incorporates dynamic network
formation decisions of heterogeneous firms. We suppose two sources prevent young firms
from acquiring a sufficient number of partners immediately after entry. The first factor arises
from convexity of advertisement cost. In order to advertise all at once when firms enter,
they have to pay a higher marginal cost. The second factor is a hypothetical age-specific
networking wedge that yields a gap between the original advertisement goods price and the
actual price paid by firms. Although the dynamic network formation decision yields a curse
of dimensionality issue due to the complexity of the network, a truncation approach allows
us to properly define the value function of the firms and apply a simple method to solve it.

Finally, we calibrate the model to the estimated growth patterns of networks, and we
derive several macroeconomic implications using the model. First, our model yields a fairly
good match to the empirical findings. The R2 measure for the network growth pattern
(comparing the data and the calibrated model) is 0.99, implying that our model accounts
for 99% of the empirically observed growth pattern. Next, we analyze the welfare impact of
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the distorted dynamic network formation. Comparing the baseline economy to a wedge-free
economy where the age-specific networking wedge is removed, we observe a 2.4% welfare
improvement in the wedge-free economy. In particular, our propositions on the decomposi-
tion of welfare impacts reveal that unconventional channels, such as changes in the network
structure and their spillovers, can have a larger effect than conventional channels like en-
try and wage adjustments. Lastly, we conduct numerical analyses to evaluate the effects
of different industry policies. The first policy experiment that promotes supplier/customer
acquisition of young firms shows that supporting supplier acquisition of young firms is more
effective than supporting buyer acquisition, which reflects differences in the efficiency of the
newly created network structure. The second policy experiment that promotes entry shows
that the policy can be more effective when network formation is distorted for young firms
because the original entry level without the policy is inefficiently low in the environment.

This paper highlights the critical role of an age-specific wedge in shaping young firms’
network formation and its macroeconomic impacts. Identifying the sources of this wedge
remains a key challenge for future research, promising not only to enhance our understanding
of firm dynamics and supply chain networks, but also to support policymakers in crafting
effective industry policies.
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A Data

A.1 Variable Construction

A.1.1 Inverse Mill’s Ratio

To consider selection issue in the FE estimation, we include inverse Mill’s ratio for our
regression following Hansen (2022). We assume a selection model below,

Y ∗
it = X ′

itβ + eit

S∗
it = Z ′

it−1γ + uit

Si,t = 1{S∗
it > 0}

Yit =

{
Y ∗
it if Sit > 0

missing if Sit = 0(
e
u

)
∼
(
0,

(
σ2 σ21

σ21 1

))
with Z = {Leverage, Labor productivity, Firm age, Industry (2-digit), Year, Prefecture}.
Then, using the inverse Mills ratio λ(x), we obtain

E[Yi,t|Xi,t, Zi,t, Si,t = 1] = X ′
itβ + σ21λ(Z

′
itγ). (A.1)

Hence, by running regression with the constructed inverse Mills ratio λ̂it = λ̂(Z ′
itγ̂) using

the observed sample (Sit = 1), we can control the selection issues. The detail is shown in
Hansen (2022).

A.2 Summary Stats
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count mean sd p50

Young
employee 1484874 6655.054 592407.709 4
sales 5125881 795876.177 39350398.689 69104
number of buyer 2309366 4.462 43.079 3
number of supplier 2248193 4.063 19.896 2
age 5233641 10.549 5.346 11

Old
employee 3058463 19753.461 452436.798 9
sales 9623011 1721322.729 48069623.245 120000
number of buyer 6422389 7.986 42.536 4
number of supplier 7044355 7.166 44.583 3
age 9734155 38.502 13.909 36

Total
employee 4543337 15472.580 502527.728 7
sales 14748892 1399689.830 45232433.493 99941
number of buyer 8731755 7.054 42.709 3
number of supplier 9292548 6.416 40.054 3
age 14967796 28.728 17.706 27

Table 13: Summary Statistics

count mean sd p50

Young
employee (log) 1301260 1.866 1.415 1.609
sales (log) 5125881 10.877 2.367 11.143
number of buyer (log) 2309366 0.983 0.823 1.099
number of supplier (log) 2248193 0.892 0.827 0.693
age (log) 5233641 2.299 0.600 2.485

Old
employee (log) 2912746 2.608 1.790 2.303
sales (log) 9623011 11.823 1.844 11.695
number of buyer (log) 6422389 1.314 1.001 1.386
number of supplier (log) 7044355 1.258 0.966 1.099
age (log) 9734155 3.618 0.341 3.611

Total
employee (log) 4214006 2.379 1.718 2.079
sales (log) 14748892 11.494 2.090 11.512
number of buyer (log) 8731755 1.227 0.968 1.099
number of supplier (log) 9292548 1.169 0.948 1.099
age (log) 14967796 3.157 0.772 3.332

Table 14: Summary Statistics (log)

35



count mean sd p50

Young
RLP 1301260 38622.781 173724.767 18921.000
LP 1301260 3741.336 21290.612 2091.333
leverage 1484849 9.461 1011.451 1.263
netDE 1484752 2.552 329.746 -0.034
LP (log) 1120579 7.650 1.441 7.884
RLP (log) 1295686 9.874 1.141 9.853
LP (growth) 721720 0.033 1.083 0.025
RLP (growth) 889490 0.022 0.530 0.012
leverage (growth) 789721 -0.033 0.584 -0.033
netDE (growth) 892717 -5.154 3680.716 -0.132

Old
RLP 2912745 37239.534 228436.371 20367.000
LP 2912745 3230.063 20896.667 1958.364
leverage 3058437 7.064 2292.903 0.968
netDE 3058369 1.743 249.888 -0.073
LP (log) 2542834 7.543 1.449 7.782
RLP (log) 2909085 9.910 1.148 9.923
LP (growth) 1918701 0.019 1.005 0.012
RLP (growth) 2325202 -0.010 0.438 -0.003
leverage (growth) 2015153 -0.031 0.402 -0.024
netDE (growth) 2353037 -0.184 263.949 -0.060

Total
RLP 4214005 37666.672 213047.447 19930.176
LP 4214005 3387.941 21020.427 1996.000
leverage 4543286 7.847 1968.125 1.043
netDE 4543121 2.008 278.517 -0.064
LP (log) 3663413 7.576 1.447 7.812
RLP (log) 4204771 9.899 1.146 9.903
LP (growth) 2640421 0.023 1.027 0.015
RLP (growth) 3214692 -0.001 0.466 0.000
leverage (growth) 2804874 -0.031 0.461 -0.026
netDE (growth) 3245754 -1.551 1943.368 -0.074

Table 15: Summary Statistics: Control Variables
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B Estimation

B.1 Estimation Results (Detail)

(1) (2)

LogDegree
S

LogDegree
B

age=0 -0.680
∗∗∗

-0.481
∗∗∗

age=1 -0.710
∗∗∗

-0.510
∗∗∗

age=2 -0.636
∗∗∗

-0.458
∗∗∗

age=3 -0.556
∗∗∗

-0.403
∗∗∗

age=4 -0.489
∗∗∗

-0.352
∗∗∗

age=5 -0.433
∗∗∗

-0.306
∗∗∗

age=6 -0.384
∗∗∗

-0.272
∗∗∗

age=7 -0.336
∗∗∗

-0.241
∗∗∗

age=8 -0.303
∗∗∗

-0.213
∗∗∗

age=9 -0.269
∗∗∗

-0.186
∗∗∗

age=10 -0.243
∗∗∗

-0.169
∗∗∗

age=11 -0.215
∗∗∗

-0.153
∗∗∗

age=12 -0.188
∗∗∗

-0.132
∗∗∗

age=13 -0.168
∗∗∗

-0.120
∗∗∗

age=14 -0.150
∗∗∗

-0.110
∗∗∗

age=15 -0.134
∗∗∗

-0.096
∗∗∗

age=16 -0.116
∗∗∗

-0.086
∗∗∗

age=17 -0.100
∗∗∗

-0.075
∗∗∗

age=18 -0.088
∗∗∗

-0.072
∗∗∗

age=19 -0.080
∗∗∗

-0.066
∗∗∗

age=20 -0.072
∗∗∗

-0.064
∗∗∗

age=21 -0.068
∗∗∗

-0.060
∗∗∗

age=22 -0.060
∗∗∗

-0.054
∗∗∗

age=23 -0.055
∗∗∗

-0.052
∗∗∗

age=24 -0.047
∗∗∗

-0.049
∗∗∗

age=25 -0.041
∗∗∗

-0.043
∗∗∗

age=26 -0.038
∗∗∗

-0.044
∗∗∗

age=27 -0.036
∗∗∗

-0.044
∗∗∗

age=28 -0.028
∗∗∗

-0.041
∗∗∗

age=29 -0.023
∗∗∗

-0.037
∗∗∗

age=30 -0.021
∗∗∗

-0.034
∗∗∗

age=31 -0.016
∗∗∗

-0.032
∗∗∗

age=32 -0.014
∗∗∗

-0.032
∗∗∗

age=33 -0.010
∗∗∗

-0.027
∗∗∗

age=34 -0.007
∗∗

-0.026
∗∗∗

age=35 -0.006
∗∗

-0.021
∗∗∗

age=36 -0.007
∗∗

-0.019
∗∗∗

age=37 -0.005
∗

-0.019
∗∗∗

age=38 -0.002 -0.016
∗∗∗

age=39 -0.001 -0.016
∗∗∗

age=40 -0.000 -0.016
∗∗∗

age=41 -0.001 -0.014
∗∗∗

age=42 -0.000 -0.012
∗∗∗

age=43 0.001 -0.011
∗∗∗

age=44 0.002 -0.010
∗∗∗

age=45 -0.000 -0.009
∗∗∗

age=46 0.001 -0.005
∗∗

age=47 0.001 -0.005
∗∗

age=48 0.000 -0.005
∗∗

age=49 0.001 -0.003

leverage 0.250
∗∗∗

0.188
∗∗∗

LP 0.016
∗∗∗

0.012
∗∗∗

imr 29.110
∗∗∗

21.906
∗∗∗

Observations 2718383 2826112

R
2

0.938 0.907

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16: Regression Result (detail): Number of Networks and Age
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(1) (2) (3) (4) (5) (6)

NetGrowth
S

GrossGrowth
S

GrossDepreciation
S

NetGrowth
B

GrossGrowth
B

GrossDepreciation
B

age=1 0.459
∗∗∗

0.466
∗∗∗

-0.044
∗∗∗

0.383
∗∗∗

0.386
∗∗∗

-0.052
∗∗∗

age=2 0.500
∗∗∗

0.504
∗∗∗

-0.041
∗∗∗

0.417
∗∗∗

0.456
∗∗∗

-0.015
∗∗∗

age=3 0.360
∗∗∗

0.366
∗∗∗

-0.035
∗∗∗

0.336
∗∗∗

0.380
∗∗∗

-0.005

age=4 0.298
∗∗∗

0.307
∗∗∗

-0.027
∗∗∗

0.284
∗∗∗

0.329
∗∗∗

-0.002

age=5 0.253
∗∗∗

0.262
∗∗∗

-0.029
∗∗∗

0.255
∗∗∗

0.297
∗∗∗

-0.002

age=6 0.216
∗∗∗

0.226
∗∗∗

-0.026
∗∗∗

0.221
∗∗∗

0.265
∗∗∗

0.002

age=7 0.195
∗∗∗

0.205
∗∗∗

-0.024
∗∗∗

0.196
∗∗∗

0.238
∗∗∗

-0.001

age=8 0.177
∗∗∗

0.188
∗∗∗

-0.023
∗∗∗

0.179
∗∗∗

0.223
∗∗∗

0.002

age=9 0.154
∗∗∗

0.163
∗∗∗

-0.025
∗∗∗

0.157
∗∗∗

0.196
∗∗∗

-0.001

age=10 0.140
∗∗∗

0.152
∗∗∗

-0.022
∗∗∗

0.146
∗∗∗

0.184
∗∗∗

-0.001

age=11 0.133
∗∗∗

0.142
∗∗∗

-0.024
∗∗∗

0.136
∗∗∗

0.173
∗∗∗

0.000

age=12 0.119
∗∗∗

0.129
∗∗∗

-0.022
∗∗∗

0.131
∗∗∗

0.165
∗∗∗

-0.003

age=13 0.111
∗∗∗

0.121
∗∗∗

-0.021
∗∗∗

0.121
∗∗∗

0.154
∗∗∗

-0.001

age=14 0.100
∗∗∗

0.110
∗∗∗

-0.021
∗∗∗

0.111
∗∗∗

0.141
∗∗∗

-0.004

age=15 0.091
∗∗∗

0.100
∗∗∗

-0.022
∗∗∗

0.102
∗∗∗

0.133
∗∗∗

-0.002

age=16 0.085
∗∗∗

0.095
∗∗∗

-0.019
∗∗∗

0.095
∗∗∗

0.124
∗∗∗

-0.002

age=17 0.079
∗∗∗

0.088
∗∗∗

-0.020
∗∗∗

0.087
∗∗∗

0.116
∗∗∗

-0.002

age=18 0.076
∗∗∗

0.085
∗∗∗

-0.019
∗∗∗

0.080
∗∗∗

0.107
∗∗∗

-0.002

age=19 0.068
∗∗∗

0.077
∗∗∗

-0.019
∗∗∗

0.075
∗∗∗

0.100
∗∗∗

-0.004

age=20 0.064
∗∗∗

0.072
∗∗∗

-0.018
∗∗∗

0.071
∗∗∗

0.096
∗∗∗

-0.003

age=21 0.060
∗∗∗

0.068
∗∗∗

-0.017
∗∗∗

0.064
∗∗∗

0.089
∗∗∗

-0.002

age=22 0.056
∗∗∗

0.064
∗∗∗

-0.017
∗∗∗

0.064
∗∗∗

0.086
∗∗∗

-0.003

age=23 0.048
∗∗∗

0.055
∗∗∗

-0.017
∗∗∗

0.057
∗∗∗

0.079
∗∗∗

-0.003

age=24 0.050
∗∗∗

0.057
∗∗∗

-0.016
∗∗∗

0.052
∗∗∗

0.072
∗∗∗

-0.003

age=25 0.045
∗∗∗

0.052
∗∗∗

-0.016
∗∗∗

0.051
∗∗∗

0.071
∗∗∗

-0.003

age=26 0.044
∗∗∗

0.049
∗∗∗

-0.016
∗∗∗

0.046
∗∗∗

0.066
∗∗∗

-0.003

age=27 0.036
∗∗∗

0.042
∗∗∗

-0.015
∗∗∗

0.043
∗∗∗

0.061
∗∗∗

-0.003

age=28 0.038
∗∗∗

0.042
∗∗∗

-0.016
∗∗∗

0.040
∗∗∗

0.056
∗∗∗

-0.004
∗

age=29 0.035
∗∗∗

0.039
∗∗∗

-0.014
∗∗∗

0.037
∗∗∗

0.051
∗∗∗

-0.005
∗∗

age=30 0.029
∗∗∗

0.035
∗∗∗

-0.013
∗∗∗

0.035
∗∗∗

0.051
∗∗∗

-0.002

age=31 0.026
∗∗∗

0.031
∗∗∗

-0.013
∗∗∗

0.030
∗∗∗

0.044
∗∗∗

-0.004
∗

age=32 0.024
∗∗∗

0.029
∗∗∗

-0.012
∗∗∗

0.030
∗∗∗

0.044
∗∗∗

-0.002

age=33 0.023
∗∗∗

0.027
∗∗∗

-0.012
∗∗∗

0.028
∗∗∗

0.040
∗∗∗

-0.004
∗∗

age=34 0.022
∗∗∗

0.026
∗∗∗

-0.010
∗∗∗

0.023
∗∗∗

0.034
∗∗∗

-0.005
∗∗

age=35 0.018
∗∗∗

0.022
∗∗∗

-0.011
∗∗∗

0.024
∗∗∗

0.033
∗∗∗

-0.005
∗∗

age=36 0.017
∗∗∗

0.023
∗∗∗

-0.009
∗∗∗

0.020
∗∗∗

0.030
∗∗∗

-0.003
∗

age=37 0.015
∗∗∗

0.019
∗∗∗

-0.009
∗∗∗

0.017
∗∗∗

0.026
∗∗∗

-0.004
∗∗

age=38 0.016
∗∗∗

0.019
∗∗∗

-0.009
∗∗∗

0.018
∗∗∗

0.027
∗∗∗

-0.002

age=39 0.012
∗∗∗

0.015
∗∗∗

-0.008
∗∗∗

0.014
∗∗∗

0.020
∗∗∗

-0.006
∗∗∗

age=40 0.011
∗∗∗

0.015
∗∗∗

-0.007
∗∗∗

0.016
∗∗∗

0.022
∗∗∗

-0.004
∗∗∗

age=41 0.009
∗∗∗

0.013
∗∗∗

-0.006
∗∗∗

0.013
∗∗∗

0.018
∗∗∗

-0.003
∗∗

age=42 0.008
∗∗∗

0.010
∗∗∗

-0.006
∗∗∗

0.012
∗∗∗

0.017
∗∗∗

-0.003
∗∗

age=43 0.007
∗∗∗

0.010
∗∗∗

-0.005
∗∗∗

0.008
∗∗

0.012
∗∗∗

-0.003
∗

age=44 0.005
∗

0.007
∗∗∗

-0.005
∗∗∗

0.007
∗∗

0.012
∗∗∗

-0.002

age=45 0.003 0.007
∗∗∗

-0.003
∗∗∗

0.008
∗∗

0.013
∗∗∗

-0.001

age=46 0.003 0.005
∗∗

-0.003
∗∗∗

0.005
∗

0.009
∗∗∗

-0.001

age=47 0.004
∗

0.006
∗∗∗

-0.003
∗∗∗

0.003 0.009
∗∗∗

0.002

age=48 0.004
∗

0.006
∗∗∗

-0.002
∗∗

0.003 0.006
∗∗

-0.000

age=49 0.002 0.002 -0.003
∗∗∗

0.004 0.005
∗

-0.001

leverage 0.010
∗∗∗

0.008
∗∗∗

-0.009
∗∗∗

-0.006
∗∗

-0.013
∗∗∗

-0.012
∗∗∗

LP 0.003
∗∗∗

0.002
∗∗∗

-0.001
∗∗∗

0.001
∗∗∗

0.000 -0.001
∗∗∗

imr 1.246
∗∗∗

0.951
∗∗∗

-0.993
∗∗∗

-0.632
∗∗

-1.461
∗∗∗

-1.406
∗∗∗

Observations 2425776 2425776 2465580 2510808 2510808 2550151

R
2

0.177 0.227 0.306 0.155 0.219 0.319

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 17: Regression Result (detail): Growth of Networks and Age
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B.2 Robustness Check

In this section, we run a series of robustness checks for the key facts observed in Section
2.3. Figure 8 shows the estimation results after dropping firms in financial industries. (4.0%
of the sample is dropped.) Figure 8 shows the estimation result when we do not count
the links with capital relationships. (0.8% of the links become uncounted.) Figure 10
shows the results controlled by net DE ratio instead of leverage. Figure 11 shows the
results controlled by RLP (defined by revenue divided by employee) instead of LP following
Bernard et al. (2019). All of the results are quite similar, and that supports the hypothesis
that even without productivity growth or loosening of financial constraints of young firms,
their networks measures show typical age-speficic patterns.

Figure 8: Networking Measures and Firm Aging without Firms in Financial Sectors

Notes: Estimation results for panel regression expressed in equation (2.7) without firms in financial sectors.
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Figure 9: Networking Measures and Firm Aging with Counting Links Backed up by Capital-
relationship

Notes: Estimation results for panel regression expressed in equation (2.7) with counting links backed up by
capital-relationship.
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Figure 10: Networking Measures and Firm Aging Controlled by Net DE Ratio

Notes: Estimation results for panel regression expressed in equation (2.7) controlled by net DE ratio
instead of leverage.
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Figure 11: Networking Measures and Firm Aging Controlled by RLP

Notes: Estimation results for panel regression expressed in equation (2.7) controlled by RLP instead of LP.
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C Derivation

C.1 Derivation of profit function

Profit of χ-firm is

π(χ) = (µ− 1)η(χ)X(χ) (C.1)

= (µ− 1)η(χ)(p(χ))−σ

(
∆+

∫ (
1

P (χ′)

)−σ

(1− α)
η(χ′)

P (χ′)
X(χ′)kB(χ, χ′)dχ′

)
(C.2)

= (µ− 1)η(χ)(µη(χ))−σ

(
∆+

∫ (
1

P (χ′)

)−σ

(1− α)
η(χ′)

P (χ′)
X(χ′)kB(χ, χ′)dχ′

)
(C.3)

= (µ− 1)µ−ση(χ)1−σ

(
∆+

∫ (
1

P (χ′)

)−σ

(1− α)
η(χ′)

P (χ′)
X(χ′)kB(χ, χ′)dχ′

)
(C.4)

= (µ− 1)µ−σ

(
1

ϕ

)1−σ [∫
(p(χ′))

1−σ
kS(χ, χ′)dχ′

]1−α

×

(
∆+

∫ (
1

P (χ′)

)−σ

(1− α)
η(χ′)

P (χ′)
X(χ′)kB(χ, χ′)dχ′

)
(C.5)

= (µ− 1)µ−σ+(1−σ)(1−α)

(
1

ϕ

)1−σ [∫
(η(χ′))

1−σ
kS(χ, χ′)dχ′

]1−α

×

(
∆+

∫ (
1

P (χ′)

)−σ

(1− α)
η(χ′)

P (χ′)
X(χ′)kB(χ, χ′)dχ′

)
. (C.6)

Remember that the χ-firm can control kS(χ, χ′) and kB(χ, χ′) via advertisement cost nS

and nB following (3.32) and (3.33). Hence, we obtain

π(ϕ,na) =(µ− 1)µ−σ+(1−σ)(1−α)

(
1

ϕ

)1−σ

×

[∫
(η(χ′))

1−σ
Al∑
τ=0

nS
a−τm

SδτgτS(χ
′)dχ′

]1−α

×

(
∆+

∫ (
1

P (χ′)

)−σ

(1− α)
η(χ′)

P (χ′)
X(χ′)

Al∑
τ=0

nB
a−τm

BδτgτB(χ
′)dχ′

)
. (C.7)

For readability, define a constant coefficient and two weighting variables that are determined
endogenously in equilibrium as follows.

C = (µ− 1)µ−σ+(1−σ)(1−α) (C.8)

wS
τ = δτ

∫
χ′
(η(χ′))

1−σ
gτS(χ

′)dχ′ (C.9)

wB
τ = δτ (1− α)

∫
χ′

(
1

P (χ′)

)−σ
η(χ′)

P (χ′)
X(χ′)gτB(χ

′)dχ′ (C.10)
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Note that all the terms do not include na nor ϕ, so all of them are exogenously given in the
decision making process of firms.

Using these expressions, we obtain

π(ϕ,na) =Cϕσ−1

[
ms

Al∑
τ=0

wS
τ n

S
a−τ

]1−α

×

[
∆H +mB

Al∑
τ=0

wB
τ nB

a−τ

]
. (C.11)

C.2 Decomposition

Talking log of (3.35) for both sides, we obtain

log(Φ(χ)) = (1− σ) log

(
1

ϕ

)
+ α(1− σ) logw + (1− α) logµ+ (1− α) log

[∫
Φ(χ′)kS(χ, χ′)dχ′

]1−α

.

(C.12)

Total differentiation on both sides yield

dΦ(χ)

Φ(χ)
= α(1− σ)

dw

w
+ (1− α)

∫
dΦ(χ′)kS(χ, χ′) + Φ(χ′)dkS(χ, χ′)dχ′∫

Φ(χ′)kS(χ, χ′)dχ′ (C.13)

= α(1− σ)
dw

w
+ (1− α)

∫ (dΦ(χ′)
Φ(χ′) + dkS(χ,χ′)

kS(χ,χ′)

)
Φ(χ′)kS(χ, χ′)dχ′∫

Φ(χ′)kS
(C.14)

= α(1− σ)
dw

w
+ (1− α)

∫
WS(χ, χ′)

(
dΦ(χ′)

Φ(χ′)
+

dkS(χ, χ′)

kS(χ, χ′)

)
dχ′ (C.15)

where WS(χ, χ′) :=

∫
Φ(χ′)kS(χ, χ′)dχ′∫

Φ(χ′)kS
is network matrix weighted by transaction value.

In a linear form, we obtain

dΦ

Φ
= α(1− σ)

dw

w
+ (1− α)

(
W S ◦ dKS

KS

)
1+ (1− α)W S

(
dΦ

Φ

)
. (C.16)

Here, we suppose the state space is indexed by its age in a ascending manner WOLG.
Then, for a generic matrices A and a generic vector x, we can have a decomposed expression
as follows.

A =

(
Ay,y Ay,o

Ao,y Ao,o

)
(C.17)

x =

(
xy

xo

)
(C.18)

where Ay,y,Ao,y,Ay,o,Ao,o correspond to discretized expression of a bivariate function
A(χ, χ′) with a < 20∧ a′ < 20, a ≥ 20∧ a′ < 20, a < 20∧ a′ ≥ 20, and a ≥ 20∧ a′ ≥ 20, re-
spectively, and xy and xo correspond to a univariate function x(χ) with a < 20 and a′ < 20,
respectively.
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Using this expression, (C.16) becomes


dΦy

Φy
dΦo

Φo

 = α(1− σ)
dw

w
+ (1− α)


(

W S
y,y W S

y,o

W S
o,y W S

o,o

)
◦


dKS

y,y

KS
y,y

dKS
y,o

KS
y,o

dKS
o,y

KS
o,y

dKS
o,o

KS
o,o


1

+ (1− α)

(
W S

y,y W S
y,o

W S
o,y W S

o,o

)
dΦy

Φy
dΦo

Φo

 . (C.19)

Substituting Φ(χ) = η(χ)1−σ into (3.4) yields

PH = µ

[∫
Φ(χ)dF (χ)

] 1
1−σ

(C.20)

= µ

[∫
Φ(χ)dE(χ)

] 1
1−σ

M
1

1−σ
e (C.21)

where E(a, ϕ) = ϕag(ϕ). Taking log for both sides, we obtain

logPH = logµ+
1

1− σ
log

[∫
Φ(χ)dE(χ)

]
+

1

1− σ
logMe (C.22)

Total differentiation on both sides yield

dPH

PH
=

1

1− σ

dMe

Me
+

1

1− σ

∫
dΦ(χ)dE(χ)∫
Φ(χ)dE(χ)

(C.23)

=
1

1− σ

dMe

Me
+

1

1− σ

∫ dΦ(χ)
Φ(χ) Φ(χ)dE(χ)∫
Φ(χ)dE(χ)

(C.24)

=
1

1− σ

dMe

Me
+

1

1− σ

∫
wE(χ)

dΦ(χ)

Φ(χ)
dχ (C.25)

where wE(χ) :=
Φ(χ)e(χ)∫
Φ(χ)dE(χ)

is the expenditure of household on χ-firm goods.

In a linear form, we obtain

dPH

PH
=

1

1− σ

dMe

Me
+

1

1− σ
wE′ dΦ

Φ
(C.26)
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Furthermore, we obtain

dPH

PH
=

1

1− σ

dMe

Me
+

1

1− σ
(wE′

y wE′

o )


dΦy

Φy
dΦo

Φo

 (C.27)

=
1

1− σ

dMe

Me
+ α

dw

w

+
1− α

1− σ
(wE′

y wE′

o )




W S
y,y ◦

dKS
y,y

KS
y,y

W S
y,o ◦

dKS
y,o

KS
y,o

W S
o,y ◦

dKS
o,y

KS
o,y

W S
o,o ◦

dKS
o,o

KS
o,o

1+

(
W S

y,y W S
y,o

W S
o,y W S

o,o

)
dΦy

Φy
dΦo

Φo




(C.28)

=
1

1− σ

dMe

Me︸ ︷︷ ︸
LofV Effect

+ α
dw

w︸ ︷︷ ︸
Wage Effect

+
1− α

1− σ
(wE′

y wE′

o )




W S
y,y ◦

dKS
y,y

KS
y,y

W S
y,o ◦

dKS
y,o

KS
y,o

W S
o,y ◦

dKS
o,y

KS
o,y
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(C.29)

Since the income is numeraire, we also obtain

dU

U
=

1

σ − 1

dMe
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LofV Effect

− α
dw

w︸ ︷︷ ︸
Wage Effect
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(C.30)
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C.3 Firm Level Steady State

Since there is no shock on fundamental productivity of each firm after its entry, the number
of partners it has approaches its steady state optimal level as in the standard model of capital
accumulation like Midrigan and Xu (2014) as a firm ages. In this section, we show how to
derive it. While it does not have a closed form solution, but we can solve it computationally
easily and utilize this characteristics to make computation algorithms efficient as discussed
in D.1.

When a firm with productivity ϕ is in its ss (where the firm’s state variables are constant
across periods as nS = nS

a and nB = nB
a ), the F.O.C. w.r.t. nS

a must satisfy

Al∑
τ=0

(βφ)τCϕσ−1(1− α)msw
s
τ (K

s)−α(∆ +KB) = fs(n
s
a)

γs−1 (C.31)

where

KS := ms

Al∑
τ ′=0

nSws
τ ′ = msW

snS (C.32)

KB := mb

Al∑
τ ′=0

nBwb
τ ′ = mbW

bnB (C.33)

with W s =

Al∑
τ ′=0

ws
τ ′ and W b =

Al∑
τ ′=0

wb
τ ′ , and

kS := ms

Al∑
τ ′=0

(φδ)τ ′nS = msXnS (C.34)

kB := mb

Al∑
τ ′=0

(φδ)τ ′nB = mbXnB (C.35)

with X =

Al∑
τ ′=0

(φδ)τ ′ =
1− (φδ)Al+1

1− φδ
.

F.O.C. w.r.t. nb
a must satisfy

Al∑
τ=0

(βφ)τCϕσ−1(KS)1−αmbw
b
τ = fb(n

b
a(χ))

γb−1 (C.36)

(C.37)

Since nS = nS
a and nB = nB

a hold in a firm-lvel ss, we obtain

Al∑
τ=0

(βφ)τCϕσ−1(1− α)msw
s
τm

−α
s (nS)α

(
Al∑
τ=0

ws
τ

)−α(
∆+mbn

B
Al∑
τ=0

wb
τ

)
= fs(n

S)γ
s−1

(C.38)

Al∑
τ=0

(βφ)τCϕσ−1(nS)1−α

(
Al∑
τ=0

ws
τ

)1−α

mbw
b
τ = fb(n

B)γ
b−1. (C.39)
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The system above can be easily solved by nonlinear solvers in standard packages in pro-
gramming languages since they compose a system of polynomial about nS and nB . In our
implementation, we solve it by fsolve function in Matlab. Note that we have as many of
these equations as the number of grids in ϕ.
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D Computation Algorithm

D.1 Value Function Iteration

As a preparation, first obtain ss value of nS , nB for each ϕ by solving a nonlinear system
of FOCs shown in Appendix C.3. Second, make a grid space of nS , nB for each ϕ around
its ss value. (The construction of state space in this way can save the memory, often used
in two-asset heterogeneous-agent-new-keynesian (HANK) literature like Brunnermeier and
Sannikov (2016).) We set terminal age of firms Af that is large enough.

For each ϕ, keep the iteration below until it converges.

0. Guess ni=0
a for a ∈ {0, ..., Af}

1. Construct V i
a backward from a = Af to a = 0

2. Calculate ni=i+1
a forward from a = 0 to a = Af , and iterate it until convergence.

With a discretization of state space nS , nB into a grid with 41 points (1681 in total) and
tolerance levels 10−4, executing the algorithm above takes around 30 seconds.

D.2 Fixed Point Problem

We can solve the two fixed point problems, backward fixed point problem (3.35) and forward
fixed point problem (3.36) by iteration of the mappings given the network structure as in
Lim (2018) in the following way. About the backward fixed point problem,

0. Guess P (χ).

1. By calculating integration in the right hand side of (3.35) given P (χ), update P (χ)
and iterate it until convergence.

Since the right hand side is concave in Φ(χ), we can easily show that Blackwell’s sufficient
condition is satisfies as discussed in Bernard et al. (2022), and the contraction mapping
theorem guarantees uniqueness and consistency of this iteration as shown in Stokey (1989).
We can solve for X(χ) similarly. While the linearity about X(χ) in the forward fixed point
problem makes hard to show the sufficient condition, under our calibrated parameters, the
algorithm above returns unique fixed points from several initial guess about X(χ). About
the existence and uniqueness of this class of the equation, check Allen et al. (2015).

D.3 Equilibrium

Using iteration for two fixed points as an inner loop, we update outer variables (functions).

0. Guess mj ,∆H , U, wτ
j ,Me.

1. Givenmj ,∆H , wτ
j , solve the value function of firm using VFI D.1 to obtain nj(χ), eV (χ)

2. If the entry surplus is positive (negative), increase (decrease) Me.

3. Calculate g(χ) and gjτ (χ)

4. Calculate mj

5. Calculate kj(χ, χ′)
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6. Compute fixed point of P (χ) using iteration of mapping D.2 and calculate associated
price index.

7. Compute fixed point of X(χ) using iteration of mapping D.2.

8. Calculate wτ
j and U and iterate it until convergence.

With a discretization of state space Sχ into a grid with 25∗25 points and tolerance levels
10−4, executing the algorithm above takes around 10 minutes.

While we do not have a formal proof of existence and uniqueness, the nested fixed point
algorithm is numerically well behaved and converges to the same solution irrespective of the
chosen starting values.
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