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Abstract

Health and macroeconomic outcomes varied substantially across prefectures in Japan

during the COVID-19 crisis. Using an estimated macro-epidemiological model as well

as the idea of revealed preference, we compute the marginal rate of substitution (MRS)

and the conditional trade-off curve between health and economic outcomes in each pre-

fecture. We find that there is a large heterogeneity in the MRS as well as the location

and shape of the conditional trade-off curve.
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1 Introduction

Figure 1: Output loss and COVID-19 deaths: From February 2020 to December 2021
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Note: The output loss is the deviation from the trend before the COVID-19 crisis.

Health and macroeconomic outcomes varied substantially across prefectures in Japan

during the COVID-19 crisis, as shown in Figure 1—a scatterplot of cumulative COVID-19

deaths per 100,000 people and the average output loss from February 2020 to December 2021.

Some prefectures have seen a relatively small number of COVID-19 deaths with small output

loss, whereas some have seen the opposite. Some prefectures have seen a small number of

COVID-19 deaths with large output loss, whereas some have seen the opposite.

In this paper, we seek to understand the sources of the heterogeneity across prefectures

using an estimated macro-epidemiological model as well as the idea of revealed preferences.

Using the method described in Fujii and Nakata (2021), we compute the conditional trade-off

curve between COVID-19 death and output loss for each prefecture using time-series data on

infection and economic activity. The conditional trade-off curve represents the “constraint.”1

We then invoke the idea of revealed preference to compute the marginal rate of substitution

1Our conditional trade-off curve captures various prefecture-specific factors that can be broadly de-
scribed as “technology, policy, and luck.” They include medical capacity/flexibility, vaccination policy,
non-pharmaceutical interventions (NPIs), behavioral norms and culture. They also include demographic
characteristics such as the proportion of elderlies and economic structures (e.g. the proportion of contact-
intensive workers and easiness of teleworking).
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(MRS) between COVID-19 death and output from each prefecture’s realized outcome. This

MRS can be interpreted as providing some information about how a prefecture weighed the

value of reducing COVID-19 deaths against the value of reducing output.2

We find that (i) there is a large heterogeneity in the location and the shape of the

conditional trade-off curves and that (ii) there is a large heterogeneity in the MRS between

COVID-19 deaths and output. For example, the conditional trade-off curve for Iwate is

located southwest of that for Tokyo in the deaths-output loss plane, and the MRS in Iwate

(about 25 billion yen) is much higher than that of Tokyo (about 0.44 billion yen).

We also examine what factors are related to the MRS. We find the MRS is strongly

correlated with (i) output loss per COVID-19 death, (ii) proportion of the elderly, (iii) GDP

per capita, while it is weakly correlated with (i) population density.

1.1 Related Literature

Our work is closely related to Fujii et al. (2022). Fujii et al. (2022) develop the revealed-

preference approach based on an estimated epi-macro model and use the approach to better

understand cross-country heterogeneity in health and macroeconomic outcomes during the

COVID-19 pandemic. We use the same approach to highlight the potential role of preference

in generating heterogeneity in health and macroeconomic outcomes across prefectures in

Japan.

Our work provides a novel contribution to a body of work analyzing the joint dynamics

of infection and economic activity during the COVID-19 pandemic using epi-macro models.

Examples include Acemoglu et al. (2021), Alvarez et al. (2021), Atkeson (2022), Atkeson et

al. (2020), Bognanni et al. (2020), Eichenbaum et al. (2021), Farboodi et al. (2020), Jones

et al. (2021), and Kaplan et al. (2020), among many others. Our work is unique because we

combine a revealed preference approach and an estimated epi-macro model to quantify the

marginal rate of substitution between COVID-19 death and economic activity. In particular,

our approach can be seen as the converse of optimal policy exercises in which the weight

of disutility from COVID-19 death—relative to output loss—is assumed in the objective

function of the optimal control problem.

Various authors use epi-macro models estimated or calibrated with Japanese data to

better understand the trade-off (or lack thereof) between health and economic outcomes.

2Our measure of MRS likely captures various factors that go beyond a country’s willingness to pay to
save lives from COVID-19 infection. Those factors include, but are not limited to, desire to avoid loss of
work hours due to required quarantine period after infection, desire to avoid social stigma associated with
COVID-19 in certain societies, desire to avoid tragedy associated with dying from COVID-19 such as not
being able to spend the last moment of one’s life with loved ones, and fear of the unknown, among many
others. As with any model-based analysis, misspecification of our model also affects our calculation.
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Examples include Fujii and Nakata (2021), Fukao and Shioji (2022), Hamano et al. (2020),

Hoshi et al. (2021), Kubota (2021), Kobayashi and Nutahara (2021), Hosono (2021), Shibata

and Kosaka (2021). Like these authors, we use epi-macro models to better understand the

Japanese experience during the COVID-19 pandemic. Our contribution is to use the revealed

preference approach to highlight the role of preference in explaining health and economic

outcomes in Japan.

2 Framework

In this section, we describe our model, data, and procedure to trace out the conditional

trade-off curve for each prefecture. Since the model and the conceptual framework are the

same as in those in Fujii et al. (2022), our description will be concise. We refer interested

readers to Fujii et al. (2022) for details. Our model is parsimonious, yet contains what we

believe are minimal factors necessary to decompose health and regional economic outcomes

into a constraint and preferences. And, estimation of our model requires readily available

prefecture-level data only.

2.1 Model

We employ a standard SIRD model, but allow for time-varying transmission and mortality

rates to describe the observed evolution of infection in each prefecture. The model is formu-

lated in discrete time at a weekly frequency. Let subscript t denote time period, St, It, and

Rt be the number of susceptible, infectious, and recovered people, respectively. Dt denotes

the number of cumulative deaths. The laws of motion are given by the following system of

equations

St+1 = St −
βt(1− hαt)k

POP
ItSt︸ ︷︷ ︸

Nt

−Vt (1)

It+1 = It +
βt(1− hαt)k

POP
ItSt︸ ︷︷ ︸

Nt

−N IR
t −N ID

t (2)

Rt+1 = Rt +N IR
t + Vt (3)

Dt+1 = Dt +N ID
t (4)

N IR
t = γIt (5)

N ID
t = δtIt (6)
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The flow variables Nt, N
IR
t , and N ID

t are the number of the newly infected, newly recovered,

and new deaths from COVID-19 between time t and time t+1, respectively. Vt is the number

of newly vaccinated people from time t to time t + 1. The parameter γ denotes recovery

rate, and it is assumed to be γ = 7/18, which implies that the average duration of infection

is 18 days. We allow for a time-varying mortality rate, which is denoted by δt. The path of

δt will be estimated from data. The total population in the prefecture is denoted by POP .

The number of newly infected people Nt is proportional to the product ItSt normalized by

POP . The time-varying parameter βt captures the “output-adjusted” or “raw” transmission

rate that would prevail in the absence of any decline in economic activity. The term αt

denotes output loss in percentage, and (1− hαt) is a proxy for people’s mobility. The

elasticity of output loss to mobility is denoted by h. A high value of h means that the

infection rate can be reduced a lot without reducing output that much. We can reduce the

number of new infection at time t by lowering mobility, but it comes at a cost of larger output

loss. This relationship between infection and output leads to the trade-off each prefecture

faces. Throughout this paper, we assume quadratic matching of the susceptible and the

infected, and set k = 2. As shown in Fujii et al. (2022), the value of k changes each state’s

MRS uniformly, and does not alter the ranking of MRS.

The economic part of our model is given by the following linear production function

Yt = (1− αt)Ȳt (7)

where Yt is output at time t. The second component Ȳt is the reference level of output that

would have prevailed if no one restrained his or her economic activities at time t. Please see

the Appendix of Asai et al. (2022) for how to construct Ȳt for each prefecture.

2.2 Data and Estimation

All the following analyses are conducted prefecture by prefecture. We set the start of the

model as the first week of February 2020. The time window of analysis to be 99 weeks

(T = 99) , implying that our sample end at the end of 2021. In Section 3.5, we will discuss

results based on alternative sample preiods. The number of new positive PCR test cases

Nt and the number of deaths due to COVID-19 N ID
t are retrieved from the database of the

Ministry of Health, Labour and Welfare (MHLW) in Japan.3

Set the initial condition as S0 = 0.9999 ∗POP , I0 = 0.0001 ∗POP , R0 = 0, and D0 = 0.

3The path of vaccinated population Vt is computed as follows. Let E1 and E2 be the efficacy of first and
second shots of vaccine. With V1,t and V2,t be the number of first and second shots of vaccines respectively,
we compute

Vt = E1Vt,1 + (E2 − E1)V2,t
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With these initial values and Nt, N
ID
t and Vt, we can recover the paths of variables St, It,

Rt and Dt. We can then back out the time-varying parameters β̃t and δt.

A measure of prefecture-level monthly GDP is constructed based on the methodology

developed in ?. We assume the same GDP value for weeks in the same month and construct

the path of Yt.
4 The estimation of h is elaborated in the Appendix A.

2.3 Tracing Out the Conditional Trade-Off Curves

For each prefecture, we first calculate δt, βt and h as described above. Then, we consider a

hypothetical path of output loss αct by multiplying αt with a time-invariant constant, ranging

from 0.1 to 5.0.

αct = cαt for ∀t and c ∈ C = {0.1, 0.11, ..., 5.0}

It means that the hypothetical output loss is smaller by 50 percent for every period if c = 0.5.

It is important to note that the shape of the original αt is preserved for the hypothetical

paths. Due to the nonlinearity of the epidemiological model, there exists a benefit of the

front-loading of infection control. Holding the time-series average output loss constant, we

can reduce the number of cumulative deaths by imposing a stronger restriction (larger αt)

in the early phase of pandemic. Our counterfactual exercise takes this type of decision (the

timing and stringency of NPIs) as given, and considers multiplicative perturbations of the

observed αt. For each hypothetical path αct , we compute the paths of new infections and

cumulative deaths using the estimated βt, δt and h. For each scaler c, we obtain a pair of

average output loss and cumulative deaths {(αc, Dc
T )}c∈C where αc =

∑
t∈{1,2,...,T} α

c
t

T
.

3 Results

3.1 The Conditional Trade-Off Curves

Figure 2 shows the estimated conditional trade-off curves between output loss and COVID-

19 deaths for each prefecture. In this figure, we overlay the scatterplot shown in Figure 1

with the conditional trade-off curves derived from the counterfactual simulations described

in Section 2.3. We can confirm a large heterogeneity in the location and shape of these

curves. The trade-off curves of prefectures that exhibit a larger output loss and higher

number of deaths such as Osaka or Okinawa locate in the upper-right part of the figure.

Yet, many curves cross each other due to the difference in shape. Wakayama and Nara are

The time-series data of V1,t and V2,t are also retrieved from the MHLW. We assume Pfizer vaccines are used
and set E1 = 0.625 and E2 = 0.895 based on the UK’s SPI-M-O Summary on March 31st, 2021.

4If a week spans two months, we prorate two GDP values accordingly.
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Figure 2: Conditional trade-off curves
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geographically located in the same Kinki region, and their realized outcomes of output loss

and COVID-19 deaths are also similar. Nonetheless, the shape of their conditional trade-off

curves are quite different with the curve of Wakayama being much steeper. This highlights

the relevance of our model analysis to unveil the unobserved constraint each prefecture had

faced through the pandemic.

These conditional trade-off curves in Figure 2 represent constraints each prefecture had

faced when balancing economic activity and health outcomes of the pandemic. In our frame-

work, the location and shape of constrains can be different due to the difference in four

parameters: i) h, the elasticity of mobility with respect to output loss, ii) {αt}Tt=0, the path

of economic restriction, iii) {βt}Tt=0, the time-varying parameter of transmission rate, and

iv) {δt}Tt=0, the time-varying parameter of mortality rate. For instance, if a prefecture ex-

periences higher βt or δt for all periods compared to another prefecture, its trade-off curve

locates northeast in the figure. Due to the nonlinearity of the dynamics, the paths of αt and

βt play an important role even when the time-series average is held constant. A larger αt or

smaller βt in the early phase of pandemic benefits the society by shifting the trade-off curve

down.
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Figure 3: Histograms of estimated parameters
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Figure 3 shows the histograms of estimated h, average αt, βt and δt. The differences in

these parameters are the source of the cross-regional heterogeneity of the trade-off curves.

The estimated elasticity of mobility with respect to output loss is concentrated around 1.5

but some prefectures exhibit h larger than 3 or less than 0.5. The distribution of the average

transmission rate βt is skewed to the left around 0.7, yet some prefectures experienced a

large transmission rate with average βt being over two. The average mortality rate also

varies across prefectures ranging from 0.05 to 1.4.
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Figure 4: Comparative statics of structural parameters
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To illustrate the effect of those parameter values on the shape and location of trade-off

curves, we examine the comparative statics of each parameter for Tokyo. Figure 4 displays

the counterfactual trade-off curves when we change one of the structural parameters. In all

four panels, black lines are the trade-off curves from our baseline specification. The top-left

panel shows trade-off curve for different paths of transmission rate βt holding other parame-

ters constant. For each scenario, we multiply our estimated βt by a constant preserving the

shape of the path. We confirm that the curve shifts to the right as βt becomes larger. The

top-right panel presents a similar analysis for the path of mortality rate δt. As δt becomes

larger, the curve shifts to the right, but the effect is not as large as that of βt. Since an

increase in δt does not cause an exponential growth of infection like an increase in βt, the

effect of different values of δt on the trade-off curve is milder.

The bottom-left panel considers the effect of changing the elasticity of output loss on

mobility h. As h becomes larger, the trade-off curve moves to the southwest with a greater

concavity. This is welfare-enhancing since we can achieve both lower number of deaths and

smaller output loss. A larger value of h means that a reduction in output by a lockdown is

9



very effective to reduce infection. The bottom-right panel shows the counterfactual situations

where vaccine distribution started earlier than the actual. An earlier rollout of vaccines moves

the trade-off curve to the left as we can expect.

3.2 MRS

Table 1: MRS (in billion yen)

Prefecture MRS Prefecture MRS Prefecture MRS

Iwate 24.77 Kagawa 2.33 Okayama 1.16
Shimane 12.99 Yamaguchi 2.27 Ishikawa 1.05
Aomori 12.95 Hiroshima 2.00 Fukuoka 0.81
Tottori 12.49 Oita 2.00 Hokkaido 0.77
Fukui 8.20 Gumma 1.86 Gifu 0.75
Nagasaki 6.57 Kumamoto 1.83 Kyoto 0.62
Niigata 5.52 Mie 1.76 Nara 0.53
Yamagata 5.14 Tokushima 1.74 Kanagawa 0.52
Wakayama 4.93 Ehime 1.66 Saitama 0.52
Akita 4.65 Tochigi 1.56 Tokyo 0.44
Kochi 3.56 Miyazaki 1.54 Chiba 0.4
Kagoshima 3.35 Aichi 1.54 Osaka 0.34
Saga 3.29 Ibaraki 1.51 Hyogo 0.27
Toyama 3.17 Shiga 1.33 Okinawa 0.13
Nagano 3.11 Miyagi 1.32
Shizuoka 2.44 Fukushima 1.28

Table 1 summarizes the MRS between output loss and COVID-19 deaths across prefectures.5

These numbers can be interpreted as willingness to pay to reduce a COVID-19 death in

each prefecture. Like the cross-country heterogeneity of MRS studied in Fujii et al. (2022),

there exists a considerable heterogeneity in MRS across regions within Japan as well. Some

prefectures such as Iwate and Shimane exhibit a large MRS (24.77 and 12.99, respectively)

while other prefectures like Okinawa and Hyogo exhibit a very small MRS (0.13 and 0.27,

respectively). In general, rural areas show a higher MRS than urban areas.

As illustrated in Figure 8 in the Appendix, the optimality condition implies the equality

between the marginal rate of technical substitution (MRTS) of the constraint and the MRS

of the preferences. Given the same conditional trade-off curve, people in a prefecture with

high MRS choose a point in the upper-left part of the curve, implying that they are willing

to sacrifice a larger output loss to reduce COVID-19 deaths.

5The numbers in the table correspond to the slope of the tangent line through each dot in Figure 2, but
are translated into billion yen/death.
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Figure 5: MRS vs. other variables
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Figure 5 presents the scatterplots of the MRS and other variables. The top-left panel

examines the relationship between the MRS and output loss/deaths across prefectures. We

observe a positive correlation, but the relationship is not perfect. Our model analysis reveals

the heterogeneity of preferences, which cannot be inferred by just looking at the ratio between

output loss and cumulative deaths. The bottom-left panel analyzes the relationship with

population density. Densely populated areas such as Tokyo or Osaka exhibit lower MRS.

The top-right panel illustrates a positive relationship between the MRS and the average age.

Prefectures with higher average age, which tend to be rural areas, exhibit higher MRS. This

relationship holds when we use another measure of age, aging rate (the ratio of the elderly

over total population), as shown in the bottom-right panel.

Why rural areas exhibit larger MRS? Demographic structure is a potential candidate to

explain the correlation. Since the mortality rate of COVID-19 is much higher for the elderly,

prefectures with a higher aging rate may fear the risk of infection more and accept a larger

output loss to reduce the number of casualties. Another potential reason is the culture of

peer pressure and social ostracism. As studied in Delgado Narro (2021), stigma of being

infected may be an important factor for many people to refrain from going out. There is

a growing body of anecdotal evidence on social ostracism of COVID-19 in Japan.6 Fear of

being ostracized from the community might have contributed to a large output loss in some

rural prefectures even when there were few or no positive cases.7

3.3 Hypothetical Exercises

Our framework allows us to decompose a realized outcome of output loss and COVID-19

deaths into a constraint and preferences. Using this framework, we can answer a variety of

counterfactual questions to shed light on the source of cross-regional heterogeneity in health

and economic outcomes.

The following type of questions can isolate the role of preference heterogeneity in generat-

ing the outcome heterogeneity: What outcome would people or policymakers in Tokyo have

chosen if their MRS had been the same as that of people or policymakers in Kagawa?8 Us-

6For example, see the article by Manabe in Tokyo Keizai on April 19th, 2020, the Mainichi Shimbun on
December 30th, 2020, and the Asahi Shimbun on February 19th, 2021.

7Our casual observation is that heterogeneity in preference have manifested itself in the heterogeneity in
the words and deeds of local policymakers. For instance, Johnston (2021) and Namima (2021) report that
the Governor of Shimane prefecture threatened to cancel participation in the Tokyo Olympic torch relay
and related events even when the number of new cases was very low at that time. On the other hand, the
Governor of Osaka repeatedly emphasized the need to increase medical capacity and maintain a certain level
of economic activity throughout the COVID-19 pandemic. For example, the article of the Mainichi Shimbun
on February 5th, 2021 reports that the Governor of Osaka set loose benchmarks to lift the state of emergency
to accelerate economic activity despite some warnings from health experts.

8An alternative way of stating the same question is, if people in Kagawa faced the trade-off curve of
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Figure 6: Conditional trade-off curve of Tokyo with the MRS of Kagawa
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ing the estimated MRS and assuming a linear indifference curve,9 the point on the trade-off

curve of Tokyo where the slope of the tangent equals to the MRS of Kagawa gives the answer

to this question. Figure 6 depicts the estimated conditional trade-off curve of Tokyo. The

red dot is the realized outcome of Tokyo, whereas the blue dot would be the answer to the

aforementioned hypothetical question. Outcome would be a substantially smaller number of

deaths (around 100) and a greater output loss (around 10%), reflecting a larger estimate of

MRS (2.33) in Kagawa than in Tokyo (0.44).

We can also ask the question of which factors are responsible for the difference in the

location and shape of the conditional trade-off curves across two regions. In Figure 7, we

investigate the effect of swapping a structural parameter on the trade-off curve of Tokyo with

those of another other regions. In the top-left panel, the gray line is the original trade-off

curve of Tokyo. The green curve is derived by using Wakayama’s realized path of {αt},
and other parameters of Tokyo. If the path of output in Tokyo had been the same as that

in Wakayama, its trade-off curve would have shifted to the right, leading to more deaths

conditional on the same output loss. Notice that the shape of αt, the timing and stringency

of NPIs, is different in the counterfactual experiment. On the other hand, if the path of αt

in Tokyo had been the same as that of Miyazaki’s, the trade-off curve would have shifted to

Tokyo, what outcome would they have chosen?
9The linear case is an extreme case where the MRS is constant along the indifference curve. With a

concave indifference curve, the magnitude of our counterfactual change would be smaller. Hence, we can
interpret the result in this subsection as an upper bound of the effect of swapping “preference” between two
regions.
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Figure 7: Hypothetical trade-off curves in Tokyo
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the left.

The bottom-left panel illustrates the hypothetical trade-off curves of Tokyo when swap-

ping the value of h, the sensitivity of output loss to mobility. If Tokyo had the same h as

Kyoto, the curve would shift to the right since the estimated h is smaller for Kyoto, and the

opposite is true for using Okinawa’s h. In the top-right panel, the path of transmission rate

βt is swapped with that of Kyoto and Okinawa. In both cases, the Tokyo’s trade-off curve

shifts to the left leading to a better outcome since Tokyo experienced relatively high values

of βt. Lastly, the bottom-right panel shows the result of swapping the path of mortality rate

δt.

3.4 Results based on other sample periods

In Appendix C, we compute conditional trade-off curves and the MRS for three alternative

sample periods. All three alternative samples start in February 2020, as in our baseline

sample period. We consider three end dates: March 2021, June 2021, and September 2022.

As in the baseline analysis, we find a large heterogeneity in the location and shape of

the conditional trade-off curve and a large heterogeneity in the MRS. The most interesting

result is that the MRS is declining over time for most prefectures. This pattern likely reflects

the fact that our MRS measure captures factors beyond what a standard value of statistical

life aims to capture, including fear of the unknown and fear of social ostracism and that, as

the information about the virus became more available over time, the unknown has become

less unknown, and social ostracism has come less of an issue in many regions in Japan.

4 Conclusion

Health and macroeconomic outcomes varied substantially across prefectures in Japan dur-

ing the COVID-19 crisis, just as they did across countries. Using an estimated macro-

epidemiological model, we derive the conditional trade-off curve between COVID-19 deaths

and output loss in each prefecture, which represents the constraint each prefecture faced dur-

ing the pandemic. Invoking the idea of revealed preference, we compute the marginal rate

of substitution (MRS) at the realized outcome, which represents the preferences of people in

the prefecture. We find that there is a large heterogeneity in the MRS as well as the location

and shape of the trade-off curve.
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Appendix

A Estimation of the elasticity of output to mobility h

The sensitivity of economic activity to mobility, h, is estimated by regressing GDP loss on

the Google mobility index as in Fujii and Nakata (2021). The Google COVID-19 Community

Mobility Reports provide movement trends for each prefecture across six categories of places:

retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and

residential. For our analysis, we compute the average of the weekly median values of four

series: retail and recreation, parks, workplaces, and transit stations, which is denoted as

Mt. Since the Google mobility data are expressed as a percentage change compared to the

baseline period Jan 3rd - Feb 6th of 2020, we convert the mobility series by

mt = 1 +
Mt

100

Here, mt = 1 implies that mobility at t is the same as a median value of mobility between

January 3rd to February 6th in 2020. We then run the following regression

mt = h0 + h1αt + εht for t ∈ [1, T ]

to obtain the estimates ĥ0 and ĥ1. In the above equation, h0 corresponds to the mobility

level where there is no output loss. We normalize the elasticity h1 by h0 since we formulate

our mobility as (1− hαt) and hαt is the deviation from a normalized level of one. Thus, we

obtain our estimate of h as

h =
ĥ1

ĥ0
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Figure 8: Optimality condition
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Figure 9: End of sample period: December 2020
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Figure 10: End of sample period: March 2021
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Figure 11: End of sample period: June 2021
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Figure 12: End of sample period: September 2021
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B Optimality Condition

C Sensitivity of MRS with different sample periods

Table 2: MRS (in 100 million yen) by December 2020

Prefecture MRS Prefecture MRS Prefecture MRS

Akita 319.50 Okayama 8.68 Hiroshima 5.13
Niigata 63.33 Nagano 8.28 Fukuoka 3.68
Yamaguchi 57.56 Ehime 8.14 Gifu 3.34
Nagasaki 36.57 Kochi 7.75 Chiba 3.12
Tokushima 35.94 Fukui 7.27 Yamanashi 3.08
Oita 23.38 Shizuoka 7.20 Kyoto 2.46
Aomori 20.24 Toyama 7.11 Nara 2.31
Tochigi 16.63 Shiga 7.08 Tokyo 1.94
Kagawa 15.33 Kagoshima 7.03 Saitama 1.87
Wakayama 13.48 Miyazaki 6.94 Kanagawa 1.82
Saga 12.21 Miyagi 6.44 Ishikawa 1.81
Kumamoto 10.04 Gumma 6.34 Hyogo 1.35
Mie 9.84 Aichi 6.23 Osaka 0.99
Yamagata 9.58 Fukushima 6.10 Hokkaido 0.56
Iwate 9.04 Ibaraki 5.52 Okinawa 0.53
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Table 3: MRS (in 100 million yen) by March 2021

Prefecture MRS Prefecture MRS Prefecture MRS

Iwate 116.75 Kochi 3.30 Ishikawa 1.69
Akita 38.12 Hiroshima 3.10 Shiga 1.55
Tottori 30.14 Shizuoka 3.08 Fukushima 1.50
Niigata 20.49 Saga 3.07 Fukuoka 1.17
Aomori 19.31 Gumma 3.00 Gifu 1.10
Toyama 8.56 Yamanashi 2.97 Nara 1.03
Tokushima 7.73 Nagasaki 2.97 Hokkaido 1.01
Oita 6.54 Mie 2.84 Kyoto 0.78
Nagano 6.33 Miyazaki 2.67 Kanagawa 0.68
Kagoshima 5.12 Kumamoto 2.38 Saitama 0.61
Wakayama 4.91 Aichi 2.34 Tokyo 0.58
Ehime 4.72 Kagawa 2.17 Osaka 0.57
Yamaguchi 4.35 Fukui 2.07 Chiba 0.57
Okayama 4.31 Ibaraki 1.80 Hyogo 0.50
Miyagi 4.04 Tochigi 1.75 Okinawa 0.34

Table 4: MRS (in 100 million yen) by June 2021

Prefecture MRS Prefecture MRS Prefecture MRS

Shimane 59.63 Ehime 2.31 Okayama 1.1
Tottori 36.10 Hiroshima 2.21 Ishikawa 1.03
Iwate 31.14 Gumma 2.00 Gifu 0.83
Aomori 11.66 Kagawa 2.00 Fukuoka 0.83
Niigata 6.24 Tochigi 1.89 Kanagawa 0.63
Akita 5.47 Nagasaki 1.87 Saitama 0.59
Toyama 4.68 Kumamoto 1.85 Hokkaido 0.58
Kagoshima 4.07 Ibaraki 1.84 Kyoto 0.57
Nagano 3.75 Fukui 1.81 Tokyo 0.54
Yamaguchi 3.17 Saga 1.72 Chiba 0.52
Shizuoka 2.91 Wakayama 1.71 Nara 0.43
Mie 2.67 Miyagi 1.56 Osaka 0.29
Miyazaki 2.66 Aichi 1.51 Okinawa 0.25
Kochi 2.63 Tokushima 1.43 Hyogo 0.22
Yamanashi 2.42 Shiga 1.23
Oita 2.33 Fukushima 1.21

22



Table 5: MRS (in 100 million yen) by September 2021

Prefecture MRS Prefecture MRS Prefecture MRS

Iwate 27.38 Ehime 2.34 Shiga 1.26
Shimane 15.57 Shizuoka 2.25 Ishikawa 1.18
Aomori 13.20 Mie 2.13 Okayama 1.13
Tottori 12.17 Oita 2.03 Gifu 0.81
Yamagata 9.05 Gumma 2.00 Fukuoka 0.8
Niigata 5.61 Hiroshima 1.99 Hokkaido 0.63
Akita 4.01 Miyazaki 1.91 Kyoto 0.55
Nagano 3.70 Saga 1.87 Saitama 0.55
Yamaguchi 3.12 Ibaraki 1.75 Kanagawa 0.54
Fukui 3.06 Tokushima 1.69 Tokyo 0.45
Toyama 2.99 Wakayama 1.66 Nara 0.44
Kagawa 2.65 Aichi 1.49 Chiba 0.4
Kochi 2.58 Tochigi 1.46 Osaka 0.3
Kagoshima 2.43 Miyagi 1.37 Hyogo 0.24
Kumamoto 2.42 Yamanashi 1.36 Okinawa 0.16
Nagasaki 2.39 Fukushima 1.28

23


