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Abstract

This paper questions the conventional wisdom that publication bias must result from
the biased preferences of researchers. When readers only compare the number of positive
and negative results of papers to make their decisions, even unbiased researchers will
omit noisy null results and inflate some marginally insignificant estimates. Moreover,
the equilibrium with such publication bias is socially optimal. The model predicts that
published non-positive results are either precise null results or noisy but extreme negative
results. This paper shows this prediction holds with some data, and proposes a new
stem-based bias correction method that is robust to this and other publication selection
processes.
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1 Introduction

Publication bias compromises the evidence that inform a number of socioeconomic, medical,
educational, and environmental policies. Let us consider a doctor deciding whether to prescribe
a new medication. Suppose she finds 10 studies. Suppose, out of them, 7 write it is effective
while 3 write it is not. She concludes that the new drug appears effective and therefore starts
using it. Later she reads a New York Times article, which reports that pharmaceutical compa-
nies “never published the results of about a third of the drug trials that they conducted to win
government approval, misleading doctors and consumers about the drug’s true effectiveness”
(Carey 2008). In particular, only 14 percent of negative results were published whereas 94
percent of positive results were published. Moreover, 11 out of 14 negative results conveyed
a positive outcome. Even though the meta-analysis still concludes that the drug has positive
overall effect, she is now unsure if evidence is truthful and trustworthy. Research have shown
publication bias – systematic gap between the published literature and the subject it studies
due to selective reporting – is prevalent and severe in economics (Leamer 1978, DeLong and
Lang 1992, Olken 2015, Havránek 2015, Broudeur et al. 2016, Christensen and Miguel 2018)
and other fields, including political science (Franco et al. 2014), psychology (Rosenthal 1979),
medicine (Every-Palmer and Howick 2014), and environmental studies (Havránek et al. 2015).

Many authors and organizations have interpreted publication bias as a failure of incentive
structure in the process of knowledge production, and have pursued efforts to mitigate it. To
explain publication bias, they have assumed researchers are motivated by favoritism towards
particular theories or affiliation with funding sources (Zilak and McCloskey 2008, Goldcare 2010,
Doucouliagos and Stanley 2013b), or by career incentives to please journals that perceive only
significant results as conclusive (Reinhart 2015). Some even consider it as a form of scientific
misconduct (Chalmers 1990). Building on such interpretations, theorists have analyzed the
design of researchers who seek publications (Glaeser 2008, Henry and Ottaviani 2014, Libgober
2015). Authoritative organizations such as the American Statistical Association (Wasserstein
and Lazar, 2016) and the International Committee of Medical Journal Editors (2016) have
issued official statements to encourage reporting of negative results. Calls for a reform in
incentive structures by various authors (Ioannidis 2005) have led influential journals to take
steps to reduce publication bias in economics: the American Economic Review has banned
the use of asterisks in regression tables in 2016, and the Journal of Development Economics
has begun result-independent registered reports in 2018 (Foster et al. 2018). Notwithstanding
the effort, controversies remain as many others suggest that publication bias is far from being
eliminated due to the lack of enforceability (Hunter and Schmidt 2004) indicated by limited
influence of government-run registries of clinical trials (Boccia et al. 2016). Does the evidence of
publication bias suggest a crisis of science that calls for transformation of researcher incentives?

1



What could readers do to make less biased inference if the literature will continue to have
publication bias despite various initiatives?

This paper suggests, contrary to common views, publication bias could arise from aggrega-
tion frictions even among unbiased researchers with a sole motive to maximize social welfare;
and moreover, that their reporting rules with publication bias is socially optimal. The paper
analyzes a communication model between multiple researchers and a policymaker. It shows that
aggregation frictions can explain various common forms of publication bias, including omission
of noisy null results, inflation of marginally insignificant results, and amplification of biases in
reporting decisions between researchers who have only small biases in their preferences. The
results on omission suggest a publication selection process distinct from other processes as-
sumed in existing meta-analysis methods to correct publication bias. This prediction holds in
a dataset of meta-analysis. Given this empirical result, the paper concludes by proposing a
new bias correction method that is robust to both existing and alternative publication selection
process. In this way, the paper provides a new understanding of publication selection process
based not on incentives problems but on information aggregation friction, and proposes a new
way to address publication bias in meta-analyses.

The new friction of the model is a cognitive constraint that policymakers only consider
the yes-or-no conclusions of the studies even when the papers may contain estimates of the
treatment effects and their standard errors. While this assumption may appear too simplistic,
even aggregation in major policy decisions may rely on such vote-counting. For example, an
influential campaign that has reached President Obama in 2013 had summarized 12,000 articles
without consulting statistical details; it merely wrote “97 percent of climate papers stating
a position on human-caused global warming agree that global warming is happening” (The
Consensus Project 2014). Some experiments suggest dichotomous interpretation is common
even among experts in statistics (McChane and Gal 2017). Due to the cost of processing
information, to the limited expertise to understand subtleties, or to the paucity of memory to
recall details, readers may only consult binary conclusions of each study to make their decisions.

The first main result is that, under this cognitive constraint, unbiased researchers will omit
results with estimates of moderate magnitude in such a way that the average underlying esti-
mates of reported studies will have an upward bias. When the policymaker cannot process more
than the binary conclusions, the researchers can only communicate the sign of their estimates
even though they wish to convey their strength and credibility. Thus, omission of intermediate
and imprecise results can better convey information than always reporting either positive or
negative1 results. The upward bias arises from the asymmetry that the researchers will be more
cautious of reporting negative results than positive results if the policymaker implements the

1By “negative” results, this paper will refer to any non-positive results, including both statistically insignif-
icant results and statistically significant negative results.
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policy whenever there are strictly more positive than negative results. A researcher applies
asymmetric standards because a negative result changes the policy decision only when another
researcher reports a positive result, whereas a positive result changes it only when another
researcher did not report any results. The omission and bias can be quantitatively important:
under reasonable parameters, the omission rate can be as large as 40 percent on average, and
70-80 percent among the most imprecise studies; bias can be as large as one standard deviation
of underlying variance. This result is consistent with the evidence of publication bias in eco-
nomics, demonstrated by positive correlation between coefficients and standard errors across
studies (Egger et al. 1997), found in many important meta-analyses, including the impact of
minimum wage on employment (Card and Krueger, 1995), the return to schooling (Ashenfelter
et al., 1999), and the intertemporal elasticity of substitution (Havránek, 2015).

The second main result is that the unbiased researchers may inflate some marginally in-
significant results to convey positive conclusions if the journals require that p-values are below
some constant thresholds. This is because Bayesian researchers adopt a t-statistics threshold
that is increasing in standard errors to draw positive conclusions, contradicting frequentist
null-hypothesis testing approach that requires a constant t-statistics threshold. The discrep-
ancy occurs due to the difference in ways Bayes’ rule and null hypothesis testing use standard
errors. Algebraically, whereas Bayesian updating divides each coefficient by its variance because
it is an aggregation with weights proportional to sample size n, the t-statistic divides the coef-
ficient estimate by its standard error because it is a normalization for convergence that occurs
at rate

√
n. Conceptually, whereas Bayesian researchers focus on how well binary conclusions

can approximate the Bayesian posterior beliefs’ threshold, the p-value requirement focuses on
how unlikely a given observation occurs under the null hypothesis of zero effect. In this way,
while publication decisions based only on p-value may be a rule-of-thumb that approximates the
thresholds, some inflation can be a part of socially optimal scientific reporting. If searching for
specification that satisfies the t-statistics is costly, then there will be a bunching of t-statistics
right above the significant threshold, as found in economics (Brodeuer et al. 2016), political
science (Gerber and Malhotra 2008), and psychology (Simonsohn et al. 2014).

The third, additional result is that, even when the differences in underlying biases are small,
the researchers will have large polarization of reporting rules to draw their binary conclusions.
This amplification of small biases arises because the reporting decisions are strategic substitutes.
That is, if another researcher reports positive results frequently, then the researcher would like
to report positive results less frequently to offset the bias of another researcher, and this ad-
justment induces another researcher to report positive results even more often. Quantitatively,
under reasonable parameter values, the thresholds for reporting positive conclusions may be
7.5 times larger than the primitive difference in preference for policy implementation between
two researchers. This result suggests that the evidence that industry-funded pharmaceutical
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research reports more positive results than government-funded research (Lexchin 2003) needs
not suggest industries are primarily driven by profit-making motives: while industries surely
have stronger incentives to report positive results, their primitive bias needs not be large to
explain the observed evidence of large bias in their reporting.

The results on omission suggests a publication selection process empirically distinct from
other processes used in existing bias correction methods. While the model above suggests both
precisely estimated null results and extremely negative results will be published, other models
have suggested either even precise null results will be omitted (Hedges 1992) or extremely
negative results will be omitted (Duval and Tweedie 2000). This paper develops and implements
an econometric test to distinguish between these models. The test compares the distribution
of reported vs predicted negative results, where prediction is made seb mi-parametrically from
the distribution of positive results. The meta-analysis data of productivity impacts of labor
unions (Doucouliagos et al. 2017) suggest the communication model explains the pattern of
omission more adequately than the other two models.

Given the publication selection process different from existing models, this paper concludes
by proposing a new stem-based bias correction method that performs reasonably across var-
ious models of publication selection. While the large meta-analyses literature has proposed
at least five different models of publication selection, they share a common prediction that
the more precise studies are less subject to publication bias. Using this common prediction,
this new method produces the meta-analysis estimates with some most precise studies, which
constitutes a “stem” of the “funnel” plot. The number of included studies is determined by
the bias-variance trade-off determined with various non-parametric estimation techniques such
as leave-one-out Cross Validation. Consistent with the theory, Monte-Carlo simulations show
stem-based method can avoid extremely severe misspecification problem. The popular exist-
ing bias correction methods attain low coverage probability of 0.13 or 0.43 when the model
assumption is incorrect. In contrast, the stem-based method’s coverage probability is 0.76 in
such settings. While the stem-based method has larger confidence interval since it imposes less
assumptions on the publication selection, it suffers much less from the problem that the exact
publication selection process is unknown, contested by various researchers, and differs from
parsimonious selection according to the communication model. Since the meta-analyses strive
to build consensus across researchers, a conservative method that is robust across a wide range
of proposed publication selection process has important advantages over existing methods.

Related Literature. This paper relates to two sets of microeconomic theory literature on
communication. It also relates to the statistics literature on bias correction methods.

First, this paper builds on and derives contrasting results from the canonical models of
information aggregation and transmission. The results of (i) omission, (ii) bias, and (iii) ampli-
fication of small bias relate to the models of voting as information aggregation (Austen-Smith
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and Banks 1996, Feddersen and Pesendorfer 1996, 1997, 1998, 1999): (i) omission of incon-
clusive results is analogous to abstention of uninformed voters; (ii) biased reporting is similar
to jurors’ bias to convict in order to counterbalance unanimity rules, but differs in that such
biased reporting is socially optimal; (iii) amplification of small bias due to strategic substitution
between researchers is an extension of the result of the non-partisan voters’ vote against the
bias of partisan voters. Moreover, the result that coarseness of message space leads to biased
reporting stands in contrast with the models of information transmission (Crawford and Sobel
1982, Hao, Rosen, and Suen 2001): whereas bias of senders leads to coarse messages due to the
incentive constraints in their model, technological restriction of coarse message space leads to
biased reporting due to pivotality conditions in this model.

Second, this paper also relates to the growing literature of microeconomic models of scien-
tific communication2 and, specifically, publication bias. The result of t-statistics relates to the
microeconomic decision models of statistical testing (Manski 2004, Tetenov 2016). The broad
conclusion that publication bias needs not be socially detrimental is consistent with papers
with various reasoning, such as incentives for endogenous information acquisition with biased
researchers (Glaeser 2006, Libgober 2015, Henry and Ottaviani 2014), or limited journal space
for publication (De Winter and Happee 2012, Frankel and Kasy 2018). In contrast, this paper
derives the result even when information is exogenously given, even when researchers are un-
biased, and even when there is no limit or cost of publication. This paper instead focuses the
cognitive friction, which some papers (Suen 2004, Fryer and Jackson 2008, Blume and Board
2013) have shown as a possible reason for biased communication and decisions, and applies to
the context of scientific communication.

Finally, this paper also contributes to the large and growing (Simonsohn et al. 2014, An-
drews and Kasy 2018, Bom and Rachinger 2018) literature on bias correction methods for
publication bias in meta-analyses. In contrast with the most commonly used methods (Hedges
1992, Duval and Tweedie 2000) that have relied on specific assumptions on publication selection
process and underlying distribution, the stem-based method depends on minimal assumptions
that hold across the assumptions made in literature. This approach also extends some ap-
proaches to focus on some arbitrary number of the most precise studies (Barth et al. 2013,
Stanley et al. 2010) by providing a formal criteria and estimation methods to select the number
of studies to include.

The remainder of the paper is organized as follows: Section 2 presents the communication
model; Section 3 develops and implements its empirical test; Section 4 proposes a bias correction
method given this observation; and Section 5 concludes.

2In a broad way, the paper contributes to the empirical analyses of communication models that have been
advanced specifically in the research on media in the real world (Gentzkow et al. 2016, Puglisi and Snyder 2016)
or on hypothetical communication settings in the laboratories (Crawford 1998, Battaglini et al. 2010). This
paper advances these empirical studies by obtaining a direct measure of bias in the real world data.
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2 A Communication Model of Publication Bias

This Section presents a communication model between multiple researchers and a policy maker
with the friction that the researchers can only communicate yes-or-no conclusions even though
they are informed of their experiments’ estimates. The analysis will show that the aggregation
friction can provide explanation for various kinds of publication bias, such as (i) omission of
insignificant results, (ii) inflation of marginally insignificant results, and (iii) amplification of
small researchers’ bias. Results on omission will also provide an empirical prediction on the
meta-analysis data sets.

2.1 Set-up

The set-up is based on a static communication model between N senders, called researchers, and
1 receiver, called a policymaker. Researchers receive private unbiased signals of the treatment
effect of policy, βi, and its standard error, σi, and report their results, mi. Given the reports
from the researchers, the policymaker decides whether to implement the policy a ∈ {0, 1}.

The model’s key element is an aggregation friction: even though researcher’s private signals,
{βi, σi}, take continuous values, researchers can only convey a positive result, mi = 1, or a
negative result, mi = 0, or do not report their study, mi = ∅. Given the standard error
independently drawn from some distribution σi ∼ G (σ), the treatment effect estimate has a
normal distribution around the true benefit, b, so that βi ∼ N (b, σ2

i ). However, the policymaker
only considers what results the researchers have reported to make their decision. Henceforth,
let us denote the number of positive results by n1 = ∑N

i=11(mi = 1), and negative results by
n0 = ∑N

i=11(mi = 0).
Both the researchers and the policymaker maximize the social welfare:

a (Eb− c) , (1)

where c is the cost of policy implementation.3 They have a common prior b ∼ N (0, σ2
b ). The

number of players, their pay-offs, priors, and the cost of policy implementation c are public
information and common knowledge.

The timeline is as follows: first, researchers4 receive their own signals, and simultaneously

3While this set-up may appear to assume no uncertainty in welfare when the policy is not implemented
since it is fixed to be 0, it also represents such setting: suppose the welfare under policy is u1 ∼ N

(
u1, σ

2
u1
)

and the welfare in the absence of policy is u0 ∼ N
(
u0, σ

2
u0
)
. Then, it is optimal to implement the policy if and

only if u1 − u0 ≥ c. Thus, defining b ≡ u1 − u0 and σ2
b ≡ σ2

u1 + σ2
u0 above will be an equivalent set-up.

4I suggest readers of this paper to think of researchers in this model not as individual authors in the real
world, but as a collection of authors, referees, and editors who jointly make the publication decisions. In peer
reviewed journals, individual researchers play both roles of authors and referees. Even if researchers may seek
to maximize publications when they are authors, journals ask referees and editors to publish socially valuable
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decide whether to publish their binary conclusions. Then, the policymaker sees the reports and
makes her policy decision using her posterior belief. Finally, the payoffs are realized.

2.2 Analyses

The analysis will focus on Perfect Bayesian Nash Equilibria (PBNE), the standard equilibrium
concept in communication models. The strategy of a researcher i, si ∈ Si, is a mapping from
his own signal {βi, σi} to probability distribution over his message mi si : R×R+ 7→ ∆ {1, ∅, 0}.
The strategy of policymaker, π, is a mapping from the messages to the probability distribution
over binary policy action a ∈ {0, 1}: that is, π : {1, ∅, 0}N 7→ ∆ {0, 1}. The policymaker’s belief
over the researchers’ strategy is denoted by µ ∈ ∆

(
{Si}i=1,...,N

)
.

Definition 1.1 : An equilibrium is a tuple of strategies and belief, {s1, ..., sN , π, µ} such that
(i) researcher i’ strategy maximizes (1) given strategies of all other researchers and
the policymaker, for all i; (ii) policymaker’s strategy maximizes (1) given strategies
of researchers and belief; (iii) the policymaker’s belief is consistent with Bayes’ rule.

As communication models always have multiple equilibria, including a babbling equilibrium,
we introduce following criteria to focus on non-trivial and plausible equilibria:

Definition 1.2 : An equilibrium is fully responsive if ∀mi,m
′
i ∃m−i such that π (mi,m−i) 6=

π (m′i,m−i); and fully informative if E [b|m] is not constant analogously.

In any fully responsive and fully informative equilibria5, both the policymaker’s and researchers’
strategy will be monotone in their information, at least in a benchmark set-up6:

Lemma 1 (Monotonicity of equilibrium strategies). For N=2, for any c, and constant
σi, any fully responsive and fully informative equilibrium has strategies that are monotone:

(i) the policymaker’s decision π∗ (m) is increasing in number of positive results (n1) and
decreasing in number of negative results (n0) in the following sense. For every i

π∗ (mi,m−i) > 0⇒ [∀m′i � mi π
∗ (m′i,m−i) = 1]

π∗ (mi,m−i) < 1⇒ [∀m′i ≺ mi π
∗ (m′i,m−i) = 0]

, where messages are ordered by 1 � ∅ � 0 without loss of generality.

information.
5Note that this definition differs from usual responsiveness and informativeness in that it requires all mes-

sages to be influential and informative. For example, the policy rule a∗ = 1⇔ n1 = 2 is not fully responsive in
that the choice between m = 0, ∅ never alters the decision.

6As shown in Appendix A1.3, the monotonicity requires a constant standard error since the monotone
likelihood ration property needs not hold under normal distribution with unknown standard errors.
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(ii) each researcher i takes the threshold strategy: there exist βi, βi ∈ (−∞,∞) such that

m∗i =


1 βi ≥ βi

∅ if βi ∈
[
βi, βi

)
0 βi < βi

Sketch of proof. By Bayes’ rule, combined with the law of iterated expectation and monotonicity
of the mean of a truncated normal distribution with respect to the mean of the underlying
distribution. Appendix A1.3 contains a full proof. �

Finally, to assess desirability and plausibility of particular equilibrium among non-trivial
equilibria, we introduce the following definitions:

Definition 1.3 : An equilibrium is optimal if no other equilibria can attain strictly higher
ex ante welfare; and locally stable if, for every neighborhood of the equilibrium,
there exists a sub-neighborhood of the equilibrium from which a myopic and it-
erative adjustment of strategies stays in that neighborhood. Formally, a myopic
and iterative adjustment on the tuple Et ≡

{
πt (m) , β1,t, β1,t, β2,t, β2,t

}
, is a dy-

namic process for t = 1, 2, ... in which, in each t, (i) the policymaker plays best
response to

{
β1,t−1, β1,t−1, β2,t−1, β2,t−1

}
, (ii) researcher 1 plays best response to{

πt (m) , β2,t−1, β2,t−1
}
, and (iii) researcher 2 does so to

{
πt (m) , β1,t, β1,t

}
. An

equilibrium E is locally stable if for every d̂ > 0, there exists d > 0 such that,
given any disturbance ε such that sup metric d (ε) < d, d (E − E∞) < d̂; that is, the
equilibrium stays in the neighborhood of the equilibrium.

It is standard to focus on the most informative equilibrium in sender-receiver games, and on
the optimal equilibrium in common interest games. Local stability assures robustness to small
deviations from the equilibrium strategies.

Henceforth, the analysis will combine analytical and numerical approaches to show that
the main mechanisms play important roles in plausible settings that satisfy the above criteria.
Analytical results will illustrate the logic behind the kinds of publication bias that arises from
the model by focusing on a tractable environment and equilibrium with various symmetry
properties. Analytical results will focus primarily on the case of N = 2,7 c = 0, and often
constant σ. Then, numerical results will show that the mechanism will play important roles in
asymmetric environment that is more plausible yet analytically difficult to solve.

7Given that meta-analyses often include more than 2 studies, this set-up with N = 2 may appear restrictive.
However, this simple setting is common in the committee decision-making literature to which this paper is closely
related, such as Gilligan and Krehbiel 1989, Austen-Smith 1993, Krishna and Morgan 2001, and Hao, Rosen,
and Suen 2001. Analytical characterization for N ≥ 3 is difficult due to technical challenge of analytically
evaluating multivariate normal’s truncated mean. Instead, this paper takes numerical approach to settings with
N ≥ 3.
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2.3 Main Result 1. Omission of Insignificant Results

The first main result is that, in the optimal and locally stable equilibrium, there will be an asym-
metric omission of intermediate results such that the average estimates underlying published
studies will have an upward bias.

2.3.1 Analytical Results

The following propositions will first show, in a symmetric environment with constant σ, there
will be equilibria with asymmetric omission, no omission, and symmetric omission; and, second
show that the equilibrium with asymmetric omission is both optimal and locally stable whereas
other two kinds of equilibria are not. The relation to the information aggregation models in
voting theory will be discussed.

Proposition 1.1 (Equilibrium with asymmetric omission). Let N = 2, c = 0, and
σi = σ. There exists an equilibrium with the following strategies. The policymaker’s strategy is
a supermajoritarian policy decision rule:

π∗ =

1 if n1 > n0

0 if n1 ≤ n0

(2)

The researchers’ strategies are identical to each other and characterized by the unique thresholds,
β, β, that satisfy

β > 0 > β and β < −β (3)

so that there will be an upward bias in the estimates of the reported studies: E [βi|mi 6= ∅] > 0.
Sketch of Proof : By a combination of information asymmetry among researchers and a

message space that is coarser than a signal space. Suppose the policymaker adopts (2). Since
a researcher does not know what another researcher will observe and report, he conditions his
reporting decision on the state in which his own report will be pivotal and swing the policy
decision in the direction of its conclusion. A positive result switches the policymaker from
canceling to implementing the policy only when another researcher did not report his result as
his signal had an intermediate value. Thus, the optimal threshold β satisfies the indifference
condition, βi + β−i = 0, in expectation conditional on pivotality:

β + E
[
β−i|β > β−i ≥ β, βi = β

]
= 0 (4)

In contrast, a negative result leads the policymaker to cancel rather than to implement the
policy only when his report is positive. Thus, the optimal threshold β satisfies:

β + E
[
β−i|β−i ≥ β, βi = β

]
= 0 (5)
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Because the binary conclusion cannot convey the strength and can only communicate the
sign of the continuous signal each researcher receives, omission of intermediate results can
better convey information than always reporting either positive or negative results. In addition,
comparing the conditions (4) and (5), researchers are more cautious of reporting negative results
than positive results and thus, given that results are reported, the coefficients are on average
upward biased: E [βi|mi 6= ∅] > E [βi]. Finally, it is strictly optimal for the policymaker to
follow the supermajoritarian rule (2) since he focuses on the average value conditional on {mi}
whereas the researcher focused on the marginal value. Appendix A2.1 contains a formal proof.
�

There will also be an equilibrium with asymmetric omission that generates a downward
omission when c = 0. However, as Appendix Figure B3 shows, the equilibrium in Proposition
1.1 attains a strictly higher welfare when c ≥ 0. In this sense, the “positive” results are defined
as the messages that alter the default decisions whereas “negative” results are the ones that
suggest to maintain the default. The following propositions will now show that there are also
equilibria without bias of underlying estimates:

Proposition 1.2 (Equilibria with symmetric or no omission ). Let N = 2 and c = 0,
and σi = σ. There exist equilibria with the following strategies:

• Symmetric omission: the policymaker follows

π∗ =


1 n1 > n0

1
2 if n1 = n0

0 n1 < n0

(6)

and the researchers’ thresholds satisfy β > 0 > β and β = −β so that E [βi|mi 6= ∅] = 0.

• No omission: the policymaker follows

π∗ =


1 n1 = 2

π̃ if n1 = 1, n0 = 0

0 n1 ≤ n0,

(7)

where π̃ ∈ (0, 1] and the researchers’ thresholds satisfy β = β < 0 so that E [βi|mi 6= ∅] = 0.
Sketch of Proof: The equilibrium with symmetric omission exists because (i) the indifference

conditions of researchers that determine β, β will be symmetric to each other when π = 1
2 when

n1 = n0, and (ii) given symmetric thresholds, the policymaker will be indifferent between
a = 0, 1 when n1 = n0. The equilibria with no omission exist because (i) the welfare gain
from omission exists only when another researcher omits, and (ii) given that researchers always
report mi = 0, 1, the decision when there are omissions may be defined arbitrarily. �

10



Figure 1: Equilibrium thresholds and policy decisions for N = 2, c = 0

Notes: Panel 1 plots the benchmark first-best policy implementation rule (β1 + β2 ≥ 0) as given by
the Bayes’ rule and an example of the bivariate normal distribution of signal realizations {β1, β2}.
Panel 2, 3, and 4 illustrate the equilibrium thresholds and policy decisions under three responsive and
informative equilibria. The dotted line shows the thresholds for each equilibrium, and the policy is
implemented if {β1, β2} were in the region northwest to the solid line for Panel 1 and 2. For Panel
3, policy is implemented with 1

2 probability in region surrounded by the dotted line. “False negative”
(“False positive”) regions denote signal realizations such that the policy is (is not) implemented under
the full information but is not (is) implemented in equilibrium. The figures’ origin is {0, 0}.

While Proposition 1.2 shows that there are also fully informative and fully responsive equilib-
ria without bias under reported studies, the following Proposition 1.3 shows that the equilibrium
with bias of reported studies is more desirable and likely:

Proposition 1.3 (Optimality and local stability of equilibria). The equilibrium
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with asymmetric omission as characterized in Proposition 1.1 is optimal and locally stable; the
equilibria characterized in Proposition 1.2 are neither optimal nor locally stable.

Sketch of Proof: The heuristic reasons for optimality and local stability are summarized by
Figure 1. The equilibrium with asymmetric omission is optimal because its policy implemen-
tation rule as in (2) described in Panel 2 most closely approximates the first best threshold of
β1 + β2 = 0 as depicted in Panel 1; it minimizes the probabilities of false positive and false
negative errors that leads to welfare losses. It is also locally stable since the policymaker’s deci-
sion is based on strict preference and the researchers’ strategies are only moderate substitutes
of one another. On the other hand, the equilibria with symmetric or no omission are neither
optimal nor locally stable as small perturbation of researchers’ thresholds and policymaker’s
strategy can improve the welfare and its subsequent iterative adjustment leads to a different
equilibrium. For example, in the symmetric equilibrium (Panel 3), consider a small decrease in
researchers’ strategy, β′ = β−∆ and β′ = β−∆. This perturbation leads to a first order welfare
increase because it increases E [b|n1 > n0] by quantity proportional to ∆ but only has a second
order welfare loss, and thus increases the total welfare. The symmetric equilibrium is also not
locally stable because the policymaker now prefers to implement the supermajoritarian rule.
Analogous argument applies to the equilibrium with no omission; and Appendix A2.3 contains
a complete proof. �

The concepts of optimality and local stability are closely related to each other because the
model is a common interest game: if an equilibrium is not locally stable, then it cannot be
optimal since every steps of iterative adjustment must be intended to improve welfare.

These results relate to the models of information aggregation and transmission. First,
it builds on the models of voting as information aggregation (Austen-Smith and Banks 1996,
Feddersen and Pesendorfer 1996, 1997, 1998, 1999) as the result regarding omission is analogous
to the result that uninformed and unbiased voters abstain when there are other informed
and unbiased voters (Feddersen and Pesendorfer 1996). The result regarding biased reporting
echoes the result that unanimity rule, counterintuitively, may increase the probability of false
conviction if the jurors condition their votes on the states in which their votes are pivotal
(Feddersen and Pesendorfer 1998). The novel result of this paper is that the biased reporting is
socially optimal whereas it was argued to be sub-optimal in their voting theory. This difference
is due to the information coarsening: while these voting models have often assumed binary
states, this paper assumes continuous states even though the messages can only be yes, no, or
abstention.

Second, this paper relates to communication models that show that biases of senders result
in coarse messages, both with one sender (Crawford and Sobel 1982) and multiple senders
(Hao, Rosen, and Suen 2001). In contrast, this paper shows that the technological restriction
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of coarseness8 leads to the biased reporting. In this sense, the relationship between conflict of
interest and coarseness of information transmission may have causalities running in both ways.

2.3.2 Numerical Results

There are three results from the numerical simulation that are critical for understanding the
asymmetric equilibrium characterized in Proposition 1.1. First, the probability of policy imple-
mentation is less than that in the environment where the estimates can be directly communi-
cated: P (a = 1) ≤ 1

2 (Appendix Figure B2). In this sense, the upward bias among the reported
estimates is a way to mitigate the inherent conservativeness in supermajoritarian rule. Second,
when c > 0, the welfare under the equilibrium with supermajoritarian rule, π = 1 (n1 > n0), is
higher than that with submajoritarian rule, π = 1 (n1 ≥ n0) (Appendix Figure B3). Therefore,
while the equilibrium with π = 1 (n1 ≥ n0) also exists, this paper focuses on the case with
π = 1 (n1 > n0). Third, omission is roughly 30 percent on average in a plausible setting, which
is quantitatively important.

2.3.3 Evidence

A number of studies suggest that omission is prevalent by reporting a positive correlation
between the coefficient magnitude and the standard error; on average, imprecisely estimated
studies have higher coefficient values than precise studies9. In economics, important estimates
such as the impact of minimum wage on employment (Card and Krueger, 1995), the return to
schooling (Ashenfelter et al., 1999), and the intertemporal elasticity of substitution (Havránek,
2015), have evidence of a positive correlation. In environmental studies, estimates of the social
cost of carbon, a key statistic for carbon tax policy, were shown to have the bias (Havránek et
al., 2015). Moreover, the probability of omission around 30 percent is roughly consistent with
some examples reported in Andrews and Kasy 2018.

8This assumption is similar to some papers that examined the implication of communication frictions on
biases, such as Suen 2004, Fryer and Jackson 2008, and Blume and Board 2013.

9This could be due to researchers omitting studies unless they are positive statistically significant. If the
study is imprecise, then a large coefficient magnitude is needed whereas if the study is precise, then coefficient
magnitude can be modest (Hedges 1992). Alternatively, this could also be due to researchers omitting studies
when the coefficient values are low (Duval and Tweedie 2000, Copas and Li 1997). There are two formal tests
that examine the presence of publication bias through examining the correlation between coefficient magnitude
and study precision: an ordinal test that examines their rank correlations (Begg and Mezuemder 1994) and a
cardinal test that examines the correlation by regression (Egger et al. 1997). Second, there is occasionally excess
variance in the estimates with an abundance of studies at the extreme values beyond significance thresholds
and a scarcity of studies with intermediate coefficients (Stanley 2005).
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2.4 Main Result 2. Inflation of Marginally Insignificant Results

The second main result is that, given heterogeneous standard errors, the equilibrium t-statistic
threshold will not be constant across σi. This result has two empirical implications: (i) if
journals apply a t-statistic threshold to publish positive results, then even unbiased researchers
will inflate some marginally insignificant results; and (ii) there will be omission of imprecisely
estimated null results.

2.4.1 Analytical Results

Analytical results show that the absolute value of t-statistics threshold will be increasing in σi.
While the model set-up does not impose restrictions on the messages based on t-statistics, we
can define the analogous t-statistics naturally in terms of the equilibrium threshold:

Definition 2 t-statistics: Define the t-statistics thresholds, ti (σi) and ti (σi), as the ratio
between the threshold coefficient and standard error: ti (σi) = β(σi)

σi
, ti (σi) = β(σi)

σi
.

The following proposition claims that, in a unique symmetric equilibrium such that the two
researchers apply the identical thresholds t (σi) = −t (σi), the t-statistics thresholds will be
increasing in σi so that precise studies will be more likely to be published than imprecise ones.

Proposition 1.2. (Increasing t-statistic threshold) Suppose N = 2, c = 0, σb = ∞,
and Supp (G) is some interval in R++. There exists a unique symmetric equilibrium such that
the policymaker follows the mixed strategy π∗ in (6), and the researchers adopt threshold strate-
gies with cut-offs that depend on σi, as in Lemma 1.1. Then the t-statistics will be symmetric
so that, ti (σi) = −ti (σi) ≡ t (σi) for both i = 1, 2, and will be increasing in σi:

∂t (σi)
∂σi

> 0

for every σi ∈ Supp (G) for both researchers.
Sketch of Proof : By rearranging the indifference condition of researchers. By the Bayes’

rule and law of iterated expectation, the researcher i’s indifference condition on βi (σi) is

E


βi(σi)
σ2
i

+ βj
σ2
j

1
σ2
i

+ 1
σ2
j

| Ii, Ij

 = 0, (8)

where Ii =
{
βi = βi (σi) , σi

}
is the information set of researcher i, and Ij = {βj ∈ Piv (σj, π) , σj}

is the information set of researcher j, where Piv (σj, π) is the pivotality condition, and the ex-
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pectation is taken over Ij. Reorganizing this condition (8), the threshold t (σi) must satisfy

t (σi) = β (σi)
σi

= σi

E
[
− βj
σ2
j+σ2

i
|Ii, Ij

]
E
[

σ2
j

σ2
j+σ2

i
|Ii, Ij

] (9)

In this way, the t-statistics threshold is increasing in σi since E
[
− βj
σ2
j+σ2

i
|Ii, Ij

]
is positive in equi-

librium. Appendix A2.2 contains a complete proof, which focuses on the symmetric equilibrium
that provides a tractable environment where the term, E

[
− βj
σ2
j+σ2

i
|Ii, Ij

]
×E

[
σ2
j

σ2
j+σ2

i
|Ii, Ij

]−1
, does

not change substantively enough to alter this sign. Analogous results hold for t (σi). �

The impossibility of equating the optimal thresholds with a constant t-statistics threshold
arises from the difference in the use of standard errors between the Bayesian updating and the
null hypothesis testing. In Bayesian updating, the coefficient is divided by the variance, σ2,
since the weights on each coefficient must be proportional to its information that increases at
rate n in the absence of study-specific effects (σ0 = 0). In null hypothesis testing, the coefficient
is divided by the standard errors, σ, since t-statistics normalize the convergence of distribution
of βi that occurs at rate

√
n. In this model, the thresholds are determined by approximating the

Bayes rule, which stands in contrast with the focus on the p-value that measures how unlikely
that a given observation occurs under the null hypothesis of zero effect.

This observation, while highlighting the contrast between t-statistics and optimal thresholds,
renders support for t-statistics as a rule of thumb since the threshold β (σ) is increasing and
β (σ) is decreasing. This result relates to a decision-theoretic and statistics literature that
examines the optimality of null hypothesis testing as criteria for choosing alternative treatments
(Manski 2004). A recent paper (Tetenov 2016) rationalized the t-statistics approach based on
communication in the settings with commonly known value of standard error. This model
considers the environment where the standard error is a private information, and shows that
the equilibrium t-statistics may not be constant across σi.

2.4.2 Numerical Results

The analytical results have shown that, in the symmetric equilibrium with N = 2, c = 0,
σb = ∞, the constant t-statistics threshold will be sub-optimal. While tractable, symmetric
equilibria will not be locally stable and thus less plausible than the asymmetric equilibrium
analogous to that characterized in Proposition 1.1. The numerical analysis henceforth will
show that the key qualitative predictions will hold even under asymmetric equilibrium and
even with N ≥ 3, c ≥ 0, σb <∞. Moreover, it quantifies the bias, omission, and welfare gains
from omission and inflation, and derives empirical predictions.

The equilibrium thresholds, β (σ) , β (σ), of the asymmetric equilibrium in a plausible envi-

15



ronment (Figure 2) show that the two analytical results hold in a more general set-up. First,
β (σ), the threshold between sending positive message or not reporting the study, is strictly
convex in σ. Thus, if academic communities impose a rule-of-thumb t-statics level to claim
positive results, there could be some studies in the shaded region that might still be considered
as a “positive” result even though it is marginally insignificant. Second, the omission occurs
most importantly among the imprecisely estimated studies with intermediate coefficients. That
is, when negative results are reported, they will be either precisely estimated null results or
imprecisely estimated and yet extremely negative results. Since precisely estimated studies will
be less subject to asymmetric omission, there will also be less bias among them.

A numerical simulation, presented in Appendix B1.5, shows that the welfare gain from
allowing some inflation and frequency of omission can be substantive across a range of parameter
values. Imposing a constant and symmetric t-statistic, β (σ) = −β (σ) = tσ, will lead to
3 ∼ 30 percent of welfare loss relative to the environment in which estimates can be directly
communicated, allowing for flexible equilibrium threshold can roughly halve the welfare losses.
When the study-specific variance is low, the omission probability is roughly 1 ∼ 3 percent among
the most precisely estimated studies whereas it could be as large as 70 ∼ 80 percent among
the least precisely estimated studies. On average, omission probability is around 30 percents.
Similarly, the bias is minimal and 0 ∼ 3 percent of the underlying benefit distribution (σb)
among the most precise studies whereas it could be as large as over 100 percent among the
least precise studies.

Numerical exploration also shows that the comparative static of thresholds with respect to
N is ambiguous, and that the threshold for reporting negative results, β (σ), could be increasing
in σ when c is high. Appendix B1.1 describes the details of the simulation set-up and procedure,
and contains a thorough discussion of these observations.

2.4.3 Evidence

There are various quantitative evidence of inflation and some qualitative evidence of omission
that is heterogeneous across values of study precision.

Inflation: When the originally intended specification has a marginally insignificant t-
statistic, researchers may inflate the statistical significance through the choice of specifications
for outcome, control variables, and samples (Leamer 1978). If inflating t-statistic incurs search
costs, then there will be an excess mass right above the threshold. In economics, Brodeur et
al. (2016) argues that about 8% of results as statistically significant may be due to inflation.
There is an excess mass right about the significance cut-off in sociology and political science, too
(Gerber and Malhotra 2008a and 2008b). In psychology with lab experiments such that sample
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Figure 2: β (σ) and β (σ) thresholds

Notes: Figure 3 plots the β (σ) , β (σ) thresholds under the prior standard deviation σb = 1, no study-
specific effect σ0 = 0, and policy cost c = 0. The darker solid line is β (σ), the lighter solid line is
β (σ), and the dashed line represents some linear t-statistic threshold. Studies in the shaded region
draw positive conclusions even though they are marginally statistically insignificant.

size can be adjusted subsequently, Simonsohn et al. (2014) reported density of p-values among
the statistically significant tests were increasing in p-values and interpreted this as evidence of
inflation.

Omission heterogeneity across study precision: There are some examples in which
either precisely estimated null results and extremely negative results, while imprecisely esti-
mated, are published. Some examples of precise null results10 include the large-scale clean
cookstove study (Hanna et al. 2016), the air pollution regulation in Mexico (Davis 2008), and
the community-based development programs (Casey et al. 2012). The examples of extreme
negative results include the negative labor supply elasticities close to −1 among the taxi driver
papers (Camerer 1997); the positive impact of inequality on economic growth (Forbes, 2000);
the unexpected harmful effect of a therapeutic strategy on the cardiovascular events found in
one trial (the Action to Control Cardiovascular Risk in Diabetes trial 2008). While these are
only some examples, the empirical analyses in Section 3 will provide a formal evidence.

10There is one apparent counterexample: DEVTA study, the largest randomized trial that showed null effects
of deworming and vitamin A supplementation on child mortality and health, was not published until 7 years
after the data collection (Garner, 2013). While the delay required by the careful analysis of authors is extensive,
that it was published in the Lancet, a top medical journal, is, in a way, reassuring of the academic journal’s
willingness to report precise negative results.
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2.5 Additional Result. Amplification of Small Bias of a Researcher

The main results have shown that, even when researchers are completely unbiased, there will
still be publication bias with omission and inflation. Nonetheless, in the real world, researchers’
and policymakers’ objectives are not completely aligned with one another due to different
information and interests regarding policies. This Section shows that there will be a large
polarization of reporting rules among researchers even when researchers’ bias is small.

2.5.1 Analytical Results

Let us begin by introducing the strategic multiplier between researchers that quantifies on the
strategic interdependence between them, keeping the policymaker’s strategy fixed:

Definition 3 Strategic multiplier between researchers: Define the strategic multipliers,
ζ, ζ, as the ratio of the effect of small bias di of one researcher on the difference be-
tween thresholds of two researchers, between the environment with or without strate-
gic effects, keeping the policymakers’ strategy π∗ fixed:

ζ ≡
∂(βi−βj)/∂di

∂(βi−βj)/∂di|σj=σ∗j
and ζ ≡

∂(βi−βj)/∂di
∂(βi−βj)/∂di|σj=σ∗j

.

In a tractable case of symmetric equilibrium, the following proposition shows that the strategic
multiplier is larger than 1; that is, the effect of small bias of one researcher will be amplified:

Proposition 1.3. (Amplification of Bias of a Researcher) Suppose N = 2, c = 0, and
σi = σ for both i = 1, 2. In a symmetric equilibrium in Proposition 1.2, the strategic multiplier
between researchers satisfies ζ = ζ ≡ ζ, and

ζ = V artotal
V artotal − V artruncated

, (10)

where V artruncated ≡ V ar
(
βi|βi ≤ β

)
and V artotal ≡ V ar (βi) = σ2 + σ2

b . Thus, ζ > 1.
Sketch of Proof : By deriving the comparative statics with the researchers’ indifference

condition. Let us focus on the indifference condition for βi; the condition for βi can be derived
analogously. We consider the symmetric equilibrium with no bias at the beginning. The
indifference condition of researcher i with bias, di, is

βi + E
[
βj|βj ≤ βj

]
=
(

2 + σ2

σ2
b

)
di, (11)

where di = 0 at first. This expression (11) already shows that βi will be decreasing in βj.
The expression (10) is derived from the comparative statics of βi on di with the expression
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(11). Since V artotal > V artruncated by definition of truncated distribution, ζ > 1. Appendix 1.3
contains a complete proof. �

In words, the two researchers’ thresholds, βi and βj, are strategic substitutes of one another:
when a small increase in di shifts βi downwards, βj will be adjusted upwards to offset this effect,
which then causes βi to shift downwards even further, and so on. The strategic multiplier
quantifies how the difference between βi and βj due to such repeated adjustments is larger
than the difference between βi and βj if there was only the first adjustment of βi, keeping βj
fixed.

The multiplier (10) shows, heuristically, that the strategic substitution effect is very large.
If the equilibrium thresholds, βi and βj, are low so that V artruncated = 2

3 , then ζ = 3: the
equilibrium difference in reporting is three times larger than the primitive difference in objec-
tives. When the conventional threshold, β

σ
= 1.96, is applied in the environment with zero

true effect (b = 0) and small variation in true effects (σb ' 0), then V artruncated ' 0.88, which
suggests ζ ≥ 8: that is, the underlying difference in objectives is only 12 percent of the observed
difference in reporting thresholds.

This amplification result builds on the results of information aggregation models (Feddersen
and Pesendorfer 1996) that illustrates strategic substitution effects among voters. In the voting
model, when there are partisan voters, independent voters vote against the bias of the partisan
voters to offset their influence on electoral outcomes. In this model, when another researcher
is biased in one direction, the researcher will bias her reporting in the opposite direction. The
new result is that, because the voting model has considered binary decisions whereas this
model considers continuous decisions of reporting thresholds, the original bias will be amplified
in equilibrium.

2.5.2 Numerical Results

While the Proposition 1.3 focused on the analytically tractable case of symmetric equilibrium
with β = −β, the same effect of strategic substitution also exists in the asymmetric equi-
librium in Proposition 1.1. A numerical simulation shows strategic substitution can have a
quantitatively important influence not only on symmetric equilibrium but also on asymmetric
equilibrium that is locally stable. Let us consider an example with 2 researchers, c = 0, and
σ0 = σ = 1. If neither researcher is biased, then the equilibrium threshold is βi = 0.19. If re-
searcher i has bias di = −0.1 so that he has bias towards policy implementation and researcher
j does not have bias, dj = 0, then their thresholds will become βi = −0.25 and βj = 0.5.
Note that, if there were only 1 researcher, then the threshold for recommending policy only
changes by −0.2. Thus, the strategic multiplier is ζ ' 3 in this example, consistent with the
back-of-the-envelope calculation above.
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2.5.3 Evidence

A large body of public health research has shown that industry funded research are more likely
to have positive outcomes, and thus, interpreted this as a result of publication bias. A meta-
analysis of 30 studies has found that industry-funded research is roughly four times more likely
to have positive outcomes than the publicly funded research (Lexchin 2003). Given such ev-
idence, it is common to consider that the pharmaceutical companies have large bias towards
drug approval with little regards for patients’ welfare (Goldcare 2010). This model’s amplifi-
cation result suggests that, however, caution is warranted when interpreting the difference in
reporting decisions as quantitatively reflective of the underlying differences in the objectives.
While research funded by industries will perhaps have some bias towards the outcomes favorable
to the industry, the bias in objectives need not be so large to explain the strong associations
between results and identities of funding sources.

2.6 Discussions of Key Assumptions

The analyses have shown that coarse aggregation can explain various kinds of publication bias.
Overall, the discussions henceforth will show that the main conclusions are not highly sensitive
to some auxiliary assumptions, and the main assumptions are standard in economics literature
and relevant in the real world. The caveat must be in place if there is a reviewer who directly
meta-analyze the results, or if the conflict of interest is large.

2.6.1 Sensitivity to Alternative Assumptions

The following discussions show the implications of (i) sequential reporting, (ii) conflict of inter-
ests, (iii) unknown number of researchers, and (iv) risk aversion:

(i) sequential vs simultaneous reporting: the characterized equilibria will still remain as
equilibria even if the reporting is sequential when there are 2 researchers, since the analysis
of simultaneous reporting had researchers condition their reports on pivotality. This
logic is analogous to Dekel and Piccione 2000. If the later researcher observes the early
researcher’s estimate, then the later researcher can summarize both estimates through
meta-analyses and full reporting of all estimates will be the optimal equilibrium.

(ii) conflict vs consistency of interests: the Section 2.5 has shown that the omission and in-
flation results are robust to small conflict of interest. When there is a large conflict of
interest such as when merely profit-maximizing pharmaceutical firms report studies, how-
ever, the incentive constraints will bind: rigid publication rules to eliminate publication
bias will be optimal.
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(iii) unknown vs known number of researcher: the analysis has assumed that, N , the number
of researchers is a public information. The numerical analysis in Appendix B1.3 shows
that, in a plausible setting, the policymaker’s optimal strategy is to implement the policy
if and only if there are strictly more positive results than negative results. In this sense,
the reader needs not know how many researchers there are to implement the optimal rule
(2).

(iv) risk aversion vs risk neutrality: when the payoff exhibits risk aversion, the study precision
has benefits of reducing the uncertainty in addition to its role in determining weights of
Bayesian updating. Nonetheless, small risk aversion does not alter the results since the
objective is continuous in risk aversion parameter; by Taylor approximation of constant
relative risk aversion preference γ implies the decision rule (Eb)1−γ

1−γ −
γ
2
V ar(b)
(Eb)1+γ ≥ c.

2.6.2 Validity of Main Assumptions

The results rely on the key assumptions that the message space is smaller than signal space,
and that researchers can make contingent reasoning. The following discussions explore their
validity:

(i) large state and signal space vs limited action and message space: the critical assumption
that drives the results is the distinction between space of states and signals that are con-
tinuous, and the space of action and messages that are discrete. When either assumptions
are modified, then the omission with bias no longer arises. However, I argue that this set
of assumptions is particularly appropriate for scientific communication: the information
the researchers have are rich and complex whereas the messages they can convey will be
limited and must be simple. Binary actions also apply in key applications such as whether
to adopt a particular medicine or policy.

(ii) PBNE and contingent reasoning: the implicit yet important assumption is that the senders
of information condition the reporting decision on events in which their reports are piv-
otal. This logic is key to and common across models of information aggregation that have
been applied in a number of settings, including general public’s voting (Feddersen and
Pesendorfer 1996), juror’s voting (Feddersen and Pesendorfer 1998), opinion polls (Mor-
gan and Stocken 2008), and demonstrations (Battaglini 2017). While such sophisticated
reasoning may appear unrealistic and some lab experiments show individuals are unable
to engage in such reasoning (Esponda and Vespa 2013), there is also evidence from both
lab (Battaglini et al. 2010, Dickhaut 1995) and fields (Kawai and Watanabe 2013) that
some people condition their voting decisions on others’ decisions.
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3 An Empirical Test of the Communication Model

The communication model has shown that, if aggregation frictions are a key reason of omission,
then both precise null results and extremely negative results will be reported. This Section
develops a new empirical test to compare this prediction against some other publication selection
processes, and applies this to show it holds with an economics data set.

3.1 Various Models of Publication Bias

Various existing bias correction methods have assumed specific publication selection process.
This sub-Section shows that the selection process based on the communication model makes
different predictions than the two most commonly11 used methods assume.

3.1.1 Data Generating Process

The data generation process of the published estimates, {βi, σi}, will be assumed to take three
steps given various independence assumptions. First, the underlying effect, bi ∼ F , and the
study precision, σi ∼ G, are independently12 determined. Second, the random error, εi ∼
N (0, σ2

i ), is independently drawn and the coefficient, βi = bi + εi, is determined. Third, the
study is published with some probabilities, P (βi, σi), that depend on {βi, σi}. We will denote
b0 ≡

∫
bidF and σ2

0 ≡
∫

(bi − b0)2 dF as the mean and variance of underlying effect. Moreover,
let us denote H (βi) as the distribution of coefficient estimates given F and G. σ2

0 measures
heterogeneity of effects across studies, whereas σ2

b had measured heterogeneity of effects across
policies.

3.1.2 Distinct Predictions of Various Models of Publication Bias

The communication model of this paper makes a distinct prediction on a form of publica-
tion selection, P (βi, σi), compared to the selection assumption behind the 2 most commonly
used bias correction methods. Let us denote G̃∅ (σ) as the distribution of all standard errors
conditional on the study being the non-positive results without any selection, and G∅ as its
observed distribution with selection; let us also denote H̃0 (β) as the distribution of coefficient

11While there are also some other models, this paper focuses on the comparison with most commonly used
models: as of December 2018, Duval and Tweedie (2000) that introduced trim-and-fill method is cited over 4,900
times, and Hedges and Vivea (2000) that extends Hedges (1992) is cited over 2,000 times on Google Scholar. It
is beyond the scope of this paper to fully explore the other selection models: Copas and Li (1997) (note that the
working paper version had contained full discussions), Fafchamps and Labonne (2016), and Frankel and Kasy
(2018).

12This independence assumption imposes that the studies with small vs large effects have identical true effects.
This assumption is violated, for example, when the sample size affects the quality of treatment. Nonetheless,
it is also assumed in other influential meta-analysis papers, such as Hedges 1992, Duval and Tweedie 2000, and
Andrews and Kasy 2018.

22



estimates conditional on the study not rejecting the null hypothesis with threshold t̄, and H0

as its observed distribution with selection. The Figure 3 summarizes the distinct predictions.
(1) communication model-based selection: the model of this paper suggests that the

imprecisely estimated results with coefficients with small absolute values will be omitted. As
has been discussed in Section 2.3 and illustrated in Figure 2, the omission probability shrinks
to zero when the between-study heterogeneity, σ0, is small. Therefore, when negative results
are published, they are either precise null results so that G∅ > G̃∅, or imprecisely esimated but
extremely negative results so that H0 > H̃0.

(2) uniform selection: the model behind “Hedges” bias correction method, proposed by
Hedges 1992, suggests that the statistically insignificant results will be uniformly less likely to
be published than statistically significant results13:

P (study i is reported) =

η1 if |βi|
σi
≥ 1.96

η0 if |βi|
σi
< 1.96,

(12)

where η1 > η0 > 0. This suggests that the results that are not positively significant are
systematically unlikely to be published. Thus, conditional on being null results, the distribution
is identical to the underlying distribution of null results: G̃∅ = G∅. Nonetheless, published
negative results will be likely to be extreme negative results since results with intermediate
coefficients have low t-statistics: H0 > H̃0. With an assumption that F is normal, this model
is commonly used in economics with maximum likelihood estimation to correct for publication
bias. (Hedges, 1992, Ashenfelter et al. 1999, McCrary et al. 2016, Andrews and Kasy 2018).
This selection is consistent with the setting in which the researchers select based only on
statistical significance to make their publication decisions.

(3) extremum selection: the model behind “trim-and-fill” bias correction method, pro-
posed by Duval and Tweedie 2000, suggests that the most extreme negative results will be
omitted.

P (study i is reported) =

1 if βi ≥ βmin

0 if βi < βmin,
(13)

where βmin is some threshold. In common case where βmin < b0, there arises little selection
among the most precise studies. Thus, null results are more likely to be reported when the
standard error is small so that G∅ > G̃∅. At the same time, the model also suggests that
marginally insignificant negative results are not particularly more likely to be omitted since the

13While the t-statistic thresholds can be specified more flexibly, it is common to apply the conventional
threshold of t = 1.96 on both positive and negative signs; since the sample size is often small in meta-analyses,
it is practically difficult to estimate a model with many cut-offs.
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(1) communication model:
Ĝ∅ > G̃∅ and Ĥ0 > H̃0

(2) uniform selection:
Ĝ∅ = G̃∅ and Ĥ0 > H̃0

(3) extremum selection:
Ĝ∅ > G̃∅ and Ĥ0 < H̃0

Figure 3: Selection models described in funnel plots

Notes: Using the funnel plot, the Figure 3 visualizes the (1) communication-based selection, (2)
uniform selection, and (3) extremum selection models. The reported studies are depicted in dark dots,
whereas the regions of omissions are approximated by the shaded area. The figures are generated by
the author for an illustrative purpose, and do not reflect actual data.

selection is unrelated to the statistical significance milestones: H0 < H̃0. With an assumption
that the underlying distribution of benefit, F , is symmetric, the trim-and-fill method imputes
the most negative missing studies and computes the bias corrected estimate b̂0. This reporting
rule is consistent with the setting in which the researcher is biased towards positive results
and do not hope to show extreme negative results, given a completely uninformed reader with
improper uniform prior.

3.2 A Test to Distinguish the Various Models

Given that each model has distinct implications on the distribution of standard errors and
coefficients of published studies, we develop an empirical test to examine them. The key
obstacle is that the underlying distributions are unobserved. We (1) show that the underlying
distribution can be predicted with some assumptions, and (2) describe the overview of the
estimation and testing steps.

3.2.1 Assumptions

To estimate the underlying distribution of {βi, σi} without selection, we need some regions of
the estimates that do not suffer from selection, and need ways to extrapolate from those regions
to other regions with selection. To operationalize these requirements, we will use the following
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assumptions14 that are parsimonious and common in meta-analyses:
A1. Constant selection within statistically significant results: P (βi, σi) = P ∈ (0, 1) for

any |βi|
σi
≥ t̄.

A2. Underlying effects with independent normal distribution: bi iid∼ F (bi) = Φ
(
bi−b0
σ0

)
Under the extremum selection model, A1 will be satisfied so long as βmin < 0; under the

uniform selection, both A1 and A2 will be satisfied. Note that A1 does not require that the
publication probability is 1 for statistically significant results.

3.2.2 Semi-parametric Estimation and Testing Steps

We estimate the underlying distributions semi-parametrically using the Assumptions A1 and
A2, and compare them against the observed distribution with a Kolmogorov-Smirnov (KS)-
type test. The estimation is non-parametric along the dimension of σ while it assumes normal
distribution along the dimension of β. While the complete description and discussion are
relegated to the Appendix B2.1, the following overview describes the three steps of estimation
and testing:

1. estimate
{
b̂0, σ̂0

}
by the stem-based bias correction method that is robust to various kinds

of distribution, F (bi), and selection, P (βi, σi);

2. estimate (i) the distribution G∅
(
σ|b̂0, σ̂0

)
using the studies such that |ti| ≥ 1.96, and

(ii) the distribution H0
(
σ|b̂0, σ̂0

)
using the distribution G∅

(
σ|b̂0, σ̂0

)
estimated using the

studies such that ti ≥ 1.96;

3. estimate the KS statistic for each distribution, DG and DH :

DG = sup
σ

{
Ĝ∅ (σ)− G̃∅

(
σ|b̂0, σ̂0

)}
and DH = sup

β

{
Ĥ0 (β)− H̃0

(
β|b̂0, σ̂0

)}

and associated one-sided p-values using the two-step bootstrap over estimates of b0 and
sampling of each study’s σi and βi.

3.3 Application

Using the test above, this sub-Section analyzes a meta-analysis data set with data selected from
the papers that highlight the binary conclusions15. The result shows that the communication

14These assumptions suggest that the bias due to inflation of marginal results is unimportant. With the lim-
ited sample sizes that is relevant for meta-analysis, it is infeasible to distinguish the inflation and omission; such
test requires large sample size at the margin of statistical significance. While restrictive, this is an assumption
applied in all other studies on bias correction.

15A working paper version of this paper also analyzes the data of Intertemporal Elasticity of Substitution,
which highlight the “binary conclusions” less since the quantity of interest is a continuous estimate.
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model-based selection pattern fits the data more adequately than the other two models.

3.3.1 Data

The data come from the set of 96 studies (i) that are included in the total of 110 studies meta-
analysis of labor union’s effect firm productivity (Doucouliagos et al. 2017) and (ii) that have the
binary conclusions from t-statistics that match with the conclusions highlighted in the original
papers. How the labor union affects firms is a highly contested issue, with various evidence
supporting both positive and negative views. As each paper contains many estimates from
various specification, the analysis uses its median value. To focus on the coefficients underlying
the highlighted conclusions, two independent readers examined the abstract, introduction, and
conclusions of each paper and excluded some papers whose highlighted conclusions in the paper
did not match the implication of t-statistics in Doucouliagos et al.’s data set16.

(1) distribution of σi of null results: (2) distribution of βi of non-positive results:

Figure 4: KS-type test illustrated in funnel plots

Notes: Figure 4 are the funnel plots that illustrate the KS-type test described in Section 3.2.2. The
filled diamonds with dark blue are observed significant results; the empty diamonds are predicted
non-positive results; and filled circle with orange are predicted non-positive results. The dashed lines
represent the values at which the KS-type test is evaluated.

16The meta-analysis can include only one estimate from one study: when there are multiple estimates in one
study, it is common to choose the estimates of median magnitude (for example, in Havránek 2015).
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3.3.2 Results

The results suggest that the reporting patterns of null and negative results17 are consistent
with the communication model-based selection process, but not with other processes. Figure 4
visualizes the two results. First, observed null results tend to be more precise than predicted
distribution of null results: Ĝ∅ > G̃∅. Concretely, while only 20 percent of studies are predicted
to have standard errors less than .08, above 70 percent of studies have standard errors smaller
than 0.8 (p = .000). This pattern is not consistent with the uniform omission model, which
suggest that the two distributions will be roughly equal with one another. Second, observed
negative results, including null results and negative significant results, tend to be more negative
than their predicted distribution: Ĥ0 > H̃0. Concretely, while only roughly 15 percent of studies
are expected to have coefficient less than -0.06, the observed distribution has over 45 percent of
studies have such negative values (p = .003). This pattern is not consistent with the extremum
omission model, which suggest that the reported studies will have more moderate coefficient
values. Taken together, among the three models, the communication-based selection process is
the only one that can account for the pattern of omission in this data set.

4 A New “Stem-based” Bias Correction Method

The communication model in Section 2 has suggested an alternative publication selection pro-
cess, and the empirical analysis in Section 3 has shown its relevance in a real-world data set.
Moreover, the model suggests, if aggregation friction is the important reason of publication
selection, then the selection will depend on a number of economic primitives unobservable to
meta-analysts. What could we do to alleviate the bias that arises from publication selection
when aggregating various estimates?

This Section presents a new, non-parametric, and generally conservative bias correction
method, to be called a “stem-based” bias correction method. The estimate uses the studies
with highest precision, which correspond to the “stem” of the “funnel” plot, to estimate a
bias corrected average effect. It has both theoretical and empirical merits over other exist-
ing methods: theoretically, the estimate is based on weaker assumptions on the publication
selection process and the underlying distribution than other methods; empirically, the simula-
tion shows that the estimate has adequate coverage probabilities across different publication
selection processes.

17As Figure 2 suggests that no studies will be reported in an omission region, taken literally, the data may
appear to contradict the communication model. However, existence of some studies in omission regions could
be explained by dispersed beliefs across researchers that lead to different – even overlapping – thresholds of
reporting positive vs negative results as illustrated in Section 2.5. The paper does not claim that aggregation
friction is the only reason behind publication bias: instead, it only suggests that aggregation friction can explain
some regularities of publication bias.
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4.1 Main Argument

The stem-based bias correction method uses some of the most precise studies because, across
various selection models, precise studies suffer less from publication bias than imprecise studies.
In the communication model of this paper, the most precise studies are omitted less often, as
visualized in Figure 2. In the two most commonly used models described in Section 3.1.218,
the following Proposition shows that the bias is decreasing in study precision, and that, under
some conditions, the bias is zero as studies become infinitely precise.

(1) communication model (2) uniform selection (3) extremum selection

Figure 5: Bias squared in funnel plots

Notes: Using the funnel plot, the Figures visualizes the (1) communication-based selection, (2) uniform
selection, (3) extremum selection models. The reported studies are depicted in dark dots, whereas
the regions of omissions are approximated by the shaded area. The thick red lines indicate the mean
level of estimates at given values of standard errors. The figures are generated by the author for an
illustrative purpose, and do not reflect actual data.

Proposition 2 (minimal bias among most precise studies across selection models).
Define the bias of studies with precision σi as Bias(σi) ≡ E [βi|σi, study i reported]− b0.
1. (Monotonicity) Bias (σi)2 is increasing in σi for all σi under the extremum selection

models, and for σi ∈ [0, σ] for some σ > 0 under the uniform selection model.
2. (Limit) limσi→0Bias (σi)2 = 0 if σ0 = 0 and threshold βmin is sufficiently low under the

extremum selection model, and always under the uniform selection model.
Sketch of Proof. By comparison of conditional across values of σi expectation given the bias

selection model. Appendix A5 contains a proof. �

18While rigorous analysis is beyond the scope of this paper, this pattern also holds with other models such
as Copas and Li (1997), Fafchamps and Labonne (2016), and both static and dynamic models of Frankel and
Kasy (2018).
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That is, more precise studies are less subject to the publication selection; and moreover, the
bias approaches zero as the studies become infinitely precise under some conditions. Heuristi-
cally, concerns for low statistical significance or extremely negative values become unimportant
when studies are precise.

The stem-based method chooses the number of studies, nstem, to include by optimizing over
the bias-variance trade-off. While focusing only on the most precise studies give the least biased
estimate, it also suffers from high variance. Therefore, the stem-based method includes nstem to
minimize the Mean Squared Error (MSE) of the estimate while ensuring that the assumed and
implied variance are consistent with one another. Denoting the publication selection process as
P as in Section 3.1.1, it strives to solve:

min
n
MSE

(
b̂n0 |σ0

)
= V ar

(
b̂n0 , σ0

)
+Bias2

(
b̂n0 , b0

)
subject to V ar

(
bi|b̂n0 , P

)
= σ2

0 (14)

However, this problem of minimizing the exact MSE requires the knowledge of b0, true mean,
and P , publication selection process. Since solving this criteria is infeasible, the method instead
solves its empirical analogue:

min
n
V ar

(
b̂n0 , σ0

)
+ ˜Bias2 (

b̂n0 , b0
)
subject to ˆV ar

(
bi|b̂n0

)
= σ2

0. (15)

That is, the bias squared term is replaced by an unbiased estimate of its relevant component,
˜Bias2 (

b̂0
)
, and the implied variance term is replaced by its empirical analogue, ˆV ar

(
bi|b̂0

)
.

The estimates of stem-based method can be visually represented with a funnel plot: with
uniform selection generating 80 studies in this simulation, it is optimal to include 24 studies.
Including all studies leads to an upward bias, as indicated by theory. On the other hand, the
most precise study alone can be noisy so that inclusion of more studies leads to an adequate
95 confidence interval that covers 0.5, the true mean value.

4.2 Estimation

Given the objective (14), this sub-Section describes a particular approximation (15), illustration
estimation steps, and discuss the assumptions necessary to ensure its reliability. It is a fully
data dependent process.

4.2.1 Estimation Steps

The stem-based method computes the estimates with the following inner and outer algorithms:
the inner algorithm computes the bias corrected mean given an assumed value of σ2

0; the outer
algorithm computes the implied variance and ensure that it is consistent with its assumed value.
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(1) Funnel plot (2) Mean Squared Error

Figure 6: A visualization of stem-based method

Notes: Figure 5 are illustration of (1) a funnel plot of stem-based bias correction method, and (2) the
Mean Squared error criteria for choosing the nstem, the optimal number of studies to include. The
data comes from a simulation of 80 studies under the uniform selection model such that the number of
included studies is 24, a roughly average number. (1) The funnel plot, with y-axis denoting a measure
of precision, describes the stem-based method. The orange diamond at the top indicates the stem-
based estimate along with its 95 percent confidence interval. The connected line is the estimate with
various nstem ∈ {1, ..., N}, indicating how aggregate estimates change. The diamond at the middle of
the curve indicates minimal level of precision for the inclusion. Therefore, the stem-based estimate is
given by the studies, represented by circle, whose precision are above this diamond. (2) The relevant
components of Mean Squared Error is plotted, indicating that the ˜Bias2 is increasing while V ar is
decreasing in nstem.

I. Inner algorithm: estimate b̂stem, SE
(
b̂stem

)
, nstem given an assumed value of σ0.

1. rank and index studies in the ascending order of standard error so that σ1 ≤ σ2... ≤ σN

2. for each n = 2, ..., N , compute the relevant bias squared, ˜Bias2 (n), and the variance,
V ar (n), as follows: given weights wi ≡ 1

σ2
i+σ2

0
,

(i) relevant bias squared: ˜Bias2 (n) =
∑n

i=2

∑n

j 6=i wiwjβiβj∑n

i=2

∑n

j 6=i wiwj
− 2β1

∑n

i=2 wiβi∑n

i=2 wi

(ii) variance: V ar (n) = ∑n
i=1wi

3. compute the optimal number of included studies, nstem: nstem minimizes the sum of vari-
ance and relevant bias squared, so that

nstem ∈ arg min
n
V ar (n) + ˜Bias2 (n)
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Thus, the stem-based estimate is b̂stem ≡
∑nstem

i=1 wiβi∑nstem
i=1 wi

, SE
(
b̂stem

)
≡ 1√∑nstem

i=1 wi
. The estimation

of b̂stem applies the inverse variance weights since they minimize the variance of the estimator.
This weighting also ensures that the total variance, V ar (n), is decreasing in the number of
included studies n.
II. Outer algorithm: search over values of σ2

0 such that the implied ˆV ar
(
bi|b̂n0

)
is consistent.

Throughout, we adopt the formula of variance proposed by DerSimonian and Laird (1996)19:
given weights w′i ≡ 1

σ2
i
, ˆV ar

(
βi|b̂0

)
= max

{ ˆ̂
V ar

(
βi|b̂0

)
, 0
}
, where

ˆ̂
V ar

(
βi|b̂0

)
=
∑N
i=1w

′
i

(
βi − b̂0

)2
− (N − 1)∑N

i=1w
′
i −

∑N

i=1 w
′2
i∑N

i=1 w
′
i

. (16)

Here, b̂0 is the stem-based estimate.

1. set two initial estimates of σ2
0 by applying (16) to b̂min

0 =
∑N

i=1 w
′
iβi∑N

i=1 w
′
i

and b̂max
0 = ∑N

i=1 βi.

2. compute the implied stem-based estimates and their variance by applying (16)

3. iterate step 2 until it converges; if the limit of maximum and minimum disagree, then
choose the maximum.

4.2.2 Additional Arguments

Turning an ideal problem (14) into a feasible problem (15) had required ways to approximate
the knowledge of b0, true mean, and P , publication selection process. The method had applied
non-parametric estimation techniques of unbiased Cross-Validation criteria to approximate b0;
and estimated σ2

0 to give a conservative confidence interval of b̂stem given unknown P :
Unbiased Cross-Validation criteria for b0: we can replace the component, Bias2

(
b̂n0 , b0

)
,

by its relevant term, ˜Bias2 (
b̂n0 , b0

)
, since they differ only by a constant20. The formula pro-

posed in the inner algorithm provides an approximately unbiased estimate of ˜Bias2 (
b̂0
)
under

19This formula is commonly used in non-parametric estimations of F . For example, trim-and-fill proposed by
Duval and Tweedie (2000) also uses this originally. While there are some criticisms to this approach (Veroniki
et al. 2015), it is left for future work to explore how between-study heterogeneity can be adequately estimated.

20To see this, we can expand the bias squared term:

˜Bias2 (
b̂0

)
≡ b̂2

0 − 2b0b̂0 =
(
b̂0 − b0

)2
− b2

0 = Bias2
(
b̂0

)
− b2

0.

31



some assumptions: if (A1) Eβ1 ' b0 and (A2) Eb̂2,n ' Eb̂1,n, then

E ˜Bias2 (n) = E
∑n
i=2

∑i
j 6=iwiwjβiβj∑n

i=2
∑i
j 6=iwiwj

− 2Eβ1

∑n
i=2wiβi∑n
i=2wi

=
∑n
i=2

∑i
j 6=iwiwjEβiEβj∑n

i=2
∑i
j 6=iwiwj

− 2Eβ1E
∑n
i=2wiβi∑n
i=2wi

' b̂2
0 − 2b0b̂0

There are two statistical techniques involved in these steps: the first term computes the squared
term by leaving one sample out in order to avoid the bias that arises due to the squared term21.
More importantly, the second term applies a Cross-Validation (CV) technique by replacing the
true value of b0 by its estimate. Since β1 is the least biased estimate of b0, we apply the “leave-
one-out” method in CV technique by splitting the sample into the most precise estimate that
constitutes a testing set and all other estimates that constitute a training set.

Equating ˆV ar
(
bi|b̂n0

)
= σ̂2

0: the outer algorithm likely leads to a large estimate of σ2
0 for

three reasons. (i) While the exact selection process, P , is unknown, the variance is overestimated
when it is the intermediate results that is omitted; (ii) The estimation ˆV ar

(
bi|b̂n0

)
uses the entire

sample so as to avoid underestimating the variance with only few samples used in stem-based
estimation; and (iii) when there are multiple values of σ2

0 that are consistent with one another,
the method uses a larger one. By choosing the specification such that the estimate of σ2

0 is
large, the method strives to make a conservative estimate of the 95 confidence interval for b̂stem.

4.2.3 Summary of Assumptions

In summary, for the stem-based method to generate a reliable estimate, we need that the bias
term can be well-approximated, (A1) β1 ' b0 and (A2) b̂2,n ' b̂1,n, and that the variance implied
is close to the true variance, ˆV ar

(
bi|b̂n0

)
' σ2

0. These conditions may not be satisfied when the
underlying variance, σ2

0, is large since even the most precise studies may not approximate the
true underlying mean. While the method imposes no assumptions on underlying distribution,
F , and only monotonicity assumption on the selection process, P , it instead relies on these
assumptions to mitigate publication bias.

One implicit assumption is that the studies’ precision is correctly reported. An inflation
of t-statistics through under-reporting the standard error, such as through choice of units of
clustering, can compromise the reliability of this method. I recommend investigating the spec-
ifications of most precise studies in detail to avoid severe misreporting of study precision.

21The method requires at least N = 3 studies to compute the relevant bias squared, E ˜Bias2 (n), term.
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4.3 Assessment

Given the theoretical foundations and the assumptions made in estimation steps, how does
stem-based bias correction method perform across various selection processes? The simulation
henceforth shows that the stem-based correction method provides a more reliable estimate of
confidence intervals than other commonly used methods in meta-analysis settings calibrated to
plausible values22.

4.3.1 Simulation set-up

This simulation will compute the coverage probabilities and interval lengths with a Monte
Carlo experiment. The studies’ standard errors, σi, is drawn from G (σ) that approximates the
implied distribution from the labor union data sets (Appendix B1.1). Concretely, Ĝ (σ) has the
distribution of σ2 that is χ2 distribution with 2 degrees of freedom with support of [0, 4] that is
re-scaled such that Supp (G) = [0, 1]. The studies’ coefficients are determined by βi = bi + εi,
where bi ∼ N (µb, σ2

b ) and εi ∼ N (0, σ2
i ) and is independently drawn. σb = 0.3 so that match

the degree of heterogeneity in the labor union data set; µb = 0.4 so that the average effect size
( µb√

2σb
' 0.94) is large but reasonable. We consider the data with 30 and 80 published studies

to investigate how sample size affects the reliability of estimates; these are the range of small
and large meta-analysis data also used in other simulation studies (Duval and Tweedie 2000,
Stanley and Doucouliagos 2014).

There will be three sets of data generating processes and four estimation methods23, as
presented in Table 1. We begin by simulating the data without selection (row 1) and the
estimation method without any bias correction (columns (i) and (ii)). Then, row 2 presents the
estimates with uniform selection model in which statistically insignificant results with t = 1.96
thresholds are reported with only 30 percent of the time (η1 = 1, η0 = 0), and columns (iii)
and (iv) show the uniform MLE method (Hedges 1992, Hedges and Vevea 2005) that assumes
this; row 3 presents the estimates with extremum selection model in which some very negative
results are reported (β̂ = −0.1), and columns (v) and (vi) presents the trim-and-fill method that
assumes such selection process. The selection parameters, η1, η0, are based on the estimates
from Andrews and Kasy 2018, and the parameter β̂ is chosen so that the coverage probability
with no correction is roughly equal between the two selection models. Finally, columns (vii)

22There are new methods that have been developed, including regression-based approach of PET-PEESE
(Stanley 2008), maximum likelihood approach (Andrews and Kasy 2018), selection model analogous to Heck-
man’s two step process (Copas and Li 1997), other methods that focus on precise studies such as top10 (Stanley
et al. 2010) and kink-based methods (Bomy and Rachinger 2018), and bias correction using only significant
studies (Simonsohn et al. 2014). It is left for future work to exhaustively investigate the relative merits and
demerits of these methods.

23Each estimation has utilized the canned command available in R. The trim-and-fill correction uses a package
in metafor, with between-study variance estimated using DerSimonian and Laird method as proposed in the
original paper by Duval and Tweedie 2000. The uniform correction uses the package weightr.
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and (viii) presents estimation results using the stem-based method. In this way, with realistic
parameter values, this simulation will assess not only how each method performs given the
selection process that the method assumes, but also how each performs given the process that
it does not assume.

4.3.2 Results

The main result is that the confidence intervals based on the stem-based correction method
are more reliable across various selection models than those based on other methods. With
estimation with no correction (columns (i) and (ii)), the coverage probabilities are close 0.95
when there is no publication selection but are 0.26 when there is serious omission; with estima-
tion with correction methods, the coverage probabilities are reasonable when their respective
assumed selection process is correct, they can be low when it is different. With uniform MLE,
it is roughly 0.76~0.88 given uniform selection model, but is 0.13~0.47 with extremum selec-
tion; with trim-and-fill method, the coverage probability is roughly 0.64~0.67 given extremum
selection model, but is 0.43~0.69 with uniform selectio.; On the other hand, the stem-based
estimates have coverage probabilities of above 0.76 across selection models.

Table 1. simulation of bias correction methods across various models
no correction uniform MLE trim-and-fill stem-based
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

no selection 0.94 0.93 0.89 0.78 0.85 0.83 0.94 0.92
[0.25] [0.40] [0.29] [0.42] [0.23] [0.38] [0.52] [0.60]

uniform 0.26 0.63 0.88 0.76 0.43 0.69 0.76 0.82
[0.25] [0.41] [0.31] [0.42] [0.22] [0.37] [0.51] [0.60]

extremum 0.26 0.62 0.13 0.47 0.64 0.67 0.76 0.77
[0.21] [0.33] [0.20] [0.34] [0.20] [0.31] [0.40] [0.46]

N 80 30 80 30 80 30 80 30
Notes. Table 1. reports the coverage probability and interval length (noted in []) for the sample in
which there are N = 80 studies and N = 30 studies. The simulation is based on a 1, 000 replications
of the data sets.

The improvement of robustness of stem-based methods comes with the disadvantage of larger
interval lengths. The simulation underlying the Table 1 finds, on average, roughly n∗stem = 9 ∼
11 studies for N = 30, and n∗stem = 16 ∼ 24 studies for N = 80 since the distribution Ĝ (σ) has
high density of very precise studies.24 Table 1 shows that the average interval length is roughly

24The number of included studies, n∗stem, varies substantially across replication data sets within the same
simulation environment. This heterogeneity of n∗stem suggests the advantage of stem-based method relative to
the rule-of-thumb approach that uses some fixed number or fraction of all studies. At the same time, there
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1.5 to 2 times larger than the other methods that use all data points. Nonetheless, when a less
permissive estimation methods such as stem-based methods reject the null hypotheses, one can
be more confident that the conclusion is not driven by particular selection method that the
method has imposed.

4.4 Final Remarks

The two most influential bias correction methods have relied on specific assumptions about the
publication selection process, P , and the underlying distribution25, F . Various authors defend
their own assumptions against each other: Duval and Tweedie (2000) justifies the extremum
selection model by writing “A number of authors ... have pointed out that this simple p-value
suppression scenario is rather simplistic since it fails to acknowledge the role of other criteria,
such as size of study.” Simonsohn (2014) criticizes this approach and writes “In most fields,
however, publication bias is governed by p-values rather than effect size.” The communication
model of this paper suggests both criticisms are valid: while the selection process can be
approximated by the constant t-statistics approach, study precisions also have important impact
on publication decisions.

The stem-based bias correction method takes a different approach that uses the mono-
tonicity property of various selection processes, and makes no assumptions on the underlying
distribution unlike in other methods that assumed normality or symmetry. While there are
other assumptions in estimation steps to perform well, the numerical simulation shows that the
method has more adequate coverage probabilities across a range of publication selection pro-
cesses. In fact, there have been authors who have suggested to focus on some arbitrary number
of most precise studies (Barth et al. 2013, Stanley et al. 2010). This paper builds on their
ideas, proposes a formal theoretical justification of this approach, and develops an algorithm
to choose an optimal number of most precise studies to include. In this way, the method can
provide a meta-analysis tool that has merits to the researchers who believe in either processes
of publication selection and who wish to build consensus among researchers who believe in
different processes.

are many studies with only a few studies included. While n∗stem may appear to indicate severity of publication
selection since n∗stem = N in the absence of any selection, simulation indicates that the difference in n∗stem
between the data with or without selection is limited.

25Even the “trim-and-fill” method’s assumption that F is symmetric can be problematic when economists
hope to produce a meta-analysis estimates of elasticity, on which microeconomic theories impose sign restrictions.
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5 Conclusion

There are two thought experiments that question the common interpretation that (i) the pub-
lication bias must arise from the biased motives of journals and researchers, and that (ii) it will
be socially optimal if journals publish all binary conclusions:

(i) if readers prefer publication outlets with full reporting of all results, then a journal or a
researcher can singularly announce that they will publish all results that they observe.
Given the current technology of record keeping and replication, this statement can be
verifiable. Then, the demand for such journals and researchers must increase, resulting in
a higher demand that journals and researchers are seeking. Yet this deviation from the
current communication equilibrium with publication bias is not observed today.

(ii) if researchers report all results of null hypothesis testing and readers wish to use any
drugs with positive effects but consider only the binary conclusions, then readers must
use the drug even when only 3 percent of studies are positive and 97 percent of studies are
negative. This is because, with a conventional null hypothesis testing, zero effect implies
exactly 2.5 percent of positive and 97.5 percent of negative results; thus, when there are
many studies, having positive results more than 2.5 percent of the time implies that the
true underlying effect is positive. Yet ordinary readers will, I think, interpret 97 percent
negative results not as an approval but as a disapproval of the drug.

While most discussions on publication bias have focused on biased incentives of researchers, the
model of this paper, along with these thought experiments, suggest aggregation frictions may
play important roles in understanding reasons behind publication bias.

Publication bias is commonly believed to contradict the unbiasedness of researchers, which
has been put forth as a core ethos of science (Merten 1947). If information can be fully and
costlessly communicated, then conveying all results, as they are, is what unbiased researchers
must do. Yet this paper has shown that aggregation frictions can explain various kinds of
publication bias. The casual expressions such as “exciting” vs “boring” results appear to suggest
biases and irrationality among researchers. This paper is an attempt to provide a rational theory
of “interesting results” – they are results whose binary conclusions can influence the decisions
of the readers, when other results are collectively inconclusive.

The model also suggests that the publication selection process under aggregation frictions
will not only differ from commonly assumed parsimonious processes, but also that it cannot be
represented by another parsimonious process. This impossibility arises because (i) omission will
be asymmetric between positive and negative results; (ii) inflation due to nonlinear thresholds
will be difficult to address; and (iii) exact thresholds will depend critically on primitives –
objectives and prior beliefs – that are unobservable to meta-analysts. Shared across commonly
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assumed processes and this model is the prediction that more precisely esimated studies suffer
less from publication bias. This paper extends the existing methods that use arbitrary number
of most precise studies (Stanley et al. 2010, Barth et al. 2013) by developing a formal method
to choose an optimal number of studies to include. In this way, this paper provides a meta-
analysis tool that is attractive not only to meta-analysts who believe in different theories and
forms of publication bias, and but also to meta-analysts who wish to build a consensus that
does not rely on contested assumptions but on common features among them.
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Appendix A. Proofs

Appendix A presents the proofs of propositions and some additional analytical results. Ap-
pendix A1 presents some preliminary results to prepare for the main analyses; Appendix A2
presents proofs of propositions in Section 2.3; Appendix A3 presents the proof of Section 2.4;
Appendix A4 presents the proof of Section 2.5; Appendix A5 presents an example in Section
2.5; Appendix A6 presents the proof of Section 4.1. For notational ease, let us denote π (n1, n0)
as the policymaker’s strategy given the number of positive and negative results.

A1. Preliminaries

We begin by proving three lemmas that will be relevant throughout the proofs: with normally
distributed random variable, (1) conditional mean of will be increasing in the mean of its
underlying distribution, (2) higher conditional mean implies that the likelihood ratio will be
increasing in the mean of its underlying istribution, and (3) strategies will be monotone as in
Lemma 1 in any fully responsive and fully informative equilibria. While these properties need
not hold in general, normal distribution imposes sufficient structure to facilitate the analyses
of the model.

A1.1. Monotonicity of Conditional Mean

Lemma A1 will show that the conditional mean of normally distributed random variable with
any arbitrary condition will equal the ratio of conditional variance to total variance. This is a
generalization of the proof for truncated normal distribution by Alecos Papadopoulos (2013).

Lemma A1. Derivative of conditional mean with respect to unconditional mean.
Given any sm (β) ≡ P (s = 1|β), the derivative of conditional mean E [βs|sm (β)] of β ∼
N (µ, σ2) with respect to its mean µ satisfies

∂E [βs|sm (β)]
∂µ

= V arm
σ2 , (17)

where V arm ≡ E {β − E [βs|sm (β)]}2 is the variance of the random variable conditional on the
message.

Proof. By applying the property of density of normal distribution. We will first express
the conditional mean, then take the derivative by the chain rule, and finally reorganize the
expression to see that (17) holds for any s (β).

First, by definition, we have

E [βs|sm (β)] = f1 (µ)
f2 (µ) ,
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where f1 (µ) ≡
∫
βsm (β)φ

(
β−µ
σ

)
dβ, f2 (µ) ≡

∫
sm (β)φ

(
β−µ
σ

)
dβ, and φ (·) is the density of

standard normal distribution.
Second, we can apply the chain rule to obtain

∂E [βs|sm (β)]
∂µ

= f ′1 (µ) f2 (µ)− f1 (µ) f ′2 (µ)
[f2 (µ)]2

, (18)

where

f ′1 (µ) = − 1
σ

∫
βsm (β)φ′

(
β − µ
σ

)
dβ and f ′2 (µ) = − 1

σ

∫
sm (β)φ′

(
β − µ
σ

)
dβ.

Third, using the property of normal density that φ′
(
β−µ
σ

)
= −β−µ

σ
φ
(
β−µ
σ

)
, we can reorga-

nize them as

f ′1 (µ) = 1
σ2

∫
βsm (β) (β − µ)φ

(
β − µ
σ

)
dβ = f3 (µ)− µf1 (µ)

σ2

f ′2 (µ) = 1
σ2

∫
sm (β) (β − µ)φ

(
β − µ
σ

)
dβ = f1 (µ)− µf2 (µ)

σ2

where f3 (µ) ≡
∫
β2sm (β)φ

(
β−µ
σ

)
dβ. By substituting into the condition (18),

∂E [βs|sm (β)]
∂µ

= 1
σ2

(f3 − µf1) f2 − f1 (f1 − µf2)
f 2

2

= 1
σ2
f3f2 − f 2

1
f 2

2

= 1
σ2

f3

f2
−
(
f1

f2

)2


= 1
σ2

{
E
[
β2sm|s (β)

]
− (E [βsm|s (β)])2

}
= V arm

σ2

where the last line followed by the definition of variance. �

A1.2. Monotonicity of Mean Likelihood Ratios

Lemma A2. will show that the messages with higher conditional mean will also be more
likely to be sent when the mean of underlying distribution increases. This monotonicity of
likelihood ratio is not equivalent to the standard Monotone Likelihood Ratio Property of normal
distribution with known variance, since the standard statement is concerned with each value
whereas the following lemma addresses the average value. This property is key to deriving the
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Lemma 1 monotonicity of equilibrium strategies: the analogue of Lemma 1 will not hold when
the standard errors are heterogeneous and unknown.

Lemma A2. Equivalence of change in likelihood ratio and mean ranking. Consider
two strategies, sm (β) and sm̃ (β), given β ∼ N (µ, σ2) and the associated likelihood ratio of each
messsages, LR (µ) ≡ P(m|µ)

P(m̃|µ) . Then, LR
′ (µ) > 0 if and only if E [βs|sm (β)] > E [βs|sm̃ (β)].

Proof. By definition,

LR (µ) ≡
∫
sm (β)φ

(
β−µ
σ

)
dβ∫

sm̃ (β)φ
(
β−µ
σ

)
dβ

By chain rule and the property of normal density that φ′
(
β−µ
σ

)
= −β−µ

σ
φ
(
β−µ
σ

)
,

LR′ (µ) ≡ − 1
σ

∫
smφ

′ ×
∫
sm̃φ−

∫
smφ×

∫
sm̃φ

′

(
∫
sm̃φ)2

=
∫

[β − µ] smφ×
∫
sm̃φ−

∫
smφ×

∫
[β − µ] sm̃φ

(σ
∫
sm̃φ)2

=
∫
βsmφ×

∫
sm̃φ−

∫
smφ×

∫
βsm̃φ

(σ
∫
sm̃φ)2

Therefore,

LR′ (µ) > 0⇔
∫
βsmφ×

∫
sm̃φ >

∫
smφ×

∫
βsm̃φ

⇔
∫
βsmφ∫
smφ

>

∫
βsm̃φ∫
sm̃φ

⇔E [βs|sm (β)] > E [βs|sm̃ (β)]

where the last line followed by the definition of conditional mean. �

A1.3. Monotonicity of Equilibrium Strategies

Lemma 1 in Section 2.2 claims that, for any c and σi = σ, the strategies will be monotone if
the equilibrium is fully responsive and fully informative: (i) researchers will apply threshold
strategies and (ii) the policymaker’s probability of policy implementation will be increasing in
positive results and decreasing in negative results.

Proof. Since the result of monotonicity of policymaker’s strategy will be used for that of
researcher’s strategy, we will first derive the result of policymaker’s and then that of researchers’.

(i) Policymaker’s strategy: suppose π∗ (n1, n0) > 0 for some n1, n0. Then, by the pol-
icymaker’s optimization condition, E [b|n1, n0] ≥ c. By full informativeness and Bayes’ rule,
E [b|n1 + k, n0] > E [b|n1, n0] for k ∈ {1, 2} and thus, E [b|n1 + k, n0] ≥ c. By the policy-
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maker’s optimization, π∗ (n1 + k, n0) > 0 . Analogous argument holds for π∗ (n1, n0) < 1 ⇒
π∗ (n1, n0 + k) = 0.

(ii) Researchers’ strategies: by the Bayes’ rule, full responsiveness, and domain of sig-
nals. The proof consists of three steps: the first step organizes the indifference conditions, and
the second step shows the existence of solution, and the third step shows the uniqueness.

Step 1. indifference conditions: given any policymaker’s strategy π (mi,m−i) and another
researcher’s strategy s (β−i), the expected welfare of reporting message mi given the signal βi
can be written as

W (mi, βi) =
∑
m−i

π (mi,m−i)P (m−i|βi)


1
σ2

1
σ2
b

+ 2
σ2

[βi + E [β−i|m−i, βi]]− c


by the objective (1).

At some thresholds, β and β, in which the researcher will be willing to switch the messages,
the indifference conditions W

(
1, β

)
= W

(
∅, β

)
and W

(
0, β

)
= W

(
∅, β

)
must be satisfied.

Rewriting, for each threshold, the conditions are,

I
(
1, ∅, β

)
= 0 and I

(
∅, 0, β

)
= 0,

where
I (mi,m

′
i, βi) ≡

∑
m−i

p (mi,m
′
i|m−i) q (m−i|βi) r (βi|m−i) ,

where

p (mi,m
′
i|m−i) ≡ π (mi,m−i)− π (m′i,m−i)

q (m−i|βi) ≡ P (m−i|βi)

r (βi|m−i) ≡ βi + E [β−i|m−i, βi]− c
(

2 + σ2

σ2
b

)

By full responsiveness, there must exist some m−i,m′−i such that π (1,m−i) > π (∅,m−i) and
π
(
∅,m′−i

)
> π

(
0,m′−i

)
. Thus, these conditions are not vacuous. The meaning of messages is,

without loss of generality, assigned to be consistent with the set-up.
Step 2. existence: for all m−i, another researcher’s strategy, s (β−i), by Lemma A1, there

exist some β′i such that r (β′i|m−i) < 0 and some other β′′i such that r (β′′i |m−i) > 0. Since
p (1, ∅|m−i) > 0 and q (m−i|βi) > 0 and q (·) and r (·) are continuous functions of βi, there must
exist some β and β that satisfy the indifference condition by intermediate value theorem.

Step 3. uniqueness: to show that there is a unique value that satisfies an indifference condi-
tion, we first show that p (mi,m

′
i|m−i) = 0 for at least 1m−i and then show ∂I (mi,m

′
i, βi) /∂βi >

0 when evaluated at I (mi,m
′
i, βi) = 0 so that there is a unique value of βi that satisfies this.
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• p (mi,m
′
i|m−i) = 0 for at least 1 m−i: first, note that π (1, 1) = 1 and π (0, 0) = 0. To see

why, suppose π (1, 1) < 1. Then by policymaker’s optimization, π (1, ∅) = π (∅, 1) = 0,
which then implies π (0,m−i) = 0 for all m−i and π (mi, 0) = 0 for all mi, contradicting
full responsiveness. Second, we consider three cases of π (∅, ∅):

– when π (∅, ∅) = 1, π (1, ∅) = π (∅, 1) = 1 by policymaker’s monotonicity. Thus,
p (1, ∅|∅) = p (1, ∅|1) = 0. Moreover, by full responsiveness for another researcher,
either {π (0, ∅) , π (0, 1)} = {0, π} with π > 0 or {π (0, ∅) , π (0, 1)} = {π, 1} with
π < 1. If former, p (∅, 0|0) = 0 another researcher and if later, p (∅, 0|1) = 0 for
the researcher himself. In this way, p (mi,m

′
i|m−i) = 0 for at least 1 m−i for both

{mi,m
′
i} ∈ {{1, ∅} , {∅, 0}} in any fully responsive equilibria.

– when π (∅, ∅) = 0, a symmetric argument analogous to above applies.

– when π (∅, ∅) = π for π ∈ (0, 1), π (1, ∅) = π (∅, 1) = 1 and π (0, ∅) = π (∅, 0) = 0 by
policymaker’s monotonicity. Thus, p (1, ∅|1) = 0 and p (∅, 0|0) = 0.

• ∂I (mi,m
′
i, βi) /∂βi > 0 at I (mi,m

′
i, βi) = 0: for each {mi,m

′
i} ∈ {{1, ∅} , {∅, 0}}, let us

consider two cases:

– when p (mi,m
′
i|m−i) = 0 for 2 values of m−i: denoting m∗−i as the value such that

p
(
mi,m

′
i|m∗−i

)
> 0, the indifference condition is p

(
mi,m

′
i|m∗−i

)
r
(
βi|m∗−i

)
= 0.

r (βi|m−i) is strictly increasing.

– when p (mi,m
′
i|m−i) = 0 for only 1 value of m−i: denoting m∗−i,m∗∗−i as the value

such that p (mi,m
′
i|m−i) > 0,

p
(
mi,m

′
i|m∗−i

)
q̃
(
m∗−i|βi

)
r
(
βi|m∗−i

)
+ p

(
mi,m

′
i|m∗∗−i

)
q̃
(
m∗∗−i|βi

)
r
(
βi|m∗∗−i

)
= 0,

where q̃ (m−i|βi) ≡ q(m−i|βi)
q(m∗−i|βi)+q(m∗∗−i|βi)

is the normalized probability. The derivative
of the indifference condition with respect to βi is

p
(
mi,m

′
i|m∗−i

)
q̃
(
m∗−i|βi

)
r′
(
βi|m∗−i

)
+ p

(
mi,m

′
i|m∗∗−i

)
q̃
(
m∗∗−i|βi

)
r′
(
βi|m∗∗−i

)
+p

(
mi,m

′
i|m∗−i

)
q̃′
(
m∗−i|βi

)
r
(
βi|m∗−i

)
+ p

(
mi,m

′
i|m∗∗−i

)
q̃′
(
m∗∗−i|βi

)
r
(
βi|m∗∗−i

)
∗ by Lemma A1, r′

(
βi|m∗−i

)
> 0 and r′

(
βi|m∗∗−i

)
> 0.

∗ by Lemma A1 and full responsiveness, r
(
βi|m∗−i

)
< 0 and r

(
βi|m∗∗−i

)
> 0 must

hold at the indifference condition I (mi,m
′
i, βi) = 0 since all other terms are

positive (the meaning of m∗−i,m∗∗−i is without loss of generality.) By Lemma
A2, q̃′

(
m∗−i|βi

)
< 0 and q̃′

(
m∗∗−i|βi

)
> 0: higher mean implies higher relative

likelihood of message m∗∗−i sent by another researcher.
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Since all terms are thus positive, ∂I (mi,m
′
i, βi) /∂βi > 0 at I (mi,m

′
i, βi) = 0.

Since p (mi,m
′
i|m−i) = 0 at least for 1 value of m−i, we saw that the indifference

condition must be increasing in βi when it is satisfied so that the solution will be
unique.

�

A2. Proofs of 2.3 Omission of Insignificant Results

This sub-Section presents the proofs of propositions in Section 2.2. A2.1 proves Proposition
1.1; A2.2 proves Proposition 1.2; A2.3 proves Proposition 1.3.

A2.1. Proof of Proposition 1.1

Proposition 1.1 claims that there exists an equilibrium in which the policymaker adopts a
supermajoritarian decision rule and the researchers apply a threshold that is asymmetric such
that the estimates underlying reported studies will have an upward bias. The proof will show
first that the policymaker’s strategy is a part of the equilibrium, and second the researchers’
strategies are also a part of the equilibrium.

(i) Policymaker’s strategy: If the decision rule (2) is consistent with policymaker’s
optimization, we need that E [b | n1 > n0] ≥ 0 and E [b | n1 ≤ n0] ≤ 0 given thresholds (3).
This holds because the researchers’ strategy must satisfy the indifference condition at the
margin whereas the policymaker assess whether the condition holds on average. To see why
E [b | n1 > n0] ≥ 0, note that E [b | n1 = 1, n0 = 0] ≥ 0 since

E [b | m1 = 1,m2 = ∅] =
1
σ2

1
σ2
b

+ 2
σ2
E
[
β1 + E

[
β2 | β > β2 ≥ β, β1

]
|β1 ≥ β

]

>
1
σ2

1
σ2
b

+ 2
σ2

{
β + E

[
β2 | β > β2 ≥ β, β1 = β

]}
= 0,

where the last equality holds due to the researchers’ indifference condition. Analogous argu-
ments also hold for E [b | n1 ≤ n0] ≤ 0,showing (2) is an equilibrium.

(ii) Researchers’ strategy: given the supermajoritarian voting rule in (2), the equilibrium
thresholds will (1) be unique and symmetric between researchers, (2) lead to some omissions
(β ≥ 0 > β), (3) be asymmetric between the thresholds for positive vs negative results (β <

−β), so that together will (4) have an upward bias of reported studies E [βi|mi 6= ∅] > 0. The
following proof shows these results in turn.
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(1) uniqueness of symmetric solution: given π∗ as in (2), the thresholds will be unique since
the researchers’ strategies are moderate strategic substitutes of one another. When the
best response function satisfies ∂βi(βj)

∂βj
∈ (−1, 0), there can be at most one value that

satisfies the equlibrium conditions and will be symmetric between researchers so that
βi = βj = β and βi = βj = β. The following Lemma A3 shows ∂βi(βj)

∂βj
∈ (−1, 0):

Lemma A3. (Moderate Strategic Substitution). Define βi
(
βj
)
as the best response

to some threshold βj that satisfies the equilibrium conditions:

βi + E
[
βj|βj > βj ≥ βj, βi = βi

]
= 0

βj + E
[
βi|βi ≥ βi, βj = βj

]
= 0

Then

−1 <
∂βi

(
βj
)

∂βj
< 0

Proof. By totally differentiating the equilibrium conditions. WritingKj = ∂E[βj |βj>βj≥βj ,βi=βi]
∂βj

,

Kj = ∂E[βj |βj>βj≥βj ,βi=βi]
∂βj

, Ki = ∂E[βj |βj>βj≥βj ,βi=βi]
∂βi

, and Lj = ∂E[βi|βi≥βi,βj=βj]
∂βj

and Li =
∂E[βi|βi≥βi,βj=βj]

∂βi
, the system of derivatives satisfy:

 1 +Ki Kj

Li 1 + Lj


 ∂βi

∂βj
∂βj

∂βj

 =
 −Kj

0


Inverting the matrix, we have

 ∂βi
∂βj
∂βj

∂βj

 = 1(
1 +Ki

) (
1 + Lj

)
−KjLi

 1 + Lj −Li
−Kj 1 +Ki

 −Kj

0


Thus,

∂βi
∂βj

=
−Kj

(
1 + Lj

)
(
1 +Ki

) (
1 + Lj

)
−KjLi

By the definition of truncated distribution, Ki+Kj +Kj = 1 and Li+Lj = 1. Moreover,
all terms, Kj, Kj, Ki, Lj, Li, are positive and less than 1 by Lemma A1. Thus,

– ∂βi
∂βj

< −1 sinceKj

(
1 + Lj

)
<
(
1 +Ki

) (
1 + Lj

)
−KjLi⇔

(
1−Ki −Kj

) (
1− Lj

)
<(

1 +Ki −Kj

) (
1 + Lj

)
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– ∂βi
∂βj

< 0 since
(
1 +Ki

) (
1 + Lj

)
> KjLi. �

Given that βi = βj = β and βi = βj = β, we will be able to substitute the threshold
values to derive the results.

(2) omission β > 0 > β: towards contradiction, suppose β ≤ 0. By the indifference condition
(4) and by (1) βi = βj = β, β = −E

[
β−i|β−i ∈ [β, β), βi = β

]
> 0 since E

[
β−i|β−i < β

]
<

0 regardless of other conditions. Because this contradicts the assumption, β ≥ 0. Substi-
tuting this into (5), β = −E

[
β−i|β−i > β, βi = β

]
< 0.

(3) asymmetry β < −β: towards contradiction, suppose β ≥ −β given β ≥ 0. Then, β =
−E

[
β−i|β−i ∈ [β, β), βi = β

]
< 0 because the combinations of conditions β−i ∈ [β, β)

by (1) and βi = β imply E
[
β−i|β−i ∈ [β, β), βi = β

]
> 0. Since this contradicts the

assumption, β < −β must hold.

(5) bias of estimates underlying reported studies E [βi|mi 6= ∅] > 0: the following algebraic
argument formally shows that the asymmetry in (??) leads to the upward bias (??):

E [βi|mi 6= ∅]

=P [mi = 1|mi 6= ∅]E [βi|mi = 1] + P [mi = 0|mi 6= ∅]E [βi|mi = 0]

=
1− Φ

(
β
)

1− Φ
(
β
)

+ Φ
(
β
)√σ2 + σ2

b

φ
(
β
)

1− Φ
(
β
) − Φ

(
β
)

1− Φ
(
β
)

+ Φ
(
β
)√σ2 + σ2

b

φ
(
β
)

Φ
(
β
)

=
√
σ2 + σ2

b

φ
(
β
)
− φ

(
β
)

1− Φ
(
β
)

+ Φ
(
β
) > 0

Since both the policymaker and researchers’ strategies satisfy the indifference conditions given
the strategy of one another, and beliefs are consistent with the Bayes’ rule, the strategies in
Proposition 1.1. constitutes an equilibrium. �

A2.2. Proof of Proposition 1.2

Proposition 1.2 claims that there are both (1) an equilibrium with symmetric omission with
policymaker’s decision rule, π (n0 = n1) = 1

2 , and (2) an equilibrium with no omission with
policymaker’s decision rule, π (n1, n0) = 1 (n1 = 2) and π (n1 = 1, n0 = 0) ∈ (0, 1]. We will
prove this for the one with (1) symmetric omission, and then with (2) no omission.

(1) Proof for equilibrium with symmetric omission. The policymaker’s strategy is an
equilibrium because, given n0 = n1, the researcher will be indifferent between implementing or
not implementing the policy. The researchers’ strategies will constitute an equilibrium because,
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given π (n0 = n1) = 1
2 , the criteria for the thresholds β and β will be symmetric with one

another.
(i) Policymaker’s strategy: For the policymaker’s strategies to be optimal, it is necessary

that E [b | n1 = n0] = 0; moreover, this condition is also sufficient due to the monotonicity as in
Lemma 1. We consider two cases, n1 = n0 = 0 and n1 = n0 = 1 in turn given the researchers’
strategies that β = −β:

• Case of n1 = n0 = 0: by Bayes’ rule,

E [b | n1 = n0 = 0] =
1
σ2

1
σ2
b

+ 2
σ2
E
[
β1 + β2|β1, β2 ∈

[
β, β

]]

– When β1 = ∆,

E
[
β1 + β2|β1 = ∆, β2 ∈

[
β, β

]]
= φ

(
∆
σ

)∫ β

β
(∆ + β2)φ

(
β2 − ρ∆

σ

)
dβ2

– When β1 = −∆,

E
[
β1 + β2|β1 = −∆, β2 ∈

[
β, β

]]
= φ

(
−∆
σ

)∫ β

β
(−∆ + β2)φ

(
β2 + ρ∆

σ

)
dβ2

– Since β1 is symmetrically distributed, φ
(

∆
σ

)
= φ

(
−∆

σ

)
. Moreover,

E
[
β1 + β2|β1 = ∆, β2 ∈

[
β, β

]]
+ E

[
β1 + β2|β1 = −∆, β2 ∈

[
β, β

]]
= 0

for the following two reasons by β = −β:

∗ on the term multiplied by ∆,

∫ β

β
∆
[
φ

(
β2 − ρ∆

σ

)
− φ

(
β2 + ρ∆

σ

)]
dβ2

=∆
{[

Φ
(
β − ρ∆

σ

)
− Φ

(
β − ρ∆

σ

)]
−
[
Φ
(
β + ρ∆
σ

)
− Φ

(
β + ρ∆
σ

)]}

=∆
{[

Φ
(
β − ρ∆

σ

)
− Φ

(
β − ρ∆

σ

)]
−
[
Φ
(
−
β − ρ∆

σ

)
− Φ

(
−β − ρ∆

σ

)]}

=∆
{[

Φ
(
β − ρ∆

σ

)
− Φ

(
β − ρ∆

σ

)]
−
[
1− Φ

(
β − ρ∆

σ

)
−
[
1− Φ

(
β − ρ∆

σ

)]]}
=0
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∗ on the term multiplied by β2,

∫ β

β
β2

[
φ

(
β2 − ρ∆

σ

)
− φ

(
β2 + ρ∆

σ

)]
dβ2

=
∫ β

0
β2

[
φ

(
β2 − ρ∆

σ

)
− φ

(
β2 + ρ∆

σ

)]
dβ2

+
∫ 0

β
β2

[
φ

(
β2 − ρ∆

σ

)
− φ

(
β2 + ρ∆

σ

)]
dβ2

=
∫ β

0
β2

[
φ

(
β2 − ρ∆

σ

)
− φ

(
β2 + ρ∆

σ

)]
dβ2

−
∫ β

0
β2

[
φ

(
−β2 − ρ∆

σ

)
− φ

(
−β2 + ρ∆

σ

)]
dβ2

=
∫ β

0
β2

{[
φ

(
β2 − ρ∆

σ

)
− φ

(
β2 + ρ∆

σ

)]
−
[
φ

(
−β2 − ρ∆

σ

)
− φ

(
−β2 + ρ∆

σ

)]}
dβ2

=0

where the last line followed by φ
(
β2+ρ∆
σ

)
= φ

(
−β2+ρ∆

σ

)
and φ

(
β2−ρ∆
σ

)
=

φ
(
−β2−ρ∆

σ

)
.

• Case of n1 = n0 = 1: by Bayes’ rule, without loss of generality, let us consider m1 = 1
and m2 = 0.

E [b | n1 = n0 = 1] =
1
σ2

1
σ2
b

+ 2
σ2
E
[
β1 + β2|β1 ≥ β, β2 ≤ β

]

Note that we can express E
[
β1 + β2|β1 ≥ β, β2 ≤ β

]
as

∫ β

−∞

∫ −β2

β
[β1 + β2] φ̃ (β1, β2) dβ1dβ2 +

∫ ∞
β

∫ β

−β1
[β1 + β2] φ̃ (β1, β2) dβ2dβ1

By the change of variable using the symmetry of distribution,
∫ β

−∞

∫ −β2

β
[β1 + β2] φ̃ (β1, β2) dβ1dβ2 +

∫ ∞
β

∫ β

−β2
[β1 + β2] φ̃ (β1, β2) dβ1dβ2

54



At each β2 = ∆,

∫ −∆

β
[β1 + ∆]φ

(
β1 − ρ∆

σ

)
dβ1 +

∫ β

−∆
[∆ + β1]φ

(
β1 − ρ∆

σ

)
dβ1

=
∫ −∆

β
{[β1 + ∆]− [∆ + β1]}φ

(
β1 − ρ∆

σ

)
dβ1

=0

Thus, taking together, E
[
β1 + β2|β1 ≥ β, β2 ≤ β

]
= 0, satisfying the policymaker’s indif-

ference condition. �

(ii) Researchers’ strategy: given the policymaker’s strategy, the researchers’ indifference
conditions are given by

β + 1
2

∑
m−i∈{0,∅}

{
P
(
m−i|β,m−i ∈ {0, ∅}

)
E
[
β−i|m−i, β

]}
= 0

β + 1
2

∑
m−i∈{0,1}

{
P
(
m−i|β,m−i ∈ {0, 1}

)
E
[
β−i|m−i, β

]}
= 0

Applying the formula of truncated normal distribution,

βi + 1
2E

[
β−i|β−i ≤ β−i, βi

]
= 0

βi + 1
2E

[
β−i|β−i ≥ β−i, βi

]
= 0

Note that when βi = −βi and β−i = −β−i, these conditions are equivalent to each other.
Moreover, the solution βi is strictly decreasing in β−i. Combining, there exists a unique solution
βi = −βi = β−i = −β−i that satisfies the researchers’ indifference conditions. �

(2) Proof for equilibrium with no omission. the policymaker’s strategy will be a
part of the equilibrium by an immediate implication of researchers’ indifference condition; the
researchers strategy β, β will be determined by the identical conditions, leading to β = β.

(i) Policymaker’s strategy: given that the researcher will be indifferent at the switching
point, β = β, the policymaker will also be indifferent between implementing or not implementing
the policy since the policymaker knows βi = β = β if mi = ∅ (even though mi = ∅ occurs with
probability zero). Since the decisions when mi 6= ∅ for both i can be given by the monotonicity
of Lemma 1, the policy rule (7) is a part of the equilibrium. �

(ii) Researchers’ strategy: suppose that another researcher follows β = β and the
policymaker adopts the policy rule as (7). Then, regardless of one’s own signal, P (m−i = ∅|βi) =
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0. Therefore, one can write the indifference conditions as

P
(
m−i = 1|βi

)
(1− π̃)

1
σ2

1
σ2
b

+ 2
σ2

[
E
[
β−i|β−i ≥ β−i, βi

]
+ βi

]
= 0 (19)

P
(
m−i = 1|βi

)
π̃

1
σ2

1
σ2
b

+ 2
σ2

[
E
[
β−i|β−i ≥ β−i, βi

]
+ βi

]
= 0 (20)

Since these conditions are proportional to each other, researcher i’s optimal strategy has βi = βi.
�

A2.3. Proof of Proposition 1.3

Proposition 1.3 claims that the asymmetric equilibrium is locally stable whereas equilibria with
symmetric or no omission are not; the former is also optimal whereas later are not. We will
first prove the results of local stability, and then that of optimality.

Proof of local stability: we will focus on the concept of local stability in Definition
1.3, which is adopted from Defition 6.1 in Chapter 1 of Fudenberg and Levine (1998) with a
particular order of adjustment. The equilibria satisfying local stability are more plausible to
emerge than those without local stability since small perturbation of strategies likely occur in
the real world.

We consider a perturbation of equilibrium with monotone strategies, E ≡
{
π (n) , β1, β1, β2, β2

}
,

and consider the distance between two equilibria, E , Ẽ , as d
(
E − Ẽ

)
≡ maxs {|εs|}, where

ε ≡ E − Ẽ . While one could consider a richer perturbation on researchers’ strategies as the
mapping from the signals βi×σi ∈ R2 into probability distribution over messages, this definition
is intuitive and analytically tractable. Moreover, Lemma 1 has shown that all fully responsive
and fully informative equilibria will take this form. We first consider the asymmetric equlibrium
in Proposition 1.1, and then analyze the other equilibria in Proposition 1.2.

(1) Asymmetric equlibrium in Proposition 1.1. is locally stable: Let us denote the pertur-
bation of researcher i = 1, 2’s strategies by the set of perturbations,

{
εi, εi

}
so that βi,0 =

β + εi, βi,0 = β + εi. Without loss of generality, suppose that the researcher 2 receives a larger
perturbation so that max

{
|ε2|, |ε2|

}
≥ max

{
|ε1|, |ε1|

}
.

The proof takes four steps: first, we observe that the policymaker’s strategy does not change;
second, consider researcher 1’s adjustment in t = 1; third, consider researcher 2’s adjustment in
t = 1; and finally argue that these results show the local stability of the asymmetric equilibrium.

Step 1. policymaker’s strategy: in t = 1, even with small perturbation of researchers’
strategy, the policymaker’s strategy will not change since it relied on strict preference. Thus,
the strategy (2) will continue to be played.
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Step 2. researcher 1’s strategy: given the supermajoritarian rule (2) and the researcher 2’s
initial strategy β2,0, β2,0, the researcher 1’s strategy will satisfy

∣∣∣β1,1

(
β2,0, β2,0

)
− β

∣∣∣ < max
{
|ε2|, |ε2|

}
∣∣∣β1,1

(
β2,0

)
− β

∣∣∣ < |ε2|
by the property of derivative of the truncated normal distribution.

Step 3. researcher 2’s strategy: given the supermajoritarian rule (2) and the researcher 1’s
strategy after adjustment β1,1, β1,1, the researcher 2’s strategy will satisfy

∣∣∣β2,1

(
β1,1, β1,1

)
− β

∣∣∣ < max
{
|ε2|, |ε2|

}
∣∣∣β2,1

(
β1,1

)
− β

∣∣∣ < |ε2|
by the property of derivative of the truncated normal distribution.

Step 4. relating to the definition of local stability: for equilibrium E to be locally stable, we
need for every d̂ > 0, there exist some d such that

d (E − E0) < d⇒ d (E − E∞) < d̂.

By Step 2 and 3, we know that d (E − E1) < max
{
|ε2|, |ε2|

}
= d (E − E0). Interating the

adjustment ad infinity, we have d (E − E∞) < d (E − E0). Thus, setting any d ≤ d̂ can satisfy
the condition.

(2) Equlibria in Proposition 1.2. are not locally stable:
Lemma A3: any equilibrium such that π∗ (n1, n0) ∈ (0, 1) for some n1, n0 is not locally

stable.
Proof. This is because the policymaker must be exactly indifferent between whether or not

implementing the policy; that is, the posterior belief E [b|n1, n0] = 0 must hold for such n1, n0.
However, even with a small perturbation of some thresholds

{
βiβi

}
, the policymaker will have

E [b|n1, n0] 6= 0 so that his optimal strategy in t = 1 will be either π∗ (n1, n0) ∈ {0, 1} for that
n1, n0. Since the modification in policymaker’s strategy is large, the researchers’ strategies will
not converge back to the original strategies. �

On the equilibrium with no omission such that π̃ = 1, we can consider how a small pertur-
bation of another researcher’s strategy, βi + ∆, makes the probability of omission to be strictly
positive; that is, with such perturbation, the iterative adjustment to examine the local stability
will lead to the asymmetric equilibrium characterized in Proposition 1.1. �

Proof of optimality: we will first show that the equilibria characterized in Proposition
1.2 are not optimal by using the relationship to the concept of local stability; then show that
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the equilibrium in Proposition 1.1 is optimal by examining all other possible equilibria.
(1) Equilibria in Proposition 1.2 are not optimal: since the model is a common interest

game, we have the following close relationship between local stability and optimality:
Lemma A3: if an equilibrium E is optimal, then it is locally stable.
Proof. Let us write the welfare attained in the equilibrium E ≡

{
π (n) , β1, β1, β2, β2

}
as

W
(
π (n) , β1, β1, β2, β2

)
. By policymaker’s optimization, ∂W

∂π
|π=1 > 0, ∂W

∂π
|π=0 < 0, ∂W

∂π
|π∈(0,1) =

0 (where the derivative at the boundaries are either or left or right derivatives) and by re-
searchers’ optimalization, ∂W

∂βi
= ∂W

∂βi
= 0 when evaluated at the equilibrium since W is contin-

uous in each element. If an equilibrium is optimal, then it is locally stable since W must be
locally concave at each local maximum. �

Using the contropositive of Lemma A3, if an equilibrium is not locally stable, then it is not
optimal. Since the equilibria in Proposition 1.2 are not locally stable, it is not optimal.

(2) Asymmetric equilibrium in Proposition 1.1 is optimal: while optimality implies local
stability, the converse does not hold. The proof consists of arguing that (i) any optimal equilibria
must be fully responsive, and (ii) there are only two fully responsive and locally stable equilibria:
one with π∗ (m) = 1 (n1 ≥ n0) and another with π∗ (m) = 1 (n1 > n0). Then, since these two
equilibria are symmetric to one another, they attain the identical level of welfare.

(i) if an equilibrium is not fully responsive or not fully informative, then it is not opti-
mal. Suppose there exists mi,m

′
i such that π (mi,m−i) = π (m′i,m−i) or E [b|mi,m−i] =

E [b|m′i,m−i]for all m−i. Then, by changing the reporting strategies of mi,m
′
i, the re-

searcher i can better convey the private information βi to the policymaker. Since this is
a common interest game, this strictly improves welfare.

(ii) the only fully responsive equilibria that are also locally stable have π∗ (m) = 1 (n1 ≥ n0)
or π∗ (m) = 1 (n1 > n0). By Lemma A4, local stability requires π (mi,m−i) ∈ {0, 1} for
all mi,m−i. Moreover, by Lemma 1, π (mi,m−i) will be monotone.

– if π (mi,m−i) = 0 for all mi ∈ {∅, 0} for either i, then it is not fully responsive.
Thus, the fully responsive equilibria with minimum number of π = 1 is π∗ (m) =
1 (n1 > n0).

– suppose π∗ (m) = 1 if mi = 1 and {mi,m−i} = {∅, 1}. Then for another researcher,
whether m−i = ∅ or 0 does not make any difference. Suppose π∗ (m) = 1 if mi 6= 0
for both researchers. Then, for either researcher, whether m−i = ∅ or 1 does not
make any difference. Thus, the fully responsive equilibria with the second minimum
number of π = 1 is π∗ (m) = 1 (n1 ≥ n0).

Since we can consider π = 0 symmetrically, we have considered all equilibria with mono-
tone strategy of researchers and π (mi,m−i) ∈ {0, 1} for all mi,m−i. Verifying that
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π∗ (m) = 1 (n1 > n0) and π∗ (m) = 1 (n1 ≥ n0) satisfies full responsiveness, we have that
there can be at most two equilibria.

Note that the two equilibria π∗ (m) = 1 (n1 > n0) and π∗ (m) = 1 (n1 ≥ n0) are symmet-
ric to one another when c = 0, and thus, attains identical welfare. Since the welfare under
π∗ (m) = 1 (n1 ≥ n0) is not strictly higher than that under π∗ (m) = 1 (n1 > n0), the equilib-
rium characterized in Proposition 1.1 is an optimal equilibrium. �

A3. Proof of 2.4 Inflation of Marginally Insignificant Results

This sub-Section presents the proof of Proposition 1.2 in Section 2.4.
Proof of Proposition 1.2 The Proposition 1.2 claims that there exists a unique symmetric

equilibrium (researchers’ thresholds are identical with one another, and their thresholds are
symmetric so that β (σ) = −β (σ)), and in that equilibrium the absolute value of the t-statistics
must be increasing in σi. The proof proceeds in three steps: first, we express and simplify the
researchers’ indifference conditions assuming the policymakers’ strategy in Proposition 1.2;
second, we show the existence of the solution and characterize that solution; and finally, we
verify that the researchers’ and policymakers’ strategies constitute an equilibrium.

Step 1. researchers’ indifference conditions with heterogeneous σi: we express the indiffer-
ence conditions by extending the expression of thresholds derived in Proposition 1.2(i) in three
sub-steps.

First, by researcher i’s optimization, the posterior belief on expected benefit must equal zero
at the thresholds at every σi ∈ Supp (σ): by Bayes’ rule and the law of itereated expectations,

∫ βi
σ2
i

+ E[βj |σj ,βj∈Piv(σj),π,βi=βi]
σ2
j

1
σ2
b

+ 1
σ2
i

+ 1
σ2
j

g (σj) dσj = 0, (21)

where the expectation is taken over another researcher’s signals {σj, βj} and the policymaker’s
strategy π. Piv (σj) is a set of values of βj such that the researcher i’s message can alter the
policymaker’s decision.

Second, we rearrange the condition (21) by (i) assumption of policymaker’s strategy, (ii)
improper prior assumption (σb = ∞), (iii) change of variables from βi to t (σi), and (iv) re-
expressing the inverse Mills ratio:

(i) as shown in Section A2.2, if policymaker adopts the strategy in symmetric equilibrium
(6), then E

[
βj|σj, βj ∈ Piv (σj, π) , βi

]
= ρijβi − σij

φ(·)
Φ(·) , where ρij = σ2

b√
σ2
i+σ2

b

√
σ2
j+σ2

b

is

the correlation coefficient, σij =
√
σ2
i + σ2

b

√
σ2
j + σ2

b − σ2
b is the standard deviation of
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βj conditional on βi, and the argument of inverse Mills ratio is βj(σj)−ρijβi
σij

with βj (σj)
denoting the researcher j’s threshold conditional on σj.

(ii) by the assumption σb =∞, 1
σ2
b

= 0, ρij = 1, and σij =
√

σ2
i+σ2

j

2 . Therefore, the indifference
condition (21) is equivalent to

2βi −
σi√

2

∫ √√√√ σ2
i

σ2
i + σ2

j

φ (·)
Φ (·)g (σj) dσj = 0, (22)

where the argument of φ (·) and Φ (·) is βj(σj)−βi√
σ2
i

+σ2
j

2

.

(iii) dividing the condition (22) by σi and writing ti = βi(σi)
σi

for brevity,

ti = 1
4

∫ √
2

1 + σ2
r

φ (tjσr − ti)
Φ (tjσr − ti)

g (σj) dσj, (23)

where σr ≡ σj
σi
.

(iv) we can express the condition (23) as a conditional mean of a truncated standard normal
distribution using some hypothetical random variables: Noting that, for some random
variable, τ1 ∼ N

(
ti,

1+σ2
r

2

)
, E [τ1|τ1 ≤ tjσr] = ti −

√
1+σ2

r

2
φ(tjσr−ti)
Φ(tjσr−ti) ,

φ (tjσr − ti)
Φ (tjσr − ti)

=
√

2
1 + σ2

r

{ti − E [τ1|τ1 ≤ tjσr]} ,

=
√

2
1 + σ2

r

{−E [τ2|τ2 ≤ tjσr − ti]} , where τ2 ∼ N
(

0, 1 + σ2
r

2

)

=
√

2
1 + σ2

r

E [τ2|τ2 ≥ ti − tjσr]

=
√

2
1 + σ2

r

E

√1 + σ2
r

2 τ3|
√

1 + σ2
r

2 τ3 ≥ ti − tjσr

 , where τ3 ∼ N (0, 1)

= E
[
τ3|τ3 ≥

√
2

1 + σ2
r

(ti − tjσr)
]

Combining with (23), the indifference condition is

ti = 1
4

∫ √
2

1 + σ2
r

E
[
τ |τ ≥

√
2

1 + σ2
r

(ti − tjσr)
]
g (σj) dσj, (24)

where τ ∼ N (0, 1).
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Step 2. characterization: using the formula (25), we can show that ∂t(σi)
∂σi

> 0. Writing K (σr) =√
2

1+σ2
r
, L (σr) = E

[
τ |τ ≥

√
2

1+σ2
r

(ti − tjσr)
]
,

∂ti (σi)
∂σi

= ∂σr
∂σi
× 1

4

∫
[K (σr)L′ (σr) +K ′ (σr)L (σr)] g (σj) dσj (25)

by the chain rule. Note that L′ (σr) < 0 since

∂
√

2
1+σ2

r
(ti − tjσr)
∂σr

= −tj

√
1 + σ2

r

2 − (ti − tjσr)
(1

2

) 3
2 (

1 + σ2
r

)− 1
2

= −1
2

√
1 + σ2

r

2

[
2tj + ti − tjσr

1 + σ2
r

]

= −1
2

√
1 + σ2

r

2

ti + 2tj
[
(1− σr)2 + σr

]
1 + σ2

r

 < 0

Together with observations that ∂σr
∂σi

< 0, K (σr) > 0, and L (σr) > 0 and K ′ (σr) < 0 ,
∂ti(σi)
∂σi

> 0 holds at every σi, as stated by Proposition 1.2.
Step 3. existence and uniqueness of researchers’ strategies in symmetric equilibrium: to

show that the equilibrium characterization is meaningful, we will show the existence of such
threshold t (σi| {tj}) defined by (24). We will apply the contraction mapping theorem, which
also shows that the thresholds will be unique.

The functional equation t (tj) (a simplification of notation t (σi| {tj})) is said to be a con-
traction mapping if there exists some constant k ∈ (0, 1) such that d {t (τ0) , t (τ1)} ≤ kd {τ0, τ1}
for any τ0, τ1. Here, let us define the distance between two strategies, τ0 (σ) and τ1 (σ), as the
sup metric:

d {τ0, τ1} = sup
σ
|τ0 (σ)− τ1 (σ)| .

We first show that t (σi| {tj}) is a contraction mapping when τ0, τ1 are differentiable with respect
to σ in three sub-steps, and then apply the contraction mapping theorem.

(i) Sub-step 1: we first show that we can consider a corresponding totally ordered two func-
tions, rather than considering directly the arbitrary functions that may not be totally
ordered.

Sub-Lemma 1. Define τ (σ) ≡ max {τ0 (σ) , τ1 (σ)} and τ (σ) ≡ min {τ0 (σ) , τ1 (σ)}.
For any k, if d {t (τ) , t (τ)} ≤ kd {τ , τ}, then d {t (τ0) , t (τ1)} ≤ kd {τ0, τ1}.

Proof. The expression (24) shows that t (τ) is strictly decreasing in τ so that

t (σ| {τ}) ≤ t (σ| {τs}) ≤ t (σ| {τ})
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for both s = 0, 1, for all σ. Thus, d {t (τ) , t (τ)} ≥ d {t (τ0) , t (τ1)}. Since τ0 (σ) and τ1 (σ)
are assumed to be differentiable, it is continuous and attains the maximum and minimum.
Since d {τ , τ} = d {τ0, τ1}, the Sub-Lemma 1 holds. �

(ii) Sub-step 2: we then show that we can consider the derivative of function to prove that
the two functions satisfy the condition to be a contraction map.

Sub-Lemma 2. If there exists some k such that

∂d {t (τ + δ) , t (τ)}
∂δ

< k

for any τ and for any δ, then the function t satisfies d {t (τ) , t (τ)} ≤ kd {τ , τ} for any
totally ordered {τ , τ}.

Proof. Given any {τ , τ} that is totally ordered (i.e. τ (σ) > τ (σ) for all σ), let δ ≡
supσ {τ (σ)− τ (σ)}. Then

d {t (τ) , t (τ)} ≤ d {t (τ + δ) , t (τ)}

= d {t (τ) , t (τ)}︸ ︷︷ ︸
=0

+
∫ δ

0

∂d
{
t
(
τ + δ̃

)
, t (τ)

}
∂δ̃︸ ︷︷ ︸
≤k

dδ̃

≤ kδ

= kd {τ , τ}

The first line follows because t is strictly decreasing in τ ; the second line follows from the
fundamental theorem of calculus; the third line follows by assumption of Sub-Lemma 2;
and the fourth line by definition of δ. �

(iii) Sub-step 3: using the expression (24), we derive the expression of the bound on the
derivative.

Sub-Lemma 3. For any τ and for any δ, with t defined as (24),

∂d {t (τ + δ) , t (τ)}
∂δ

<
1
2

Proof. There are three steps to prove this: first, we note that analyzing ∂
∂δ
t (σ∗ (δ) | {τ + δ})
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will be sufficient:

∂d {t (τ + δ) , t (τ)}
∂δ

= ∂

∂δ
[t (σ∗ (δ) | {τ})− t (σ∗ (δ) | {τ + δ})] ,

where σ∗ (δ) ≡ arg max
σ
{t (σ| {τ + δ})− t (σ| {τ})}

= − ∂

∂δ
t (σ∗ (δ) | {τ + δ})

+ ∂

∂σ
[t (σ∗ (δ) | {τ})− t (σ∗ (δ) | {τ + δ})] |σ=σ∗(δ) ×

∂σ∗ (δ)
∂δ

= − ∂

∂δ
t (σ∗ (δ) | {τ + δ})

where the first equality followed by definition (the maximum exists since Supp (G) is
closed and bounded), the second equality followed by the chain rule, and the third equality
followed by the envelope theorem given differentiability of t.

Second, writing Σ ≡
√

2

1+
(
σ∗
σj

)2

{
t (σ∗| {τ + δ})− [τ (σj) + δ] σ∗

σj

}
for notational ease, we

can derive the bound on − ∂
∂δ
t (σ∗ (δ) | {τ + δ}): given (24),

∂

∂δ
t (σ∗| {τ + δ}) = 1

4

∫ √√√√√ 2
1 +

(
σ∗

σj

)2
∂E [τ̃ |τ̃ ≥ Σ]

∂Σ × ∂Σ
∂δ
g (σj) dσj (26)

By the chain rule, ∂Σ
∂δ

=
√

2

1+
(
σ∗
σj

)2

{
∂
∂δ
t (σ∗| {τ + δ})− σ∗

σj

}
. Thus, rearranging (26),

− ∂

∂δ
t (σ∗| {τ + δ}) =

∫ σ∗
σj

1+
(
σ∗
σj

)2
∂E[τ |τ≥Σ]

∂Σ g (σj) dσj

2−
∫ 1

1+
(
σ∗
σj

)2
∂E[τ |τ≥Σ]

∂Σ g (σj) dσj

Note that ∂E[τ |τ≥Σ]
∂Σ < 1 because it is a derivative with respect to a truncated normal

distribution. Given 1

1+
(
σ∗
σj

)2 < 1, we note that 2 −
∫ 1

1+
(
σ∗
σj

)2
∂E[τ |τ≥Σ]

∂Σ g (σj) dσj > 1.

Combining,

− ∂

∂δ
t (σ∗| {τ + δ}) <

∫ σ∗

σj

1 +
(
σ∗

σj

)2 g (σj) dσj.
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Third, note that
σ∗
σj

1+
(
σ∗
σj

)2 ≤ 1
2 for any σ∗ and σj since

0 ≤ (σi − σj)2 ⇒ 2σiσj ≤ σ2
i + σ2

j ⇒
σiσj

σ2
i + σ2

j

=
σ∗

σj

1 +
(
σ∗

σj

)2 ≤
1
2 .

Combining the three steps, we conclude that the Sub–Lemma 3 holds. �

Since the expression (24) implies that the equilibrium threshold must be differentiable with
respect to σ, we do not have to consider functions τ (σ) that is not differentiable. Since (i)
k = 1

2 < 1 and (ii) the space of continuous functions is a complete metric space under sup
metric, we can apply the contraction mapping theorem to claim that the function t (σ) satisfying
(24) exists and is unique.

Step 4. verifying the policymaker’s indifference condition: To show that the policymaker
will be willing to follow the strategy in the symmetric equilibrium (6), we need to show
E [b|n1 = n0] = 0. β (σ) = −β (σ) holds at every σ by the uniqueness of the threshold that
satisfies the indifference condition. By the proof of existence of symmetric equilibrium in A2.2,
E [b|n1 = n0, σ] = 0 for all σ. Thus,

E [b|n1 = n0] =
∫
E [b|n1 = n0, σ] g (σ) dσ = 0.

By combining Steps 1 to 4, the result ∂t(σi)
∂σi

> 0 holds in the unique symmetric equilibrium.
�

A4. Proof of 2.5 Amplification of Small Bias of a Researcher

This sub-Section proves the Proposition 1.3 in Section 2.5.
A3 Proof of Proposition 1.3 The Proposition 1.3 provides an expression for the strategic

multiplier between researchers, and claims that it will be greater than 1. The proof consists of
two steps: first, we derive comparative statics in equilibrium; and second, derive the multiplier
and show that it is greater than 1. Note that the results for βi can be derived analogously.

Step 1. comparative static with researchers’ indifference conditions: as derived in Appendix
[],in a symmetric equilibrium with di = dj = 0, the indifference conditions are given by

βi + E
[
βj|βj ≤ βj, βi = βi

]
= −

(
2 + σ2

σ2
b

)
di (27)

βj + E
[
βi|βi ≤ βi, βj = βj

]
= −

(
2 + σ2

σ2
b

)
dj (28)
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Totally differentiating the indifference conditions with respect to di, we have
 1 V artruncated

V artotal
V artruncated
V artotal

1

 ∂βi/∂di
∂βj/∂di

 = −
 2 + σ2

σ2
b

0



since E[βj |βj≤βj ,βi=βi]
∂βi

= ρV artruncated
σ2 with ρ = σ2

V artotal
, and βi = βj in the symmetric equilibrium.

Rearranging,
 ∂βi/∂di

∂βj/∂di

 = − 1
1−

(
V artruncated
V artotal

)2

 1 −V artruncated
V artotal

−V artruncated
V artotal

1

 2 + σ2

σ2
b

0


Therefore, we have

∂
(
βi − βj

)
∂di

= −
2 + σ2

σ2
b

1− V artruncated
V artotal

(29)

Step 2. deriving and interpreting the strategic multiplier: using the expression (29), we can
derive the expression of the multiplier, and show that it will always be greater than 1.

• expression: in the absence of strategic effects,

∂
(
βi − βj

)
∂di

|σj=σ∗j = ∂βi
∂di
|σj=σ∗j −

∂βj
∂di
|σj=σ∗j = −

(
2 + σ2

σ2
b

)
− 0 = −

(
2 + σ2

σ2
b

)
.

Thus, the multiplier is ζ = 1
1−V artruncated

V artotal

.

• interpretation: by the definition of truncated distribution, V artruncated
V artotal

∈ (0, 1). Thus,
ζ ∈ (1,+∞).

�

A5. Proof of 4.1 A New “Stem-based” Bias Correction Method

This sub-Section contains the proof of Proposition 2 in Section 4.1, concerning the properties
of bias used for the stem-based bias correction method.

A3.1. Proof of Proposition 2.

Proposition 2 claims that the bias squared is increasing in the standard error of the studies
under some conditions, both for the extremum and uniform selection models. We will prove
the result for the extremum selection, and then for the uniform selection. For notational ease,
let us henceforth write σ =

√
σ2

0 + σ2
i .
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Proof of bias under extremum selection. We derive the monotonicity and limit results
from the definition of truncated normal distribution. For notational ease, we the true mean,
b0, to zero.

(i) Monotonicity: let us write

Bias (σi) = −σ
φ
(
βmin
σ

)
∫∞
βmin φ

(
β
σ

)
dβ

= −σ


∫ |βmin|

βmin

φ
(
β
σ

)
φ
(
βmin
σ

)dβ
︸ ︷︷ ︸

=0

+
∫ ∞
|βmin|

φ
(
β
σ

)
φ
(
βmin
σ

)dβ

−1

where the second line considered the case when βmin < 0. By the chain rule, Sign
(
∂|Bias(σ)|

∂σ

)
=

Sign (D), where

D =
∫ ∞
|βmin|

φ
(
β
σ

)
φ
(
βmin
σ

)dβ − σ ∂

∂σ

∫ ∞
|βmin|

φ
(
β
σ

)
φ
(
βmin
σ

)dβ
=
∫ ∞
|βmin|

exp
(
β2

min − β2

σ2

)
− 2β

2 − β2
min

σ2 exp
(
β2

min − β2

σ2

)
dβ

=
∫ ∞
|βmin|

[
1 + 2β

2
min − β2

σ2

]
exp

(
β2

min − β2

σ2

)
dβ

=
∫ ∞
|βmin|

[
1 + 2β

2
min
σ2

]
exp

(
β2

min − β2

σ2

)
dβ +

∫ ∞
|βmin|

−2β
2

σ2 exp
(
β2

min − β2

σ2

)
dβ

= |βmin|

>0,

where the last line followed by the integration by parts26. Thus,

∂Bias2 (σi)
∂σi

= 2Bias (σ) ∂Bias (σ)
∂σ

∂σ

∂σi
> 0.

(ii) Limit: let us consider the two cases in turn while considering the original expression

26Concretely, we can write:

∫ ∞
|βmin|

−2β
2

σ2 exp
(
β2

min − β2

σ2

)
dβ =

∫ ∞
|βmin|

β × ∂

∂β
exp

(
β2

min − β2

σ2

)
dβ

= β × exp
(
β2

min − β2

σ2

)
|∞|βmin| −

∫ ∞
|βmin|

exp
(
β2

min − β2

σ2

)
dβ

= |βmin| −
∫ ∞
|βmin|

exp
(
β2

min − β2

σ2

)
dβ
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Bias (σi) = −σ φ(βmin
σ )

1−Φ(βmin
σ ) : by using the L’Hopital’s rule wherever applicable,

• βmin < 0:

lim
σ→0

Bias (σ) = − lim
σ→0

σ
limσ→0 φ

(
βmin
σ

)
limσ→0

[
1− Φ

(
βmin
σ

)] = −0× 0
1 = 0

• βmin = 0:
lim
σ→0

Bias (σ) = − lim
σ→0

σ
limσ→0 φ (0)

limσ→0 [1− Φ (0)] = −0× φ (0)
1
2

= 0

• βmin ≥ 0:

lim
σ→0

Bias (σ) = −
limσ→0 σφ

(
βmin
σ

)
limσ→0

[
1− Φ

(
βmin
σ

)]
= −

limσ→0
[
φ
(
βmin
σ

)
− βmin

σ2 σφ′
(
βmin
σ

)]
limσ→0

[
βmin
σ2 φ

(
βmin
σ

)]

= −
limσ→0

[
φ
(
βmin
σ

)
+
(
βmin
σ

)2
φ
(
βmin
σ

)]
limσ→0

[
βmin
σ2 φ

(
βmin
σ

)]
= −

lim
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φ
(
βmin
σ

)
φ
(
βmin
σ

)


= βmin,

where the third line followed by the property of normal density that φ′ (x) = −xφ (x).

Thus, the most precise study is unbiased as σi → 0 when σ0 = 0 if and only if βmin ≤ 0. �

Proof of bias under uniform selection. We derive the monotonicity and limit results
from the definition of truncated normal distribution:we can write the bias as

Denoting β = tσi−b0
σ

and β = −tσi−b0
σ

, we can write the bias as

Bias (σ) = σ
η1
[
−φ

(
β
)

+ φ
(
β
)]
− η0

[
φ
(
β
)
− φ

(
β
)]

η1
[
Φ
(
β
)

+ 1− Φ
(
β
)]

+ η0
[
Φ
(
β
)
− Φ

(
β
)]

= −σ2∂ ln {η1 + (η1 − η0) ∆Φ (b0)}
∂b0

,

where ∆Φ (b0) = Φ
(
β
)
− Φ

(
β
)
> 0.

67



(i) Monotonicity: let us write (from the expression above, we can write

Bias (σ) = σ
(η1 − η0)

η1 + (η1 − η0) ∆Φ (b0)K (σi) ,

where K (σi) = φ
(
β
)
− φ

(
β
)

• By an assumption η1 − η0 > 0, we know that (η1−η0)
η1+(η1−η0)∆Φ(b0) is increasing in σi.

• We show that there exists some range [0, σ] such that K (σi) will be increasing in σi:

∂K (σi)
∂σi

= φ′
(
β
) ∂β (σi)

∂σi
− φ′

(
β
) ∂β (σi)

∂σi

By the definitions above,

∂β (σi)
∂σi

=
tσ − (tσi − b0)× 1

2σ
−1 × 2σi

σ2 = t

σ
− (tσi − b0)σi

σ3

∂β (σi)
∂σi

=
−tσ − (−tσi − b0)× 1

2σ
−1 × 2σi

σ2 = − t
σ

+ (tσi + b0)σi
σ3

Substituting,

∂K (σi)
∂σi

= φ′
(
β
) [ t
σ
− (tσi − b0)σi

σ3

]
− φ′

(
β
) [
− t
σ

+ (tσi + b0)σi
σ3

]

= 1
σ

{
t
[
φ′
(
β
)
− φ′

(
β
)]

+ t
σi
σ

[
φ′
(
β
)
β − φ′

(
β
)
β
]}

When σi is small, term
[
φ′
(
β
)
− φ′

(
β
)]

determines the sign of ∂K(σi)
∂σi

. Since β > β,
φ′
(
β
)
> φ′

(
β
)
, and thus, ∂K(σi)

∂σi
> 0. On the other hand, When σi is large, the term,

φ′
(
β
)
β − φ′

(
β
)
β = φ

(
β
)
β

2 − φ
(
β
)
β2 will be important, and can be negative since

φ
(
β
)
> φ

(
β
)
when the thresholds are at the tail of normal distribution.

(ii) Limit: since the cumulative distribution function is continuously differentiable, we can
analyze by distributing the limit:

lim
σi→0

Bias (σi) = − lim
σi→0

σ2 × ∂ ln {η1 + (η1 − η0) limσi→0 ∆Φ (b0)}
∂b0

= −σ2
0 ×

∂ ln
{
η1 + (η1 − η0)

[
Φ
(
−b0
σ

)
− Φ

(
−b0
σ

)]}
∂b0

= 0

Thus, limσi→0Bias (σi) = 0 for any parameter values. �

�
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Appendix B. Supplementary Numerical Discussions

Appendix A has provided various analytical proofs. Due to limited analytical tractability,
however, this paper has extensively employed numerical approach. Appendix B provides details
of numerical simulations and presents some additional results: B1 will illustrate equilibrium
thresholds under the general environments, and B2 describes details of empirical tests.

B1. Thresholds under General Environments

This Section describes the simulation of thresholds, β (σi) and β (σi), in a more general envi-
ronment and in an equilibrium that is the main focus of the analysis. The environment is more
general since the simulation can consider settings with N ≥ 3, c > 0, σb < ∞, and heteroge-
neous values of σi. While Proposition 2.1 concerning the thresholds under heterogeneous σi, for
analytical tractability, focused on the symmetric equilibrium such that β (σi) = −β (σi), the nu-
merical analysis can explore the properties of the asymmetric equilibrium with β (σi) < −β (σi).

This analysis will show when the analytical results are robust to alternative environments.
B1.1 will first describe the overview of simulation algorithm; B1.2 shows some additional results
regarding omission; B1.3 shows that the threshold β (σ) need not be concave when c is high; B1.4
explores the implication of N , the number of researchers, on the thresholds; B1.5 summarizes
the magnitude of omission, bias, and welfare consequences of various reporting rules.

B1.1 Simulation Step Overview

We compute the equilibrium thresholds, β (σi) , β (σi), that are symmetric between N re-
searchers, given primitive environments’ parameters such as threshold policy effectiveness, c,
and number of researchers, N , as well as underlying variance, σ2

b , and between-study heterogene-
ity, σ2

0. By discretizing the support of standard errors to {σ1, σ2, ..., σS} with σ1 ≤ σ2 ≤ ... ≤ σS,
the equilibrium thresholds at each standard error, β (σi) , β (σi), is given by a system of 2× S
equations:

β (σi) = σ2
i

Eσ−i
[

1∑N

j=0 σ
−2
j

∣∣∣∣Piv1

]
c− Eσ−i

E
m−i

[
Eβ−i∑ β−i

σ2
−i

∣∣∣∣Piv1

]
∑N
j=0 σ

−2
j

∣∣∣∣Piv1


 (30)

β (σi) = σ2
i

Eσ−i
[

1∑N

j=0 σ
−2
j

∣∣∣∣Piv0

]
c− Eσ−i

E
m−i

[
Eβ−i∑ β−i

σ2
−i

∣∣∣∣Piv0

]
∑N
j=0 σ

−2
j

∣∣∣∣Piv0


 , (31)
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where the Pivm form ∈ {0, 1} denotes the other’s message realization such that the researchers’
switch between ∅ and m is pivotal. Concretely, denoting the number of others’ positive results
and negative results as n′1, n′0 respectively, Piv1 is n′1 = n′0 and Piv0 is n′1 = n′0 + 1 in the
asymmetric equilibrium with supermajoritarian rule (2).

The algorithm solves the above system of 2× S equations with 2× S unknowns iteratively
by inner and outer loops. The inner loop computes Em−i

[
·
∣∣∣∣Pivm] for every combination of

m−i in Pivm; the outer loop computes Eσ−i [·] for every σ−i ∈ {σ1, σ2, ..., σS}N . Since there
is no analytical solution of mean of correlated multi-variate normal distribution, Eβ−i [·], the
algorithm used numerical integration with rejection sampling. The iterative adjustment takes
the estimated thresholds underN−1researchers as an input conjecture, βconjecture, and computes
the updated thresholds, βnew, by βnew = ∆βsol + (1−∆) βconjecture, where ∆ is a step of
adjustment, looping over every σi. The initial values for N = 2 are some linear functions
β (σ) = Aσ + c, β (σ) = −Aσ + c; but the thresholds are not sensitive to the choice of A > 0.
The algorithm stops when the updates, |βnew − βconjecture|, are smaller than some tolerance
level.

For a sufficiently large S that permits fine grid for Supp (σ), the computational time increases
exponentially asN increases. This is because dimensions of the inputs into computation increase
exponentially: the weights on probabilities given message realizations take SN dimensions and

the message realizations take ∑bN/2ck=0

 N

k

 × (N − 1) dimensions to compute. Moreover, we

have set ∆ = 0.5 and tolerance level to be 0.05. For the simulation with heterogeneous priors,
we chose {σ1, σ2, ..., σS} = {0.1, 0.2, ..., 1} so that S = 10. Due to limitations of feasibility, the
simulation with heterogeneous thresholds compute only up to N = 4.

To approximate some real-world settings with reasonable algorithms, we choose a distri-
bution of G (σ) close to the distribution of σ in the labor union data set (Doucouliagos et
al. 2017). Since the observed distribution of σ in the data set is the distribution with
publication selection, we impute the underlying distribution with the positive significant re-
sults from the example of labor union (G (σ) = 1

C

∑
i

(
1− Φ

(
1.96σi−b̂0√

σ2
i−σ̂

2
0

))−1
1 (σ ≥ σi) , where

C = ∑
i

(
1− Φ

(
1.96σi−b̂0√

σ2
i−σ̂

2
0

))−1
is the normalizing constant, and

{
b̂0, σ̂

2
0

}
are estimated with

the stem-based method. The largest standard error is normalized to be 1. The figure shows
that χ2 distribution with 2 degrees of freedom with support [0, 4] approximates the empirical
distribution of variance, σ2, reasonably.
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Figure B1: Approximation of empirical distribution
Notes: Figure B1 plots the imputed empirical distribution of variance, σ2 against χ2 distribution with
2 degrees of freedom with support of [0, 4] normalized to support of [0, 1].

The simulation henceforth will incorporate between-study heterogeneity, σ2
0, on equilibrium

thresholds. When there is study-specific effects on underlying benefits, bi = b + ζi with ζi ∼
N (0, σ2

0), the estimates are generated by βi = bi + εi = b + ζi + εi. Thus, given the estimated
standard error σi due to the sampling variance, the true variance, σ2∗

i , satisfies σ2∗
i = σ2

i + σ2
0.

As the formula shows, we can consider these heterogeneities by shifting the values of inverse
variance weights used in Bayesian updating.

B1.2 Numerical results on omission

The following two figures show that P (a = 1) < 1
2 under supermajoritarian rule, and that the

welfare attained under supermajoritarian rule is higher than those under submajoritarian rule.
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Figure B2: Likelihood of policy implementation

Notes: Figure B2 plots the probability of policy implementation P (a = 1) for N = 2, c = 0, σb = 1
3 ,

and various values of standard error of signal, σ, in the equilibriun characterized by Proposition 1.
It shows that, relative to the policy implementation probability under communication of estimates,
P (a = 1) = 1

2 , policy is slightly less likely to be implemented. This is primarily due to the conservative
rule of supermajoritarian voting rule a∗ = 1⇔ n1 > n0, largely mitigated by the thresholds β, β that
lead to the upward bias of the estimates that underlie reported studies.

Figure B3: Optimality of supermajoritarian voting rule

Notes: Figure B3 plots the welfare (measured as a fraction of benchmark case with communication
of estimates) under a supermajoritarian rule (a∗ = 1 ⇔ n1 > n0) and a submajoritarian rule (a∗ =

72



1⇔ n1 ≥ n0) for N = 2, σb = σ = 1, and various values of c ≥ 0. It shows that the supermajoritarian
rule attains higher welfare than the submajoritarian rule for c > 0, and identical welfare for c = 0.
The supermajoritarian rule is better than the submajoritarian rule especially when c is high and thus
there is large relative welfare loss.

B1.3 Shape of β (σ) under high c > 0

Simulations show that, while Proposition 2.1 suggested that β (σi) will be concave in the sym-
metric equilibrium with c = 0, it can be convex in the asymmetric equilibrium with large c > 0.
Figure B2 illustrates this in a setting with N = 2, c = 2

3 , σb = 1
3 , σ0 = 0 and heterogeneous

G (σ). This result suggests that the pattern of omission and inflation may be very different
between positive and negative results.

This result is driven by the prior belief of effectiveness, Eb, that is more conservative than
the target effectiveness, c. By Bayes’ rule, when the estimates can be conveyed, it is optimal to
implement the policy if and only if the average signal β̂ satisfies β̂ ≥ c−Eb

σ2
b

σ2
i

N
: that is, whenever

the prior is conservative so that c > Eb, the required level of average signal β̂ is convex in
σ2
i . When c is large, this force can dominate the effect of less information as characterized in

Proposition 2.1, turning the threshold β (σi) to be convex rather than concave.
This result clarifies that the omission is not driven by the uninformedness of researchers per

se, but by the lack of strong belief in whether it is optimal to implement the policy. In the
most stark example, the omission probability approaches zero as the researchers’ signals become
imprecise (σi → ∞). This observation clarifies the discussion of informedness and abstention
in voting theories (Feddersen and Pesendorfer 1999): the lack of information needs not arise
from lack of signal, but can also arise from lack of strong prior belief.

B1.4 Implications of Many Researchers (High N)

Due to the analytical tractability, the propositions did not examine the implications of many
researchers on the equilibria. This sub-Section shows that the supermajoritarian rule holds
even wigh high N , and analyzes how the omission and bias change given high N .

First, the policymaker’s supermajoritarian rule (a∗ = 1⇔ n1 > n0) holds in a communica-
tion equilibrium even for N = 3, ..., 10 (Figure B5). This suggests that even if the policymaker
does not know the number of underlying studies, they can still compare the number of reported
positive vs negative results to make the decisions they would have taken with knowledge of
N . While this result may rely on risk neutrality as will be discussed in sensitivity analysis, it
suggests that the assumption that the policymaker knows N needs not be critical.27
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Figure B4: Example of convex β (σ)
Notes: Figure B4 plots the thresholds β (σ) and β (σ) for N = 2, c = 2

3 , σb = 1
3 , σ0 = 0 and

heterogeneous G (σ).

Second, the researchers’ omission probability gradually increases as N increases. The Figure
B5 depicts the example equilibrium thresholds for N = 1, ..., 4 keeping all other environment
constant when (A) σb is high and σ0 is high, (B) σb is low and σ0 is low, and (C) σb is high and
σ0 is low. In all cases, the probability of omission conditional on study precision, P (mi = ∅|σi),
increases with N for any values of σi. This is because, as N increases, the total information
owned by other researchers rises and leaving the decisions to others’ papers becomes more
desirable.28

Nevertheless, the bias on the coefficients that underlie reported studies may increase or
decrease as increase in N may shift the thresholds in either directions.29 This is because
there are three channels through which N alters the thresholds. As Figure B6(A) shows,
the effect of changing pivotality condition shifts β upwards and β in ambiguous directions,
potentially mitigating the bias as N increases.30 As Figure B6(B) shows, the decreasing effect

27The set-up needs to maintain the assumption that the researchers know how many other researchers exist
on the same subject. First, this appears to be closer to actual scientific practice than the assumption that the
readers also know number of researchers. Second, the Figure B4 demonstrates that the thresholds do not change
qualitatively with N and the changes are not quantitatively large: thus, even if there were uncertainty in N
from researchers’ perspective, they may still be able to choose approximately optimal thresholds.

28This result is consistent with the literature on voting theory that shows that the abstention probability
increases as the number of voters increases.

29This inquiry relates to the literature on media that explores the impact of market competition on media
bias, and finds that the higher number of competing senders may increase the bias arising from taste and
decrease bias arising from reputation motives (Gentzkow et al., 2016).

30Consider, for example, the pivotality conditions for N = 2 and N = 3. β (N = 2) is lower than β (N = 3)
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Figure B5: consistency of policymakers’ posterior beliefs
Notes: Figure B5 plots the distribution of posterior belief Eb (n) in the equilibrium of supermajoritarian
policy rule (a∗ = 1⇔ n1 ≥ n0) with σb = σ = 0 and c = 0 for N = 2, ..., 10. It shows that, when there
are marginally more positive results than negative results (n1 = n0 + 1), then the posterior belief is
positive; conversely, when there are equal numbers of positive and negative results (n1 = n0), then
the posterior belief is negative. Since the posterior beliefs are monotone in the number of positive and
negative results, this confirms that the conjectured supermajoritarian policy rule (a∗ = 1⇔ n1 ≥ n0)
is consistent with the belief and utility maximization of the policymaker. The Figure B3 is suggestive
that this remains to be an equilibrium for larger N as the posterior belief steadily approaches posterior
Eb (n) = 0. This result of consistency of supermajoritarian policy rule holds for various values of c.
Here, the analysis restricts to the case of constant σ due to the computational feasibility.

of conservative prior shifts both β and β downwards. When there are more researchers, each
researcher needs less extreme signals to overturn the default decision. As Figure B6(C) suggests,
there is also the effect of equilibrium thresholds adjustment that shifts both β and β in directions
that offset the effect of the first two effects. For example, β may shift downwards due to upward
shift in β especially among noisy studies, increasing the bias. These considerations jointly
determine the conditions under which the increase in number of researchers, N , may increase
or decrease the bias.

because it satisfies the indifference condition (30) when one researcher receives high signal as opposed to when
one receives high signal and another receives intermediate signal. β (N = 2) may be lower or higher than
β (N = 3) because it satisfies the indifference condition (31) when only one another researcher receives inter-
mediate negative signal as opposed to two researchers receiving intermediate negative signals or one receiving
positive and another receiving negative signals.
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Figure B6. β (σ) , β (σ) thresholds under various σb and σ0

Notes: Figure B6 plots the β (σ) , β (σ) thresholds under c = 1
3 and varying standard deviations N , σb

and σ0. In each figure, the convex solid lines are β (σ) and concave solid lines are β (σ). There is only
one threshold for N = 1 since there is no benefit of omission when there is only one researcher.
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Table B1: Bias, omission, and welfare
(1) (2) (3) (4) (5)

Baseline High σb High σ0 High c High N
(A) Bias: i. overall 0.34 0.20 0.26 -0.56 0.31

ii. σi = 0.1 0.00 0.00 0.01 -0.03 0.00
iii. σi = 1 1.01 0.96 0.60 -1.27 1.07

(B) Omission probability: i. overall 0.43 0.32 0.44 0.42 0.48
ii. σi = 0.1 0.03 0.01 0.30 0.03 0.03
iii. σi = 1 0.70 0.67 0.60 0.77 0.80

(C) Welfare: i. unrestricted 0.97 0.99 0.96 0.88 0.96
ii. restricted 0.90 0.97 0.89 0.67 0.91

Specification changes from baseline - σb = 1 σ0 = 1
2 c = 1

3 N = 3
Notes: Table B1 summarizes (A) bias E [βi|mi 6= ∅, σi], (B) omission probability P (mi = ∅|σi), and
(C) ex-ante welfare E [a∗ (m∗ (βi, σi)) [Eb (βi, σi)− c]] under various settings. In (A) and (B), i. overall
values are expected values unconditional on σi realization; ii focuses on the most precise studies
(σi = 0.1); and iii focuses on the least precise studies (σi = 1). In (C), welfare is computed as a
fraction of full information welfare. i. unrestricted refers to the environment without linear t-statistics
rule whereas ii. restricted refers to the hypothetical setting in which no omission is allowed and the
threshold is restricted to follow β (σ) = tσ. Here, t is computed to be the optimal value. Since
there is no omission by the exogenous restriction, bias and omission probability are both zero. The
baseline specification applies σb = 1

3 , σ0 = 0, c = 0, and N = 2. Columns (2)-(4) modifies this
environment for each specification as presented. The simulation is based on heterogeneous G (σ) with
χ2 distribution of 4 degrees of freedom with support [0, 10] normalized as [0, 1], which was consistent
with the Doucouliagos and Laroche 2003 data set.

B1.5 Quantifying bias, omission, and welfare

The discussions of bias, omission, and welfare in Section 2.4.2 were based on a simulation
under various parameters. This Appendix describes the simulation more fully. The results are
presented in Table B1.

In many specifications, Panel (A) suggests sizable upward bias in unweighted31 average
estimates. Consistent with Figures 3 and 4, these biases are driven by noisy studies. In
contrast, most precise studies have very small biases. Note, for large c > 0, there can be
downward bias because the studies whose coefficients near c are omitted.32 Quantitatively,
despite its symmetric set-up with c = 0, among the lease precise studies, the model can explain
the bias as large as one standard deviation of the underlying distribution of benefits.

Panel (B) shows that the average omission rate can be as high as roughly 30 to 50 percents.
While most precise studies have only 1 to 3 percent omission rate in the absence of study-
specific effects (σ0 = 0), most noisy studies may be omitted roughly 70 to 80 percents. On the

31Note that this is different from the meta-analysis estimates with Bayes’ rule, which puts higher weight on
the more precise studies. Many meta-analysis studies often discuss these unweighted estimates.

32This prediction of downward bias also occurs with the Hedges selection model discussed in Section 4.1.
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other hand, belief regarding high σ0 can raise the omission rate even among the most precise
studies to around 30 percent. Combined with the result in (A), the baseline case demonstrates
that, among the 30 percent of reported noisy studies (σi = 1), 28 percents are positive results
and only 2 percents are negative results. Conversely, most precise studies have mostly negative
conclusions roughly to the extent that the full reporting suggests. This is consistent with
researchers’ expectation that, when their set-up is noisy, their studies are publishable only
when they are significant and “right-signed.”

Finally, the model can quantify welfare gains from permitting publication bias relative to
imposing restriction that every binary conclusion of null hypothesis testing needs to be reported.
As discussed in the introduction, coarse communication can be largely welfare-reducing, and
even with sophisticated readers who compute the posterior correctly and flexible adjustment
of t-statistics, there is roughly 3 to 30 percent welfare loss relative to the full information
benchmark. The gain from allowing for some omission and inflation is to roughly halve these
welfare losses to 1 to 12 percents. This analysis demonstrates that the welfare consequences
can be quantitatively important.

B2. Estimation and Testing Steps

Section 3.2.2 has described the overview of the estimation and testing steps of the semi-
parametric Kolmogorov-Smirnov (KS)-type test. This Appendix Section adds additional de-
scription and discussion of computing the p-values in this test, and provides some results sup-
plementary to Section 3.3.2.

The computation of KS statistics requires estimating the two theoretical distributions:
G∅ (σ), the distribution of standard errors of null results, and H0 (β), the distribution of coef-
ficients of negative results. The estimates use the stem-based estimates of

{
b̂0, σ̂0

}
and apply

G̃∅
(
σ|b̂0, σ̂0

)
= 1
C

∑
i||βi|≥tσi

Φ
(
tσi−b̂0
σ

)
− Φ

(
−tσi−b̂0

σ

)
[
1− Φ

(
tσi−b̂0
σ

)]
1 (βi ≥ tσi) + Φ

(
tσi−b̂0
σ

)
1 (βi < tσi)

1 (σ ≥ σi)

(32)

H̃0
(
β|b̂0, σ̂0

)
= 1
n0

∑
i|βi≥tσi

min


Φ
(
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σ

)
Φ
(
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) , 1
 , (33)

where C = ∑
i||βi|≥tσi

Φ
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0

)
−Φ
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and σ =
√
σ2
i + σ2

0.

We can understand these formula by considering how many null or negative studies in some
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intervals of parameters there must have been in order to have the number of observed positive
or significant studies. For example, let us consider some interval with length ∆ > 0 that has
n1 positive studies. If the mean and variance of underlying normal distribution is given by

{b0, σ0}, then in expectation, there must have been
Φ
(
tσi−b0
σ

)
−Φ
(
−tσi−b0

σ

)
1−Φ

(
tσi−b0
σ

) × n1 null results. The

formulas (32) and (33) are constructed with this logic.
p-values: we wish to compute the probability of observing the discrepancy between ob-

served (Ĝ∅ (σ) and Ĥ0 (β)) and predicted distributions, defined by the KS-type statistics,
DG = sup

{
Ĝ∅ (σ)− G̃∅

(
σ|b̂0, σ̂0

)}
and DH = sup

{
Ĥ0 (β)− H̃0

(
β|b̂0, σ̂0

)}
. We cannot ap-

ply the standard KS tests since they compare either one theoretical and one empirical, or two
empirical distributions; here, the predicted distribution contains uncertainties not only in stud-
ies used for estimation but also in the estimates of parameters

{
b̂0, σ̂0

}
; ignoring the uncertainty

in two-step estimation (Newey and McFadden 1994) may underestimate the p-values.
The p-value of this test equals the average p-values given each value of {b0, σ0} simulated

given errors in their estimates. This is because the overall p-value is defined as the probability
that the maximum difference between the empirical and predicted distributions is at least as
large as the observed difference. For each draw of {b0, σ0} and resultant predicted distribu-
tion, the algorithm applies the inverse cumulative distribution function method to generate a
simulated distribution with sample size n0. Then, the p-value given each value of {b0, σ0} is
the fraction of simulated estimates such that their KS statistic is at least as large as DG and
DH respectively. The test computes one-sided p-values, and repeats the simulation until the
estimated p-value converges.

The bootstrap estimates are appropriate since the parameters {b0, σ0} are not the extremum
statistics of the distribution. Since the stem-based method treats as a nuissance parameter, the
estimation employs the bootstrap method to obtain the distribution of

{
b̂0, σ̂0

}
estimates. Since

each study has equal level of information on the distribution of study-specific effeicts, bi, each
study has equal weight in the bootstrap method. The stem-based method suggests

{
b̂0, σ̂0

}
=

{−0.02, 0.05} in this data set. In addition, the KS-type statistics areDG = Ĝ∅ (.08)−G̃∅ (.08) =
0.47 and DH = Ĥ0 (−.09)− H̃0 (−.09) = 0.26.
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