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Abstract

This study examines the impact of a technological change on employment and

wages, focusing on the adoption of power looms in the silk-weaving industry.

Exploiting plant-level panel data from 20th century Japan, we demonstrate

that at the plant level, the power loom adaption increased the employment

and wages of adult male workers, who likely conducted engineering tasks,

and moderately increased wages of female adults, who were simultaneously

displaced and reinstated to more non-routine tasks. The wage hike of adult

workers induced the exit of less efficient plants and decreased female adult

employment by 28 percent at the area level.

1 Introduction

The rapid advancement of automation technologies, such as artificial intelligence

(AI) and robotics, has surged the debate on how new technologies affect labor de-

mand. Despite the fact that automation has penetrated the entire process of mod-

ern technological advance since the Industrial Revolution (Acemoglu and Restrepo,

2018a, 2019; Johnson and Acemoglu, 2023), most detailed evidences so far has come

from the studies focusing on recent decades where abundant micro-level data is avail-

able. On the other hand, recent empirical studies to estimate the impact of new

technology on employment and wages often face difficulty in finding drastic techno-

logical change because technological progress becomes more costly and continuous

(Gordon, 2017; Bloom et al., 2020). Focusing on early stage of economic develop-

ment overcomes the difficulty due to the abundance of episodes of discontinuous

technological change.

Factory automation led by electrification was an epoch among the past techno-

logical changes. Goldin and Katz (1998) argue that electrification was the origin

of technology-skill complementarity because it was along with an increased demand

for skilled workers (e.g. engineers who maintain the machines) relative to unskilled
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workers. Despite the importance of factory electrification as a historical event, em-

pirical evidence of its impact on labor demand is coarse due to the lack of granular

data. Goldin and Katz (1998) found a positive correlation between the capital-labor

ratio in 1909 (and 1919) and the fraction of high-school graduate workers in 1940

using the industry-level data. The data limitation did not allow them to correlate

the electrification and the contemporaneous change in skill composition. Recently

Atack et al. (2023) overcame the limitation by exploiting data from the State of

Massachusetts to construct industry-level panel data of the wage distribution and

the fraction of electrification in 1895 and 1920. They showed that electrification

compressed the lower half of the wage distribution and interpreted that electri-

fication substituted machines for unskilled labor. However, this evidence is not

definitive of the effect of electrification on skill demand because the data lack the

number of employment and wages by workers’ characteristics. Moreover, the recent

theoretical development of the task-based framework has shown that instead of a

simplified dichotomy of technological change being skill-biased or unskill-biased, it

is more about what types of tasks and workers are directly replaced by machines

and about the net effect of displacement, productivity improvement, and new task

creation induced by automation (Acemoglu and Restrepo, 2018b, 2019). Detailed

micro-data are necessary to discern the existence and importance of these entan-

gled effects. Furthermore, more recent empirical literature on automation suggests

that industry-level analysis often masks the direct effect of technological adoption

at firm level since there are spillover effects through market competitions and thus

reallocation of labor from non-adopting firms to adopting firms within an industry

or a local labor market (Aghion et al., 2022).

To overcome the limitation of extant studies, this study examines the impact

of factory electrification on labor demand using plant-level panel data of the silk-

weaving industry from the early 20th century in Fukui Prefecture of Japan. Fukui

Prefecture is one of Japan’s major centers of silk fabric industry that experienced

a transition from hand looms to power looms in the early 1900s. Existing studies

demonstrate that the adoption of the power looms replaced old tasks with new tasks

and remarkably increased labor productivity by 2.6-2.7 fold (Sanbe, 1961; Okazaki,

2021); With handlooms, a worker operates only one loom with her hands and legs,

whereas with power looms, a worker can operate multiple looms (Uchida, 1960;

Sanbe, 1961; Tsunoyama, 1983; Hunter, 2003). We study how this drastic transition

of production technology affected labor demand.

Our data set is plant-level panel data of about 100 plants from 1904 to 1914 that

record the number of employees and average daily wages by gender× adult/childhood,

along with the plant’s power source. We exploit the staggered adoption of power

loom to estimate the dynamic effects based on the event study design.

The plant-level analysis indicates that, male adult workers, allegedly involved
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in new engineering tasks, doubled after the adoption of power loom compared with

the non-adopting plants in the same area (village and town). In contrast, female

adult workers, the main workforce in weaving plants whose previous tasks of oper-

ating hand-looms were completely replaced under new technology, had insignificant

changes along with power adoption, and the same goes to the child workers who have

insufficient capacity adapting to new production mode compared to adults. Further-

more, power loom adoption increases adult males’ average wage by 8% and adult

females’ by 10%, without changing the children’s. Our results demonstrate that fac-

tory electrification changed the structure of labor demand as claimed by Goldin and

Katz (1998) and Atack et al. (2023) with much granular data and credible identifica-

tion strategy. More importantly, our results demonstrate that the diverged demand

changes across different worker types are consistent with the integrated impact of

displacement effects, productivity effects, and reinstatement effects as predicted by

the recent task-based theories.

The impact of automation on plant-level employment and wage obtained from

event study analysis does not necessarily aggregate into market-level results because

adoption could potentially generate spillover effects under market competitions in

the local labor market (Acemoglu et al., 2022; Aghion et al., 2022). The power-loom

adoption by a firm can induce other competitors in the area to raise wage and reduce

employment through local labor market competition. To identify the aggregate

impact, we examine market-level response by switching the unit of analysis from

plant to area. The analysis results show that the area-level automation reduced adult

female employment by 28% without affecting the adult male and child employment.

It increased the wages of adult males and females by about 25% and 11% respectively.

We also find that area-level electrification reduced the number of plants in an area

and induced the concentration of employment to fewer plants.

We set up a theoretical model that combines task-based framework and imper-

fectly competitive labor market with perfectly competitive product and machine

market. The model consistently explains our plant-level and area-level empirical

results. Among male adults, the absence of an employment effect at the area level

as opposed to the plant level, as well as more than doubled wage increases at the

area level compared to the plant level, suggests the presence of significant spillover

effects. When a firm adopts the power looms, the demand increase for male adult

prompts competitors to reduce employment while bidding up wages. This spillover

to the competitors amplifies the plant-level employment effect and attenuates the

plant-level wage effect. On the other hand, for adult females, the power adoption

moderately increases wages at both plant- and area- level reflecting productivity

enhancement. This wage increase induces the exit of the less efficient plants under

the pressure of more efficient competitors using the new technology. The attrition of

less efficient plants attenuates the firm-level estimate of the impact on employment
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because the employment trends of adopters and surviving non-adopters are similar

after the sample attrition. The exit of factories, at the same time, explains the

substantial decrease in employment at the area level.

In sum, the power loom adoption caused a remarkable labor market transition

and substantially increased wages among survivors through increased productivity

and newly created tasks. However, the effects on employment at firm-level were

largely dampened by the attrition of establishments, same as what have been found

in the recent literature of modern automation (Aghion et al., 2022, 2023).

2 The Silk Weaving Industry in Fukui, Japan

The pivot of the Japanese Industrial Revolution, propelled by the Meiji Restoration

in 1868 and the subsequent adoption of Western technologies and institutions, was

the textile industry that accounted for over 30% of total manufacturing production

until the early 1930s. Within the textile industry, the weaving industry contributed

to around 40% of the production. The Japanese weaving industry marked a period

of profound organizational and technological transformations from the beginning

of the 20th century. As a result of these changes, while only 12.3% of weaving

workers were employed in factories - defined as plants employing 10 or more workers

- in 1905, this figure had more than doubled to 26.7% by 1914 (Okazaki, 2021).

Simultaneously, the industry underwent a remarked technological shift as power

looms became increasingly prevalent.

Our analysis focuses on the silk weaving industry in Fukui Prefecture, primarily

chosen due to its relatively simple product market structure and the availability of

detailed plant-level data. We focus on habutae, a plain silk fabric, predominantly

produced in Fukui Prefecture, a region slightly more industrialized than Japan over-

all in terms of manufacturing share (Kandachi, 1974; Hashino, 2007). Fukui Prefec-

ture was distinguished by its unique manufacturing concentration, making it an ide-

ally clean context for the examination of technological advancement impacts. Over

80% of Fukui’s manufacturing production in the early twentieth century was textiles,

with the majority being silk fabric, particularly habutae, constituting 71%–74% of

the manufacturing output.

The local labor markets of the industry was not perfectly integrated. Kandachi

(1974) investigates in detail the source of workers in Harue Village of Sakai County,

which was one of the centers of the silk fabric industry in Fukui Prefecture, to find

that most workers were from within the village and neighboring villages in the same

county (pp.260-261).

The adoption of power looms in Fukui’s habutae producers was swift and widespread,

especially among those factories. From near zero in 1905, the ratio of power to to-

tal looms rose to over 60% in all producers by 1914 (Figure A1). Factors such as
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the availability of inexpensive domestic power looms and access to electricity have

been argued to facilitate this transition.1 The introduction of power looms led to a

significant surge in labor productivity. As detailed by Okazaki (2021), an analysis

of plant-level data for the habutae industry in Fukui Prefecture indicates a 2.62-fold

increase in labor productivity in power loom factories compared to their nonpowered

counterparts in 1913–1914, after controlling for plant scale and working hours.2

The introduction of power looms was accompanied by the automation of existing

tasks conducted by workers and the creation of new tasks. Weaving, as a process,

involves three basic tasks: shuttle manipulation, warp thread regulation, and the

beating of weft threads (Bythell, 1969). The transition to power looms mechanized

these tasks, freeing workers from the physical constraints of handloom operation

and allowing them to manage multiple machines. The remaining tasks for a worker

involved halting the loom for thread resupply or thread repair (Uchida, 1960; Sanbe,

1961; Tsunoyama, 1983; Hunter, 2003). Another set of newly created tasks are the

installation and maintenance of powered machines. As such, adopting power looms

mechanizes existing tasks and generates new tasks, entailing a reallocation of workers

with distinct skills into different tasks.

3 Data and Summary Statistics

The annual Statistical Yearbook published by Fukui Prefectural Government pro-

vides data on factories with ten or more workers for the period spanning 1904 to

1917. It includes specifics such as plant name, location (city, town, or village), owner

name, foundation year, major product, power source, total horsepower used, daily

working hours, and the number and daily wage of workers along with their gender

and age category. We restrict our analysis to the data before 1915 as a revision in

the age category that year complicates comparability with earlier data. By doing

so, we also avoid the potential distortion caused by the economic boom and inflation

during World War I.

We use all the data on plants for which their products are recorded as silk

fabric or habutae. While the dataset does not explicitly outline details on silk weav-

ing technologies, we can identify those plants with power looms by exploiting the

documented information on power source. That is, we regard those plants using

inanimate power, water, steam, gas, or electricity, as power loom plants, and the

other plants as handloom plants.

1Kandachi (1974) documents that many small- and medium-sized land owners founded habutae
plants and the land rent revenue enabled them to finance investment in power looms.

2This increase aligns with the narratives for this period. Sanbe (1961) notes that while a
foot-operated handloom could yield 1.5 tan of silk fabric daily, a power loom could produce 2
tan. Furthermore, a worker who previously could only operate one foot-operated handloom could
now manage two to three power looms. These two changes resulted in a total increase of labor
productivity by more than 2.67-fold—a figure closely matching Okazaki’s estimation.
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We constructed our plant-level panel data by linking individual plants across

different years based on plant name, owner’s name, plant address, and foundation

year.3 Our data compilation process yielded a dataset of 1,362 distinct plants, con-

stituting 4,470 plant-year observations and spreading across 10 counties (including

Fukui city) and 135 distinct areas (towns or villages). To tailor our dataset for the

event study analysis, we made a series of exclusions, leading to a focused dataset

of 697 plants and 3,231 plant-year observations distributed across 7 counties and 82

areas.4 Given the dynamic nature of the industry at that time, there were numerous

entries and exits over time, and our resulting panel data is thus unbalanced, with

the average observation years of a plant being around 4.6 years.

Table 1 presents the basic statistics derived from our data. A straightforward

comparison of the means between powered and non-powered plants reveals that

powered plants employed around 50 percent more workers and paid 0.22 log points

higher wages. We also scrutinize three distinct worker groups within each plant as

outlined in the original statistics: adult males, adult females, and children. Notably,

female adults comprise most of the workforce in silk weaving plants, especially in

non-powered ones, while adult male and child workers play comparatively marginal

roles. The economic history literature suggests that demographic information can

serve as a proxy for worker skill levels (Atack et al., 2004). Consistently, Table 1 re-

veals that the average daily wages (in sen= 1/100 yen) for adult workers significantly

outstrip those for child workers. Perhaps more intriguingly, we observe a wage re-

versal between adult males and females when comparing powered and non-powered

plants; Male adults earn less than their female counterparts in non-powered plants,

while the opposite is true in powered plants. This inversion hints at the potential

for adult males to possess skills more complementary to the tasks associated with

power loom operation, such as installation and maintenance of power looms.5

3Given the age of the data and the potential for documenting inaccuracies, we adopt a fuzzy-
matching strategy. Specifically, we regard plants in different years as identical if they share the
same plant addresses and at least two of the other three pieces of information—plant name, plant
owner’s name, and foundation year—match.

4Specific exclusions involved 215 observations from plants that exhibited records of power dis-
continuation after initial adoption and 285 observations from plants that initially appeared in
the dataset already using power looms, thereby lacking pre-treatment data. Additionally, 72
observations from three counties (Nanjo, Onyu, Oi), where the habutae industry was relatively
underdeveloped, were removed. Lastly, we omitted plants with only one year of observation and
other plants that did not align with our econometric specifications for the event study analysis in
Section 4. For the area-level analysis discussed in Section 5, we included the plants excluded in
this last step before aggregating the plant-level data to area-level data. Our exclusion criteria here
also, more or less, aids in addressing potential measurement errors from historical sources.

5Given that our wage data is presented in terms of daily wage, which is susceptible to the
influence of variations in working hours, one might be concerned about the simultaneous changes in
working hours that may coincide with the adoption of power looms, potentially affecting our results.
However, this concern appears to be less warranted as Table 1 shows that the average discrepancy
in working hours between non-powered and powered plants is relatively minor—approximately a
quarter of an hour—and both categories exhibit small standard deviations.
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4 Firm-level Analysis

This section examines the impact of the power loom adoption on labor demand and

wage structure at the plant level. Specifically, we scrutinize how adopting the power

loom affects a plant’s employment and wages by worker categories. To this end, we

employ both event study and difference-in-differences (DiD) estimators.

Let Yiat represent our dependent variable for plant i in area a at time t, which

can be various plant-level outcomes of interest such as employment or the natural

logarithm of the average wages. The specification of our event study analysis is as

follows

Yiat =
−2∑

k=−10

γk1 {t−Gi = k}+
5∑

k=0

γk1 {t−Gi = k}+ αi + δat + ϵit. (1)

where Gi is the first year of adopting the motor power by the plant i, αi represents

plant fixed effects, and δat signifies area-by-year fixed effects. Our coefficients of

interest are the lead-lag coefficients γk, which capture the dynamic effects pre- and

post-event. In the estimation, we normalize γ−1 to 0 to serve as the baseline. We

validate the causality of this specification through a standard pre-trend falsification

test—namely, the absence of pre-trends indicated by statistically insignificant lead

coefficients. Given the well-established problem that the estimation of Equation (1)

through a two-way fixed effects regression can inadvertently introduce comparisons

between treatment groups and undesired control groups, we employ the estimation

method proposed by Sun and Abraham (2021) that solves this issue by using never-

treated and last-treated cohorts as comparison groups.6 In complement to the event

study analysis, we also estimate a DiD model using a post-treatment indicator of

plant i’s power adoption at time t. This model provides a more parsimonious speci-

fication with fewer coefficients estimated and thus improved statistical power at the

cost of collapsing all post-event dynamic effects into a singular, permanent effect.

For both the event study and DiD analyses, we cluster our standard errors at the

plant level.

We start by exploring the impact of power loom adoption on employment. Fig-

ure 1 illustrates the event study outcomes for overall employment changes and the

heterogeneous effects across different worker categories. We find a significant rise in

the demand for male adult workers following the power loom introduction, starting

with approximately 1.5 additional workers at event time (k = 0), and extending to

around 3 workers in succeeding post-event periods. Given the average employment

6In the Appendix A.2, we further confirm the robustness of our findings by using alterna-
tive methods proposed in the literature, including those from Callaway and Sant’Anna (2021);
De Chaisemartin and d’Haultfoeuille (2020); Borusyak et al. (2021). Notably, in the specification
that follows Callaway and Sant’Anna (2021), we incorporate the never-adopted plants as con-
trol groups, as in our benchmark specification, and the not-yet-adopted firms. These alternative
estimators generally produce similar results to our baseline findings.
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of less than 2 male adult workers in nonpowered plants, this trend signifies a marked

upsurge in high-skilled labor demand.7 In contrast, for female adult workers, we ob-

serve no statistically significant changes immediately after adoption. Despite the

coefficients showing an upward trajectory in subsequent periods, culminating in an

average addition of 9 female adult workers by period k = 4, we advise caution in in-

terpreting these findings. The dynamic effects observed could be attributable to the

sample variation across different treatment periods, with k = 4 data points likely

representing a few resilient producers who successfully navigated the power loom

transition. Hence, we posit that the power loom implementation did not substan-

tially increase adult female employment compared with non-powered plant in the

same area. For child workers, the analysis yields no statistically significant power

adoption impact across all post-treatment periods. As female labor constitutes

a significant proportion of the workforce in silk-weaving plants, our overall labor

demand findings closely echo the patterns observed for female adult workers—–

initially insignificant alterations succeeded by some positive increase during later

post-treatment periods.

Our DiD analysis, as shown in Table 2, corroborates the event study findings.

The coefficient for male adults shows a significant increase of 2.20 workers, which is

statistically significant, more than doubling the mean of the control groups at 1.77

workers. The coefficient for female adults is only 1.06 whereas the control mean is

16.55 and statistically insignificant. The coefficient for children is -1.26 as to the

control mean of 4.10, but statistically insignificant.

To summarize, our employment analysis suggest a clear surge in the demand

for adult male workers due to the power loom adoption, who possibly worked as

engineers tasked with machine installation and maintenance. Conversely, demand

for adult female workers, whose previous routine tasks were displaced by power

looms but whose productivity more than doubled under the new tasks and new

technology, does not show a noticeable increase or decrease. Likewise, the demand

for low-skilled child workers does not show an increase and might even suggest a

minor decrease.

We next consider the impacts on wages. Figure 2 show the corresponding event

study results. The log wages for adult male and female workers show a similar

increase after the adoption of power looms. The increase is approximately 0.1 log

points and remains stable throughout the post-treatment periods. Crucially for

causality, these labor categories exhibit no discernible pre-trends. In contrast, log

wages for child workers do not exhibit statistically significant changes, if anything,

they show a slight decreasing trend at post one and two periods. Furthermore,

7Inoue (1913) reports that in the habutae industry in Fukui, Ishikawa and Toyama Prefectures,
there were three types of workers, namely workers for preparation, weavers and mechanics, and
that mechanics were ”those who took charge of all the maintenance works of weaving machines
including lubrication and repair, and this type of workers newly emerged after the adoption of
power looms” (pp.84-85, authors’ translation).
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the standard deviations for this group are markedly larger. The overall plant-level

increases by about 0.1 log points and is statistically significant. Our event study for

both employment and wage analysis displays no signs of pre-trends.8

Our DiD findings in Table 2 Panel B corroborate these event study results.

For the log wages of male adults, and female adults, overall workers, the estimated

coefficients are 0.08, 0.10, and 0.09, respectively. In contrast, the coefficient for child

log wage is negative at -0.16 and statistically insignificant. Therefore, power loom

adoption brought about a wage increase of around 10 percent for both high-skilled

male adult workers and medium-skilled female adult workers, but no positive wage

effects are discernible for low-skilled child workers.

A note of caution when interpreting our findings is that the effects we’ve esti-

mated are relative changes compared to the never-treated and last-treated cohorts

within an area. As a result, the increased labor demand for male adult workers and

the wage increases for male and female adult workers may not correspond to similar

aggregate-level outcomes if the power loom adoption generates spillover effects on

non-adopters. Consequently, we conduct area-level analyses in the next section to

investigate the aggregate effects of power loom adoption.

5 Area-level Analysis

To investigate the impact of power loom at the area level, we aggregate plant-

level employment and take an employment-weighted average of plant wages (i.e.

Wat ≡
∑

i∈a sitWit, where sit is the employment share of plant i in area a in year t).

We similarly define an employment-weighted degree of power adoption in an area,

Eat. We then estimate the following area-level model,

Yat = µEat + αa + δt + ϵat, (2)

where Yat represents the area-level aggregate employment or the natural logarithm

of area-level average wages. We control for the area fixed effects, αa, and the year

fixed effects, δt. We cluster our standard errors at the area-level.

8In our robustness tests, we also applied the method proposed by Roth (2022) to examine the
linear violation of the parallel trend assumption. We find that, for all the cases where significant
treatment effects are found, there are more than one post-treatment period in which the originally
estimated confidence intervals deviate from the hypothesized linear trend at 50% pretest power:
all post-treatment periods for male employment, and first two post-treatment periods (t=0 and
t=1) for wages of adult males, adult females, and overall.
Notably, the lack of a pre-trend does not necessarily imply that the technological adoption is

exogenous and devoid of selection. Instead, it suggests that our model specification effectively
accounts for the plant heterogeneity inherent in the data-generating process before the treatment.
Moreover, while the absence of a pre-trend does not entirely eliminate potential concerns about the
effect of power adoption being conflated with other unobserved determinants, it does, in conjunction
with our area-by-year control, limit the set of potential confounders to only those shocks that both
coincide with power adoption and are not shared by other plants in the same area.
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Table 3 Panel A displays the regression results of employment. The results show

that a shift in area power intensity from 0 (no adoption) to 1 (full adoption) does not

affect male adults and children, but reduces female adults and overall employment

by 28% in a statistically significant way. Since the area power intensity increased

from 0 to 60% between 1904 and 1914, the total employment was reduced by 17%.

Table 3 Panel B shows the impact of area electrification on average wages. A

unit increase in power intensity lifts log wage by 0.25 log points for male adults,

0.11 log points for female adults, none for children, and 0.11 log points for overall

workers.

The combination of employment and wage effects shows the reaction of the local

labor market to factory automation. No increase in employment, regardless of the

0.25 log-point increase in wages of male adults, implies that their labor supply is

inelastic. This is probably due to the limited supply of engineers in the area. In

contrast, for female adults, the combination of the decrease in employment and

the increase in wages cannot be explained by a simple shift of labor demand in

the local labor market. Instead, automation substantially changed the task content

of female adults and increased mean wages among survivors through productivity

enhancement and creating new tasks.

At the same time, the increase in the wages in the local labor market may well

induce the exit of low-productivity plants and reduce area-level employment. The

impacts of area power penetration on the number of plants and the employment

concentration reported in Table 3 Panel C bolsters this argument. The transition

of no power to full power reduces the the number of plants in the area by about

1.95 plants, where the average number of plants in a non-electrified area is 4.45.

This reduction of the number of plants entailed the concentration of employment.

A full electrification increases the Herfindahl-Hirschman Index (HHI) by about 20%.

Thus, power-loom adoption reduced aggregate employment in an area.

We next characterize the selection of the plants induced by the penetration of

the power loom. For the purpose, we estimate the following equation:

Exitit+1 = β1∆Eat+1 + β21(W < Med)at + β3
¨Eat+1 · ¨1(W < Medat) + uit, (3)

where Exitit+1 indicates the disappearance of plant between t and t + 1, ∆Eat+1

is the change in the power penetration between t and t + 1, 1(Wage < Med)at is

the indicator for the plants whose wage is below the median in are a in t, which

is a proxy for the less efficient plant. The interaction term is defined using the

deviation from the sample mean denoted by Ẍ. The results reported in the first

column of Panel D shows that the penetration of power loom induces the exit of

plants and the lower wage plants are more likely to exit. The impact of power loom

adoption on exit is 2.63 times larger for low-wage plants than for high-wage plants.

To address the possible reverse causality that plant exit induces the area-level power
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loom penetration, we try an alternative specification that uses the lagged variable of

∆Eat as an explanatory variable. The results reported in the second column indicate

that the results are robust in this alternative specification. Overall, our results show

that the penetration of new technology accelerates the exit of less efficient plants.

6 Theoretical Explanations on the Firm-level and

Area-level Results

To facilitate the interpretation of our estimation results, we build a theoretical model

in Appendix B. that integrates the task-based framework developed by Acemoglu

and Restrepo (2018a,b) with the oligopsony framework proposed by Berger et al.

(2022). Our model assumes local labor markets are not perfectly competitive, but

product and machine markets are perfectly competitive. These assumptions are real-

istic given high commuting/immigration costs and integrated product and machine

markets. The model comprehensively explains plant-level and area-level empirical

results outlined as follows:

(i) The observed stronger labor demand for male adults, relative to female adults

and children at the firm level, is consistent with the model’s prediction of a nega-

tive displacement effect (see Equation (B12)). New automation technologies replace

tasks typically performed by the low skilled female and children, while simultane-

ously generating a positive productivity effect that benefits male adults and the

remaining female adults.

(ii) The muted employment response among adult females coupled with a rise in

their wages at the plant-level can be attributed to the model’s postulation of inelastic

intra-market labor supply for this group (small ηL in Equation (B13)). In contrast,

the significant employment growth and moderate wage escalation for adult males at

the plant-level are likely to be a joint result of their more elastic intra-market labor

supply and the spillover effects described next.

(iii) Assuming greater intra-market labor supply elasticity compared to inter-

market elasticity, the model predicts that increased labor demand from an adopting

plant will trigger both a decline in competitors’ employment and an increase in their

wages (ηH − ϕH > 0 in Equation (B14)). This result thus explains why we observe

a stronger employment rise relative to wage increase for adult males at the plant-

level and accounts for why the employment effect becomes more subdued and wage

increase is larger at the area-level.

(iv) At the area-level, the model can also explain the negative employment im-

pacts, particularly for female adults, as a consequence of the aforementioned spillover

effects. The wage hike due to the spillover effect leads to the exit of the less efficient

firms and yields a more concentrated market structure (see Equation (B15) and the

description).
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The consistency between the model’s predictions and the empirical findings

demonstrates that the local labor market of our study can be effectively charac-

terized by the task-based framework’s representation of technological evolution and

the oligopsony model’s depiction of labor market dynamics.

7 Conclusion

This study examined the impact of automation of silk-weaving plants brought by

electrification on employment and wages by demographic groups using plant-level

panel data from early 20th-century of Japan. The plant- and area-level evidence

picture a remarkable dynamism brought to the local labor market by automation.

The technological change was skill-biased, as shown by the substantial increase in

employment and wages for adult male workers who were capable in engineering

jobs. The automation technology was also displacing and destructive at least in

the short-run—the area-level employment for adult female workers decreased by 28

percent despite their productivity being doubled. This negative aggregate effect

mainly stemmed from the increased local wages induced by the fast diffusion of

new technologies and the exit of less efficient plants. Perhaps interestingly, our

empirical findings about the relatively rudimentary technologies during the period

of factory electrification largely resonate with evidence newly discovered by the

emerging literature on more recent automation technologies (Aghion et al., 2022).

This indicates that there may have been surprisingly few changes in the impact of

technological change on the labor market over the past century and that historical

episodes could still be useful in shedding light on the future literature.
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Figure 1: The Plant-Level Impacts of Power Adoption on Employment
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(a) Male Adult
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(b) Female Adult
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(c) Child
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(d) Overall

Note: This figure reports the results of plant-level event studies on employment across dif-
ferent worker categories and overall. In particular, the dot plots are the estimated γk in
Equation (1), i.e. the coefficients for the lead and lag event-time dummies, and the error
bar indicates the 95% confidence intervals based on the standard errors clustered at the
plant level. Both plant fixed effects and area-by-year fixed effects are controlled. The esti-
mation follows the method proposed by Sun and Abraham (2021) and uses never-treated
and last-treated cohorts as control groups.

16



Figure 2: The Plant-Level Impacts of Power Adoption on ln(Wage)
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(d) Overall

Note: This figure reports the results of plant-level event studies on employment across dif-
ferent worker categories and overall. In particular, the dot plots are the estimated γk in
Equation (1), i.e. the coefficients for the lead and lag event-time dummies, and the error
bar indicates the 95% confidence intervals based on the standard errors clustered at the
plant level. Both plant fixed effects and area-by-year fixed effects are controlled. The esti-
mation follows the method proposed by Sun and Abraham (2021) and uses never-treated
and last-treated cohorts as control groups.
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Table 1: Summary Statistics
NonPowered Plants

(Mean)
Powered Plants

(Mean)
Powered

- NonPowered
Total Worker Per Plant 22.42 34.14 11.71

[17.69] [31.92] (1.01)
- Male Adult Worker 1.77 4.69 2.93

[2.55] [5.77] (0.16)
- Female Adult Worker 16.55 26.91 10.36

[13.56] [25.38] (0.78)
- Child Worker 4.10 2.53 -1.57

[6.41] [5.35] (0.31)
Work Hour Per Day 11.46 11.68 0.22

[1.35] [1.17] (0.07)
Average Daily Wage Per Plant (Sen) 16.87 23.60 6.73

[4.14] [4.20] (0.20)
- Male Adult Worker 14.31 26.51 12.20

[11.47] [11.17] (0.56)
- Female Adult Worker 17.60 23.71 6.11

[4.03] [4.22] (0.20)
- Child Worker 1.85 0.91 -0.94

[2.14] [1.34] (0.10)
Observations 2,743 488 3,231

Note: Means are reported. Standard deviations are reported in square brackets;
Standard errors are reported in parentheses

Table 2: The Plant-Level Effect of Power Introduction
on Employment and Wages

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on employment
Power 2.202 1.059 -1.264 1.997

(0.697) (1.954) (0.757) (2.365)
Control Means 1.77 16.55 4.10 22.42
N 3,231 3,231 3,231 3,231
Panel B: Effect on Ln(Wages)
Power 0.084 0.096 -0.163 0.092

(0.021) (0.017) (0.123) (0.018)
Control Means 3.15 2.94 0.85 2.89
N 2,001 3,220 1,882 3,231

Notes: This table reports the regression coefficients of
plant-level employment (Panel A) or the natural logarithm
of average wages (Panel B) on the indicator variable for
adopting power. The unit of observation is plant. Cluster-
ing robust standard errors against the plant-level correla-
tions are reported in parentheses. All specifications include
firm and area × year fixed effects.
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Table 3: The Area-Level Effect of Power Introduction on Employment
and Wages

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on Employment
Area Power Intensity -1.173 -27.921 -1.650 -30.744

(1.975) (7.103) (3.856) (8.640)
Control Means 7.70 75.91 19.19 102.81
N 849 849 849 849
Panel B: Effect on ln(Wage)
Area Power Intensity 0.251 0.109 0.037 0.113

(0.070) (0.031) (0.162) (0.035)
N 679 849 605 849
Panel C: Effect on Market Structure

# of Plants HHI
Area Power Intensity -1.951 0.122

(0.526) (0.044)
Control Means 4.45 0.49
N 849 849
Panel D: Effect on Plant Exit between t and t+ 1
∆ Area Power Intensity 0.140 0.140

(0.051) (0.061)
Wage < Median 0.026 0.031

(0.013) (0.015)

∆ ¨Area Power Intensity 0.229 0.181

× ¨Wage < Median (0.110) (0.105)
∆ Area Power Intensity t, t+ 1 t− 1, t
N 2,826 2,582

Notes: This table reports the regression coefficients of area aggregate em-
ployment (Panel A), employment weighted average of the natural loga-
rithm of average wages (Panel B), or area-level market structure (Panel C)
on the employment weight averaged indicator variable for adopting power.
The unit of observations is area × year. Clustering robust standard errors
robust against the area-level correlations are reported in parentheses. All
specifications include area and year fixed effects. Panel D reports the re-
sults of regressing an plant-level exit dummy at period t+1 (where exit is
defined by the first year a plant disappeared in our data set) on the first
difference of area power intensity, the dummy variable indicating that the
plant wage is below the area-level median wage, the interaction between
the mean deviations of two variables. The second column reports the re-
sults of the specification with the lagged first difference of area power in-
tensity. All the observations in the first and the last year of panel data
are dropped.
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Appendix A. Additional Figures and Tables

A.1 Historical Background and Dataset

Figure A1: Trend of Power Adoption
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A.2 Robustness on Event Study Estimation

Figure A2: Comparison of estimators for plant-level event-study estimation (em-
ployment)
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(b) Female adult
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(c) Child
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(d) Overall

Note: This figure reports the robustness check of the plant-level event studies on employ-
ment in Figure 1 under different estimators. In particular, we test with five estimators that
has been used the literature: the OLS estimator, the Sun and Abraham (2021) estimator
(the baseline one used in the main text), the Callaway and Sant’Anna (2021) estimator, the
De Chaisemartin and d’Haultfoeuille (2020) estimator, and the estimator in Borusyak et
al. (2021). In the case using Callaway and Sant’Anna (2021) estimator, we include also the
not-yet-adopted firms in the control group, in addition to the never-treated or last-treated
plants used in our baseline estimation. Since the estimators of Callaway and Sant’Anna
(2021), De Chaisemartin and d’Haultfoeuille (2020), and Borusyak et al. (2021) require
more data for statistical power, we replace the area-by-year fixed effects used in our main
text with the county-by-year fixed effects, and cluster the standard errors at county level.
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Figure A3: Comparison of estimators for plant-level event-study estimation (log
wage)
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(b) Female adult
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(c) Child
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(d) Overall

Note: This figure reports the robustness check of the plant-level event studies on log wage
in Figure 2 under different estimators. In particular, we test with five estimators that has
been used the literature: the OLS estimator, the Sun and Abraham (2021) estimator (the
baseline one used in the main text), the Callaway and Sant’Anna (2021) estimator, the
De Chaisemartin and d’Haultfoeuille (2020) estimator, and the estimator in Borusyak et
al. (2021). In the case using Callaway and Sant’Anna (2021) estimator, we include also the
not-yet-adopted firms in the control group, in addition to the never-treated or last-treated
plants used in our baseline estimation. Since the estimators of Callaway and Sant’Anna
(2021), De Chaisemartin and d’Haultfoeuille (2020), and Borusyak et al. (2021) require
more data for statistical power, we replace the area-by-year fixed effects used in our main
text with the county-by-year fixed effects, and cluster the standard errors at county level.
The estimated results under the Borusyak et al. (2021) estimator is not obtained and re-
ported for the child group given its small sample size.
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Appendix B. Theoretical Framework

In this section, we construct a theoretical framework to better interpret our empirical

findings in the main text, by integrating the task-based framework of Acemoglu and

Restrepo (2018a,b) with the oligopsony framework proposed by Berger et al. (2022).

We assume local labor markets are imperfectly competitive but the product and

machine markets are perfectly competitive. Our focus on an oligopsony setting in

the local labor market instead of a monopoly or oligopoly one (see, e.g., Acemoglu et

al. (2020); Koch et al. (2021)) is motivated by the fact that the silk-weaving plants

under our study predominantly produced one homogenous raw good, habutae, and

that wage dispersed significantly for different plants in our data. With a perfectly

competitive labor market, which is likely to be infeasible especially in our historical

context, plants would react to any technological or demand shocks exclusively by

adjusting employment levels, leaving wages unaffected. Nevertheless, our model

retains the business stealing effect highlighted in Acemoglu et al. (2020) and Aghion

et al. (2022), manifested through the competition in the local labor market.

Production. Consider a firm i located in a local labor market j populated with

number of firms nj. All firms in this market produce one homogeneous good with its

price normalized to one. As suggested by the task-based literature, the production

is achieved by completing a set of different tasks ranging from N − 1 to N :

lnYi = ln zi

∫ N

N−1

ln yi(x)dx, (B1)

where Yi represents total production of the good, y(i) denotes task-level production,

and zi stands for firm specific productivity. Each task is produced according to the

following technological regime:

yi(x) =


γl(x)li(x) + γm(x)mi(x) if x ∈ [N − 1, I]

γl(x)li(x) if x ∈ (I, I ′)

γh(x)hi(x) if x ∈ [I ′, N ],

(B2)

where I and I ′ represent technological and skill thresholds, and γ are continuous

functions indicating the productivity of three inputs: machine m, low-skilled labor

l, and high-skilled labor h, across different tasks. Tasks lying between N − 1 and

I can be carried out either by low-skilled labor l or machinery m in a perfectly

substitutive manner. Beyond I, a task can be only produced by human labor, and

thus I implies a technological constraint on current automation technologies. An

additional constraint in Equation (B2) is that low-skilled worker and high-skilled

worker conduct separate tasks with the boundary defined by I ′. In our case, this

constraint could arise from either distinct comparative advantages between men and
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women or social and cultural norms that dictated the roles of men and women during

that historical era. As a result, new automation technologies modeled as an increase

in I would directly replace low-skilled labor l but not high-skilled labor h.9

To simplify, we assume that machinery m is competitively supplied by external

producers at a fixed rate R. In contrast, both types of labor, l and h, are supplied

elastically in the local labor market.

Household and local labor market. We assume that the representative house-

hold in the local labor market j faces the following problem,

max
Ci,Li,Hi

Uj

C− L
ϕL+1

ϕL

ϕL+1
ϕL

− H
ϕH+1

ϕH

ϕH+1
ϕH


s.t. C =

∑
i∈j

WiLLi+
∑
i∈j

WiHHi +Πj, L =

(∑
i∈j

L
ηL+1

ηL
i

) ηL
ηL+1

, and H =

(∑
i∈j

H
ηH+1

ηH
i

) ηH
ηH+1

,

(B3)

where Li =
∫ N

N−1
li(x)dx and Hi =

∫ N

N−1
hi(x)dx are the firm-level labor inputs, and

Πj is the aggregated firm profits in location j. The use of the aggregate indexes L

andH, which do not correspond to any real aggregates, is a convenient way to model

the oligopolistic competition between mj firms in the local labor market j. Berger

et al. (2022) shows that this supply system can be derived from a microfundation

of heterogeneous agents making discrete job choices on heterogeneous firms. The

elasticity parameters ηL > 0 and ηH > 0 captures the extent of competition in the

local labor market, similar to the elasticity of substitution in a monopoly or oligopoly

setting. In other words, ηL and ηH capture the degree of differentiation among

employers within an area. The larger the ηL and ηH are, the less the employers

are differentiated, and the more competitive are the local labor markets. In the

extreme case where ηL → ∞ or ηH → ∞, the local labor market tends to perfect

competition and marginal products are equalized at a single wage in an area. In

addition, parameters ϕL > 0 and ϕH > 0 capture the labor supply elasticities at the

market level, which could potentially reflect either the household’s trade-off between

work and leisure or housework, or the labor market competition across different

locations, or both. As we will not explicitly model the between-market competition,

hereafter we omit the subscript j and focus on the analysis of a particular labor

market. Solving the household problem gives us the labor supply curve that firms

9While we follow the convention and use the terms “low-skilled” and “high-skilled,” one can
equally use alternative terms to distinguish these two types of labor as “routine” and “non-routine,”
or more accurately, “displaceable” and “non-displaceable.” The essential distinction lies in the na-
ture that the tasks conducted by one type of labor to be supplanted by automation in the impending
technological advance while the tasks of the other type remain unaffected or complemented. In
fact, under certain conditions, we can have “low-skilled” labor being paid even higher wage than
“high-skilled” labor before the introduction of the new automation technology.
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face:

WiS = S
1

ϕS
− 1

ηS S
1
ηS
i for S ∈ {H,L}, (B4)

where WiS is the wage of labor S setting by firm i.

Characterization. We now solve the firm’s optimization problem in two steps

and then characterize the market equilibrium.

Firstly, given machine price R and the firm-level optimal choices of wages and

input uses, firms optimally allocate resources into the production of different tasks.

Since low-skilled labor and machine are perfect substitutes for tasks between N − 1

and I, a firm’s optimal input choices on these tasks are determined by comparing

the marginal rate of substitution, γl(x)/γm(x), with the ratio of marginal costs,

mciL/mcm. Given our setting, the marginal cost for machine, mcm, is just the

machine price R, while the marginal cost for low-skilled labor, mcl, is larger than

the firm wage, WiL, due to the fact that firms face an upward-sloping labor supply

curve under the existence of monopsony. In particular, we have mciL = WiL/µiL,

where µiL ∈ [0, 1] represents the firm-specific markdown on labor l, with the expres-

sion we will derive below. If mciL
R

> γl(I)
γm(I)

, firm i’s input choice is technologically

bounded, i.e. although using machines for tasks beyond I can be potentially more

productive or cost-saving than using human labor, such technology is currently un-

available. Otherwise, firm i is not technologically constrained and will choose an

interior threshold I∗i < I. In the oligopolistic case where more productive firms

will employ more workers, pay higher wages, and have lower markdowns, as we will

show below, our model suggests that large firms, faced with higher marginal costs

on labor, is more likely to be technologically constrained. Consequently, our model

can predict that larger firms are more likely to adopt new automation technologies

following a technological breakthrough, which is consistent with our data. However,

to ease the analysis, we abstract from any ex-ante difference in the technological

thresholds among firms by assuming mciL
R

> γl(I)
γm(I)

∀i (A1).10 In other words, we

assume that, prior to the coming of new power loom technology, all firms in our

case had their input choices technological bounded, that is, I∗i = I ∀i, and thus the

adoption of the new automation technology (an increase in I) will induce increased

use of machinery and enhanced production efficiency.

Given the same input prices across different tasks at firm level, a firm will equalize

the marginal product for tasks that utilize identical inputs (i.e. m, l, or h). Under

our Cobb-Douglas form of task aggregation, this results the same amount of inputs

10While the study of endogenous technological adoption in our framework is itself interesting,
it complicates our analysis by allowing additional adjustment on the endogenous technological
threshold, and adds little additional insights into our primary objective—assessing the technolog-
ical impact on labor demand. One interesting feature when we combine endogenous technology
adoption and oligopsony framework is that the adoption by one firm could potentially increase
the wages of other firms through oligopsonistic competition and thus force them to follow up in
adoption, generating technological diffusion.
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being used across tasks utilizing the same input type. Thus we can rewrite the firm

production function in Equation (B1) as a function of firm level input uses (Mi, Li,

and Hi):

Yi = Bi(
Mi

I −N + 1
)I−N+1(

Li

I ′ − I
)I

′−I(
Hi

N − I ′
)N−I′ , (B5)

where Bi = zi exp

(∫ I

N−1

ln γm(x) +

∫ I′

I

ln γl(x) +

∫ N

I′
ln γh(x)dx

)
.

As a typical result of the task-based framework, the technological threshold I directly

enters the share term of the input that can be substituted (here L), leading to a direct

displacement effect under advancement in automation technology. In comparison,

factor-augmenting technological changes, represented by increasing in γ terms, only

affect the factor-neutral productivity, Bi, and thus always result in a positive effect

on labor demand.

Equation (B5) provides us the marginal product for each type of input use at

firm level, through which we can link to the labor supply side and characterize the

firm optimal choices. In particular, our second step is to solve the firm problem of

profit maximization:

Πi = max
Hi,Li,Mi

Yi −WiHHi −WiLLi −RMi (B6)

s.t. WiS

(
Si, S

∗
−i

)
= S

1
ϕS

− 1
ηS S

1
ηS
i and S

(
Si, S

∗
−i

)
=

[
S

ηS+1

ηS
i +

∑
k ̸=i

S
∗ ηS+1

ηS
k

] ηS
ηS+1

for S ∈ {H,L}.

Here the firm takes the actions of its competitors as given and a Nash equilibrium is

achieved when all firms in the local labor market are making their optimal choices.

The first order conditions are
∂Yi

∂Mi

= R (B7)

∂Yi

∂Si︸︷︷︸
Marginal product: mpSi

= WiS +
∂WiS

∂Si

∣∣∣∣
S∗
−i

Si︸ ︷︷ ︸
Marginal cost: mcSi

for S ∈ {H,L}.
(B8)

Following the derivation in Berger et al. (2022), we can rewrite Equation (B8) as

mpiS = WiS/µiS,where µiS =
εiS

εiS + 1
,

εiS :=

[
∂ lnWiS

∂ lnSi

∣∣∣∣
S−i

]−1

=

[
(1− eiS)

1

ηS
+ eiS

1

ϕS

]−1

and eiS =
WiSSi∑
i WiSSi

.
(B9)

Here, µiS denotes the markdown of firm i on input S ∈ {H,L}, εiS is the inverse of

the firm’s wage elasticity of labor supply on S, and eiS denotes the firm’s share of

input S’s wage bill in the local labor market. In the case where ηS > ϕS, i.e. the

substitution between firms within the market is more elastic than the market-level
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labor supply elasticity, firms with higher marginal products will offer higher wages,

employ more workers, attain a larger share of the labor market, and end up facing

a less elastic labor supply curve and experiencing a lower markdown (i.e. greater

market power).

Our final step of characterization is to integrate the labor demand and labor

supply sides by using wage rate, WiS. In particular, from Equations (B4), (B5)

and (B9), we have

WiL = µiLmpLi = µiL(I
′ − I)Yi/Li (labor demand of L)

WiL

(
Li, L

∗
−i

)
= L

1
ϕL

− 1
ηLL

1
ηL
i (labor supply of L),

(B10)

and
WiH = µiHmpHi = µiH(N − I ′)Yi/Hi (labor demand of H)

WiH

(
Hi, H

∗
−i

)
= H

1
ϕH

− 1
ηH H

1
ηH
i (labor supply of H).

(B11)

The market equilibrium for this local economy is thus defined as a set of input uses

{Mi, Li, Hi}i∈j and firm-specific wages {WiL,WiH}i∈j such that, given the machine

price R, the Equations (B7), (B10) and (B11) are satisfied for each firm i in the

local labor market j.

Technological impact. With above framework in hand, we are now poised to

examine the influence of new technology adoption on both a firm’s own labor demand

and that of its competitors, providing context for interpreting our empirical results.

Specifically, we characterize a technology adoption event as an increase in the I for

a particular firm i while keeping other competing firms’ I unchanged. We first study

the own effect without considering any interactions from labor market competition.

Using the labor demand equations in Equations (B10) and (B11), we have

d lnWiL

dI
=

d lnµiL

dI︸ ︷︷ ︸
Markdown effect ≶0

+
d ln(I ′ − I)

dI︸ ︷︷ ︸
Displacement effect <0

+
d ln(Yi/Li)

dI︸ ︷︷ ︸
Productivity effect >0

d lnWiH

dI
=

d lnµiH

dI︸ ︷︷ ︸
Markdown effect ≶0

+
d ln(Yi/Hi)

dI︸ ︷︷ ︸
Productivity effect >0

.

(B12)

If both types of labor are perfectly inelastic, demand shocks would entirely manifest

as changes in wages, and through Equation (B12) it is clear that an increase in I

would generate a more substantial positive impact on high-skilled labor H compared

to low-skilled labor L since the latter faces an additional, negative direct displace-

ment effect. This could explain why we observe a stronger demand impact on male

adults compared to female adults post power-looms adoption in our estimation re-

sults and indicate the skill-biased nature of the automation technologies during the
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historical time.11 Given that elastic labor is inherent in our oligopsony setting (i.e.

even if the labor supply is perfectly inelastic at market level firms can still adjust

workers as long as η > 0), the extent of technological impact on labor employment

versus wages depends on the wage elasticity of labor supply from within-market com-

petition. To see this clear, combining the equations in Equations (B10) and (B11)

we have

WiL =(µiL(I
′ − I)Yi)

1
1+ηLL

ηL−ϕL
ϕL(1+ηL)

Li =(µiL(I
′ − I)Yi)

ηL
1+ηLL

ϕL−ηL
ϕL(1+ηL) ,

(B13)

and

WiH =(µiH(N − I ′)Yi)
1

1+ηH H
ηH−ϕH

ϕH (1+ηH )

Hi =(µiH(N − I ′)Yi)
ηH

1+ηH H
ϕH−ηH

ϕH (1+ηH ) .
(B14)

By comparing the equations in Equations (B13) and (B14), it is clear that the impact

of technological change would be larger on employment than wage when η is large,

i.e. when the labor market is more competitive. Therefore, the empirical findings in

our event study analysis that indicate a relative increase in wages for female adult

workers at adopting firms compared to their non-adopting counterparts contrasted

with a muted effect on employment, could stem from a substantially inelastic labor

supply of female adult workers. However, for male adult workers, the observed

disproportionate increase in employment relative to wages does not necessarily imply

a highly elastic labor supply and substantially more competitive labor market. This

is because the event study results could also be influenced by strategic responses

under oligopsonistic competition, as explored below.

To analyze the strategic responses of competitor firms upon the technology adop-

tion by firm i, we can again use Equations (B13) and (B14) but now substituting i

with k ̸= i. Now, there is no direct effect from shifting the technological thresholds

for both types of labor and it turns out that the changes of aggregate index L and

H would dominate other indirect effects for the competitors. If the adopted firm

increased employment to meet higher labor demand, and if ηS > ϕS, this would

induce its competitors to reduce employment and increase wage levels, as firms are

strategic substitutes in employment and strategic complements in wage setting un-

der Cournot competition. Consequently, in our context, the increase in male adult

worker employment post-power loom adoption observed in our event study analy-

sis is likely to be overestimated as their competitors would respond simultaneously

by reducing employment. Conversely, the observed wage increase for male adult

workers is likely underestimated, as their competitors were correspondingly bidding

up workers. This hypothesis finds support in our area-level results, which show

insignificant changes in male adult worker employment alongside power loom prolif-

11While it is difficult to prove formally, the markdown effect due to the induced change in the
market share is an indirect and second order effect following the direct demand changes stemmed
from the combination of displacement effect and productivity effect.
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eration, while area-level wages exhibit a more pronounced increase than plant-level

results—all aligning with our theoretical predictions. For female adult workers in

our context, the strategic responses of competitor firms are likely to be modest due

to a limited labor demand increase of the adopted firm or due to that ηL is close

to ϕL. The strategic movement in the case where ηS > ϕS would only understate

the wage changes and overstate the employment change, unaligned with our event

study results. Consistently, in the area-level results we find a wage increase extent

comparable to plant-level findings.

Finally, we show that our framework also accommodates business stealing effects,

akin to what is highlighted in monopoly or oligopoly settings. The intensive margin

of this effect follows our previous discussions on competitor’s strategic response on

labor employment. Facing a left-shifted labor supply curve, those competitors would

have to reduce labor inputs and production. In addition, the extensive margin of

business stealing under a similar mechanism also comes into play. The profit of a

firm is

Πi = Yi [1− (1 + µiL) (I
′ − I)− (1 + µiH) (N − I ′)] . (B15)

This profit is greater for more productive firm with a higher production, Yi, and

lower markdowns, µiL and µiH . For “luddite” firms that refuse power adoption, their

market shares dwindle and markdowns shrink (i.e. increase in µ’s) as competitors

automate and raise labor demand, compelling them to confront costly labor and

resulting in decreased production. As a result, non-powered firms would have their

profits keep decreasing along with intensified mechanization in the local market.

This attrition could thus lead to the exit of the least productive firms when their

profits turn negative or plummet below operational fixed costs. This mechanism

corroborates our area-level observation of a decreasing firm count concurrent with

power diffusion, and also potentially explains the significant reduction in female

adult employment at the area level.
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