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Abstract

In the already very rich and crowded literature on education interventions, the use of test

scores to capture students’ cognitive abilities has been the norm when measuring the impact.

We show that even in randomized controlled trials (RCTs), estimated treatment effects on the

true latent abilities can still be biased towards zero, because test scores are often censored

outside of zero and full marks. This paper employs sui generis data from a field experiment

in Bangladesh as well as data sets from existing highly-cited studies in developing countries to

illustrate theoretically and empirically that this remaining classical sample selection problem

exists. We suggest three concrete ways to correct such bias: First, to employ the conventional

sample selection correction methods; second, to use tests that are designed with an extensive

set of questions from easy to challenging levels which allow students to answer the maximum

they could; and third, to incorporate each student’s completion time in estimation.
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1 Introduction

Randomized controlled trials (RCTs) in economics have been very popular in evaluating edu-

cation interventions. The literature is already very rich and crowded in the context of both

developed and developing countries (Kraft, 2020; Coe, 2002; Bloom et al., 2008; Lipsey et al.,

2012; Kremer, Brannen and Glennerster, 2013; Ganimian and Murnane, 2016; Evans and Pop-

ova, 2015; McEwan, 2015; Glewwe, 2014; Duflo, Dupas and Kremer, 2011; Duflo, Hanna and

Ryan, 2012; Duflo, Dupas and Kremer, 2015; Glewwe et al., 2004; Pradhan et al., 2014; Mur-

alidharan, Singh and Ganimian, 2019). While many studies have investigated the effectiveness

of different educational programs on improvements in children’s cognitive ability captured by a

variety of outcome measures, the most typical metric has been scores from standardized tests.

Utilizing test scores is straightforward because it is believed to be a good measure of ability all

over the world: PISA and TIMSS have been employed for international comparisons of cognitive

abilities; and test scores are used for entrance exams in many countries (for example, A-level

in the UK and SAT in the US) and also for proficiency tests in language and/or math (e.g.,

IELTS, TOEFL, GRE, and TOEIC). Although there is a general trend to incorporate measures

other than test scores especially for school admissions such as an essay or a letter on personal

backgrounds, the weights on cognitive test scores still seem very high.

Since test scores are limited inside a range between zero and full marks by nature and thus

the true abilities are censored outside the range, even in RCTs estimated treatment effects

of education interventions can still be biased towards zero. This paper shows theoretically

and empirically that this remaining classical sample selection problem exists in the real world.

While Angrist and Pischke (2008) states that ”the estimation of causal effects in experiments

presents no special challenges whether yi is binary, non-negative, or continuously distributed.

The interpretation of the right-hand side changes for different sorts of dependent variables, but

you do not need to do anything special to get the average causal effect,” we believe that the issue

we investigate is what Angrist and Pischke (2008) calls ”a rare case where the outcome variables

is truly censored.”1 Even among students with zero scores, some students have better abilities

than others do. This is especially true if the test happens to be inappropriately difficult.

In tackling the seemingly-rampant censoring problem in education, we employ data from a

1Angrist and Pischke (2008) points out that ”(d)o Tobit-type latent-variable models ever make sense? Yes,
if the data you are working with are truly censored. True censoring means the latent variable has an empirical
counterpart that is the outcome of primary interest”.
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field experiment in Bangladesh as well as existing highly-cited studies from other developing

countries.

We also need to understand the elements behind the existence of an upper bound and a

lower bound of a score, i.e., full marks and a zero score, respectively. For example, GRE has

an upper bound of 170 and a lower bound of 130 for Quantitative and Verbal components and

the score range of TOEFL is from 0 to 120. There seem to be several legitimate reasons for

this conventional test design. First, it is difficult to make a test without bounds by nature. To

avoid someone obtaining a full score, examiners need to make just as many questions as no one

can solve all of them. But this kind of test is simply very costly, time-consuming, and thus

unrealistic. In some cases, examiners do not have original intentions to diversify examinees’

scores. For example, a small quiz in the middle of a college course can offer full marks to all the

students if a lecturer intends to make it sure that the quiz-takers understand the contents well.

In this case, it does not make sense to prevent students from obtaining a full score. In addition,

an examiner may have good reasons to provide difficult exam questions, making a large number

of students receive null scores. In this case, the latency of the lower-bound test score would

become salient.

If we use test scores with upper and lower bounds for a program evaluation, however, we

may suffer from estimated causal effects biased towards zero. As many studies report positive

effects, the bias will be downward. This bias arises from the classical sample selection problem,

long discussed in the literature on the censored regression models (Amemiya, 1984; Greene,

2012). This paper offers both theoretical and empirical analyses on these issues in the context

of developing countries, providing refined impact assessments on education interventions. To

the best of our knowledge, the existing evaluation studies on education interventions, including

those based on RCTs, have been silent about this potential bias. Hence, we believe our study

makes a novel contribution to the already rich and crowded literature on the impact evaluation

of education interventions.

We also discuss three concrete ways to correct such bias at least partly. First, we can employ

the conventional sample selection correction method to mitigate this bias. The second one is

to make an exam with easy but more than enough questions so that students will not obtain a

zero score nor full marks. Although this is not entirely impossible as we will show in this paper,

to design and conduct such an exam would be administratively very costly, The third way is to

collect and use additional information of each student in an exam, i.e., solution “time.” Most
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exams set a time limit which seems to play a critical role. Some might argue that examinees try

to maximize their test score given the time limit and therefore the time information has already

been taken into account in the score. If this is the case, there is no benefit of incorporating time

information in the analysis. However, if available, additional data on time to solve questions in

an exam allows us to distinguish the following two types of examinees for example: Those who

attain a certain score using the most of given time; and those who obtain the same score using

a much shorter time. It is natural to think that these two types of examinees have different

abilities with the latter dominating the former.23 Therefore, incorporating time data have a

potential to measure ability and estimate the treatment effects with better precision.

The rest of this paper is organized as follows. First, in Section 2, we construct a formal

model to clarify the sample selection problem, followed by Section 3 on data and empirical

implementation. The final section provides concluding remarks.

2 Theoretical Framework

2.1 Censoring of Test Score

We describe our theoretical framework of estimation bias arising from the upper and lower

bounds of the test score. In this case, the treatment effects of a program that develops ability

will systematically suffer from an estimation bias towards zero due to the classical sample

selection problem.4 For simplicity, let us consider the case in which the treatment effects are

estimated by a standard RCT where the treatment and control groups are compared based only

on endline data without loss of generality.

Let y∗i be the true test score in the absence of the upper bound of the score. We postulate

a linear model of generating the true test score as follows:

y∗i = α0 + α1ai + ui, (1)

2May not all types of questions be adequate to focus on the time efficiency. For example, it may make more
sense for task-type questions but not necessarily for questions requiring deep thinking.

3Although several papers measure labor productivity in terms of speed, few focus on speed in education.
There is no doubt that thinking about a single topic deeply spending a lot of time develops people’s cognitive
abilities, but speed is also essential as we discussed above.

4Here, we assume there is a time limit. But this leads to the same discussion of the upper bound of the test
score. However, having unlimited time limit for an exam is unrealistic and we propose a compromise which uses
the (quasi) unlimited number of questions (consequently no upper bound of the test score) and a certain time
limit.
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where ai is the unobserved ability of individual i and ui is an independent error term. It

is straightforward to presume that α1 > 0, showing the test score is a good proxy of the

true ability. Furthermore, consider an intervention program that develops ability through the

following function:

ai = γ0 + γ1di + ei, (2)

where di is a treatment status of individual i which takes one if i is treated and zero otherwise,

and ei is an error term. We take an example of an effective intervention i.e., γ1 > 0, implemented

by a randomized controlled trial so that di ⊥⊥ ui, ei. In this case, combining Equation (1) and

(2), we have:

y∗i = β0 + β1di + εi, (3)

where β0 := α0 + α1γ0, β1 := α1γ1, and εi := α1ei + ui. Note that di ⊥⊥ εi because di ⊥⊥ ui, ei.

Also we have β1 > 0 because α1 > 0 and γ1 > 0. Here we assume that εi ∼ F with some

cumulative distribution F with mean 0 and variance σ2.In order to address the core problem,

we introduce an upper and lower bound of the observed test score. Let yi be the observed test

score of individual i so that we have:

yi =


ȳ if y∗i ≥ ȳ

y∗i if y∗i ∈ (
¯
y, ȳ)

¯
y if y∗i ≤

¯
y

(4)

where lower and upper bounds satisfy a condition,
¯
y < ȳ. Considering the conditional expect-

ation of yi given di, we have:

∂E[yi|di]
∂di

= β1Pr(y∗i ∈ (
¯
y, ȳ)|di),

which is strictly smaller than the true parameter, β1, if there are students who obtain a full

score or a zero mark (Greene, 2012).5 In this case, if we run a regression in a naive way using

the following model:

yi = β̃0 + β̃1di + ε̃i, (5)

5For the derivation, see Theorem 19.4 of Greene (2012).
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then we have:

β̃1 =
∂E[yi|di]

∂di
∈ (0, β1)

with the assumption that β1 > 0. Therefore, the OLS estimator will be biased downward in

estimating the true treatment effects.

A straightforward method to correct this downward bias is to employ a Tobit model as

Amemiya (1984) discussed. Assume that the error term ε follows the normal distribution

independently with the mean 0 and the variance σ2. Then, the conditional probability that y∗i

is in (
¯
y, t) with t ≤ ȳ is:

Pr(y∗i ∈ (
¯
y, t)|di) = Pr

(
¯
y − β0 − β1di

σ
< εi <

t− β0 − β1di
σ

∣∣∣∣ di)
= Φ

(
t− β0 − β1di

σ

)
− Φ

(
¯
y − β0 − β1di

σ

)
,

where Φ is a cumulative density function of the standard normal distribution. Taking the

derivative of the above conditional probability with respect to t and evaluating this at t = yi,

we have:

1

σ
ϕ

(
yi − β0 − β1di

σ

)
.

where ϕ is a density function of the standard normal distribution. Since the probabilities that

yi =
¯
y and that yi = ȳ are Φ

(
¯
y−β0−β1di

σ

)
and 1−Φ

(
ȳ−β0−β1di

σ

)
, respectively, the log-likelihood

function can be written as follows:

L(β0, β1; yi, di) =
n∏

i=1

[{
Φ

(
¯
y − β0 − β1di

σ

)}1{yi=
¯
y} {

1

σ
ϕ

(
yi − β0 − β1di

σ

)}1{yi∈(
¯
y,ȳ)}

×
{
1− Φ

(
ȳ − β0 − β1di

σ

)}1{yi=ȳ}
]
,

(6)

where 1 is an indicator function which takes one if the argument is true and zero otherwise.

The parameters, β0 and β1, can be estimated by the maximum likelihood method.

Another method is using the least absolute deviations (LAD) estimation. Powell (1984)

develops a technique to apply the LAD to a censored regression. One of the features of LAD is

using the median, which allows weaker assumptions on the error term than in Tobit regression.
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The model is given as follows:

Y ∗
i = X ′

iβ + ui (7)

Yi = max{Y ∗
i , 0} (8)

Med[ui|Xi] = 0, (9)

where the observation is censored at the lower bound, 0. In this case, we do not have to assume

the distribution form of the error term ui. The censored LAD estimator is given as follows:

β̂ = argmin
b

N∑
i=1

|Yi −max{Y ∗
i , 0}|. (10)

We also employ this LAD estimation method in the empirical analysis below so that we can

compare the results of existing studies based on the OLS, the Tobit model, and the LAD

estimation model.

2.2 Time Use

A child’s true ability can be observed not only by his/her test score but also by time to solve an

exam. Let pi and ti be, respectively, the test score in points and the speed, i.e., the time spent

by each individual i to solve one question. Denote that T > 0 is the time limit of the exam. Let

yi be the total score, a proxy of ability based on both the score point and time information. To

formally present these considerations, we postulate the following “true” total test score function

in which yi is a function of pi and ti:

y∗i = s(pi, ti). (11)

Note that a usual “observed” test score measure can be expressed as ỹi = s(pi, T ) given that all

the examinees are expected to stay in the exam until the very end of the exam. In this setting,

if all examinees can solve all the questions within the exam time, the speed does not directly

affect the observed outcome. It would be natural to assume ∂s
∂pi

> 0 and ∂s
∂ti

< 0, because if

you obtain a higher test score and spend less time than others in solving questions, then your

ability should be regarded as better and so should the final total score be. Assume that the

marginal rate of substitution, defined by −∂s/∂pi
∂s/∂ti

, is positive and increasing. This makes the
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shape of indifference curve, which shows the same ability line, as indicated in Figure 1.6 This

restriction incorporates the standard properties of the microeconomic model with two goods in

which one component is a “bad” because more time indicates worse ability. Hence, our setting

would be seen as natural. Since test score points and time to solve questions are determined by

each student’s (cognitive) ability, we can postulate that pi and ti are a function of ability, ai,

we have:

pi = p(ai)

ti = t(ai),

where we can assume:

∂p(ai)

∂ai
> 0

∂t(ai)

∂ai
< 0.

As mentioned above, the last two assumptions seem reasonable: If your ability is higher, you

will obtain a higher score, which corresponds to α1 > 0 in Equation (1). Also, you can solve

questions faster in this case.

Finally, we incorporate a treatment status of a program, di, which is assumed to be con-

tinuous without loss of generality. For example, we can think about a situation where we model

the impact of continuous treatment intensity.7 Assume that there is a positive treatment on

the ability as in Equation (2) with γ1 > 0: and ∂ai
∂di

> 0.

In sum, we can represent the (continuous) treatment effects of the program on the total

6This figure is created for measuring students’ ability by a test called Diagnosis Test when they start a program
offered by Kumon Ltd., one of the most extensive non-formal education program founded in Japan and running
their business across 59 countries including the UK as of November 2021, according to the Kumon Institute of
Education Co., Ltd. See https://www.kumongroup.com/eng/about/?ID=eng_about-kumon for the details (Last
access: 21st January, 2022). See the discussion in Section 3 for the details.

7If we consider a typical program evaluation setting, alternatively we can model the binary treatment by
modifying this formula in a discrete way. We can then compare the difference in the derivatives of the total score
with respect to the ability evaluated by each treatment status.

8

https://www.kumongroup.com/eng/about/?ID=eng_about-kumon


score for yi and ỹi as follows:

∂yi
∂di

=
∂si
∂pi︸︷︷︸
(+)

∂pi
∂ai︸︷︷︸
(+)

∂ai
∂di︸︷︷︸
(+)

+
∂si
∂ti︸︷︷︸
(−)

∂ti
∂ai︸︷︷︸
(−)

∂ai
∂di︸︷︷︸
(+)

∂ỹi
∂di

=
∂si
∂pi

∂pi
∂ai

∂ai
∂di

.

Therefore,

∂yi
∂di

>
∂ỹi
∂di

. (12)

Hence, if we measure the treatment effects only with the conventional test score without consid-

eration of time information, we would underestimate the true treatment effect especially when

the duration of the exam is too short and/or the number of exam questions are too few for which

ti = T for all i. This model illustrates that measuring both score and time seems indispensable

to accurately capture the treatment effects on educational outcomes.8 We examine this theor-

etical implication empirically based on observed test scores and time spent from Sawada et al.

(2020) in Section 3.

3 Data and Empirical Analysis

To show the extent to which the bias discussed above appears and how we can correct it at least

partly, we employ two different sets of data sources: First, data from the highly cited empirical

studies with randomized controlled trials (RCTs); and, second, the data set we collected for

another study.

First, after replicating the three highly-impacted papers, i.e., Duflo, Dupas and Kremer

(2011); Duflo, Hanna and Ryan (2012); Duflo, Dupas and Kremer (2015); Pradhan et al. (2014),

we correct their estimators based on the above-mentioned existing methods of the Tobit and

LAD models. Second, we show the effectiveness of the other approaches using the extended

dataset with individual exam completion time taken from Sawada et al. (2020).

8One crucial note is that by thinking about a partial derivative, we assume that examinees will not change
their behaviors to obtain better scores between two cases. If they knew the final score might increase when they
sacrifice the quality of the answer but solve questions in a short time, the treatment effects in terms of test score
might be underestimated. Therefore, to implement fully, it is essential to introduce correct students’ incentives
not for them to do so. However, we can also consider this type of strategies as an indication of a “better” ability.
This relates to the discussion on how to utilize the information on time into the final measure of abilities, such
as in Figure 1.
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3.1 Replication and Correction of the Three Existing Studies

First, we replicate Duflo, Dupas and Kremer (2011) which examines the effects of the tracking

system based on an RCT conducted with primary schools in Kenya. The study finds that such

a system can generate positive impacts on students’ test scores directly and indirectly. Figure 2

shows histograms of the standardized total score, math score, and literature score based on the

data set of Duflo, Dupas and Kremer (2011). All of these figures show a mass at the lower

bound of the test score, which would potentially generate the sample selection bias. Table 1

shows the estimated treatment effects of their program with the measure of the total score, math

score, and literature score, and compares the estimated effects using the Ordinary Least Squares

(OLS), which is the replication of their original results, and type I Tobit model, which considers

and corrects the selection bias. We can verify that the OLS estimates are systematically lower

than the Tobit estimates in most cases, especially for literature scores for which clustering at

the lower bound test score is salient (Figure 2).910

Second, we reproduce the reported results in Duflo, Hanna and Ryan (2012) on India which

investigates whether teachers reduce their absence if they have an incentive to work, which

will result in the improvement of education standards. They conducted an RCT to examine

the effects of financial incentives for teachers on students’ test scores in elementary schools,

using a linear regression model. As indicated in Figure 3, we can see that the distribution

of the math score, retrieved from the original data, has a mass on the lower bound of the

test score. This might be a potential source of downward bias in the absolute value of the

estimated treatment coefficient. Table 2 shows the replicated results and our results based on

the Tobit model. Especially, the estimated treatment effect of 0.271 with selection correction

in Column (2) is 29% larger than the replicated coefficient of 0.210 in Column (1). A similar

tendency appears in the language and total scores. Given that the estimated treatment effects

in education interventions are generally small, around 0.2, this difference arising from selection

bias seems substantial which needs some care. Column (3) reports the results based on the LAD

estimation method.11 It would be straightforward to see that the estimated impact is corrected

9We are now updating our manuscript by conducting another method called LAD, described in Section 2.1,
which does not require the normality assumption.

10For further investigation, we are now conducting several tests on whether the original estimates and the
correct estimates are statistically different or not. This information would be helpful to understand further on
the potential bias.

11Note that the standard errors of the LAD are not clustered, so in this draft, we will not compare the
significance level between ones from the LAD and others, while ones from the OLS and the Tobit model are
clustered and we can compare them.
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upwards by the LAD model.12

Third, we replicated the results of Duflo, Dupas and Kremer (2015), which examines the

effects of the Extra Teacher Program (ETP) and the School-Based Management (SBM) on

students’ test scores, school attendance, and dropout. The paper employs three test score

measures, i.e., total score, math score, and literacy score, in which we can see that the math score

has a mass on the lower bound of the score as shown in Figure 4. Table 3 shows the replicated

results and our results with selection correction. According to this table, the effects of the basic

ETP program and the ETP with the SBM program increase by 6.8% and 4.7%, respectively,

after selection correction. While the difference is modest, we do observe the selection bias.13

Finally, we re-estimated the same model with the same data from Pradhan et al. (2014), The

paper examines the effects of strengthening school committees in public schools in Indonesia,

based on an RCT. The histogram of the outcome variable, the standardized test score, is shown

in Figure 5. Based on these histograms, we do not see obvious bunching especially in lower

bounds. Therefore, if we use the correction method, we would expect there would be no change

in the estimated treatment effects. This exercises could be taken as a sort of falsification test.

Indeed, as we can see in Table 4, we do not see an apparent change in the original findings. This

would suggest that it will be useful to conduct the Tobit model estimation for an RCT-based

analysis regardless of the obvious existence of bunching in lower or upper bounds of the outcome

variable..

3.2 Using Unique Test Features of Sawada et al. (2020)

Furthermore, to illustrate other ways to correct the potential bias, we employ test results

collected by an RCT in Bangladesh as described in (Sawada et al., 2020). This RCT was

conducted to evaluate the effectiveness of an education program, an individualized self-learning

program, of Kumon Ltd. (hereafter Kumon), a world-widely famous non-formal education firm,

among the disadvantaged students studying at BRAC Primary School (BPS). Our original

subjects are around 1,000 students in 34 schools (i.e., about 30 students per school) which are

12The LAD gives smaller estimates for outcomes with a smaller mass at the point censored, so it would be
important to see the distribution of the outcome of interest before naively running the OLS, in addition to
comparing results from several methods. The same is true for some re-estimates of Duflo, Dupas and Kremer
(2015) and Pradhan et al. (2014). Again, this seems to be because of the original empirical distribution of the
test scores. What is important is to choose appropriate methods based on the shape of the distribution and
carefully compare the results from several methods.

13Some results show smaller estimates for the Tobit model. This could be due to the normality assumption,
which might not be plausible in this setting. However, we believe that it is important to compare the results
using this method to quantify the potential significance of the bias.

11



randomly selected out of 179 schools in 4 branches of BRAC in the Dhaka area with grade-

specific strata. Out of 34 schools, we randomly set 17 treated schools and 17 control schools

(Sawada et al., 2020).

As a baseline data set, Kumon conducts Diagnosis Test (DT) for their individualized self-

learning program to adjust the initial level for each student. DT score plays a critical role in the

program because, to offer the learning materials at a suitable level for each child, it is needed

to accurately determine the initial level of students’ abilities. By offering DT, the program

utilizes not only the mere test score but also the time spent to solve the problem set to evaluate

students’ abilities.14 The full score of the DT was set at 70. The histogram of the DT score

is shown in Figure 6. As we can observe, the data has an upper bound score where many

observations are clustered.

In addition to the DT test score, Sawada et al. (2020) collected data on another test, called

the Proficiency Test of Self Learning (PTSII) from which we only use the cognitive test part of

PTSII (hereafter, PTSII-C) for our analysis. This test has a very large number of questions,

228 maths questions, with the time limit of 10 minutes. Therefore, by construction, no one is

expected to finish solving all the questions in practice, meaning that there is no upper bound

of the observed test score. At the same time, some of the questions are extremely easy, such

as just tracing a line with a pencil, so essentially no one will obtain zero scores among primary

school students.15 As we expect, the histogram of PTSII-C test scores does not have lower and

upper bounds (Figure 7). This corresponds to the setting discussed in Section 2.1.16

3.2.1 Sample Selection Bias of RCTs

Based on the theoretical framework discussed in Section 2.1, we provide evidence on how dif-

ferent the treatment effects could be if we have a bound of the test score. specifically, we run

the following regression model:

wi = β0 + β1di + εi,

where the observed test score, wi equals to y∗i if we use PTSII-C because it does not have lower

and upper bounds by construction (Figure 7) and wi = yi if we use DT, because it has an upper

bound (Figure 6).

Our strategy is to compare several measures of abilities and discuss how we can utilize the

14See Sawada et al. (2020) for the detail of the exam and program.
15Indeed, we do not observe anyone who obtained a zero score in our sample.
16Test A corresponds to DT and test B to PTSII-C.

12



information on test scores and time. Table 5 shows the summary statistic of the DT score per

minute, DT score, DT time, PTSII-C score, and PSC math test scores. All of these variables

(except for the PSC, which were taken at the endline) show a balance of the baseline average

values which basically validate our RCT implementation.17

In Table 6, we report the estimated treatment effects of the Kumon program on cognitive

abilities, measured by PTSII-C, DT score, DT time, and DT score per minute. As discussed

above and shown in Figure 7, PTSII-C does not have a lower or upper bound of the test score.

In this case, the estimated treatment effects by the OLS would capture the unbiased estimate.

On the other hand, the OLS result using DT score, which has an obvious upper bound in

Figure 6, would generate downward-biased treatment effect. Indeed, The reported DT Score

and PTSII-C results in Table 6 are consistent with the existence of sample selection bias of the

estimate based on the DT test scores.18

One way to mitigate sample selection bias is to adopt the classical Tobit model with a set

of normality assumptions. Table 7 shows the comparison of the estimates of treatment effects

measured by DT score using OLS and type I Tobit model. Here, out of 743 observations, 57

reached the upper bound. We can see the estimate of OLS is smaller in an absolute sense than

that of the Tobit model.19 This result also indicates possible downward bias in estimating the

true treatment effect.

3.2.2 Top-Coding and True Censoring

Angrist and Pischke (2008) lists the American Current Population Survey (CPS) earnings data,

which top-codes (censors) very high values of earnings to protect respondent confidentiality, as

a leading example of true censoring, in which the latent variable has an empirical counterpart

that is the outcome of primary interest. To text the validity of our approach to a top-coded data

set, we perform an additional analysis with PTSII-C which does not have a mass at the bounds

(Figure 7). We artificially top-code PTSII-C data by setting an upper bound test score at two

alternative values, 60 or 80 in the raw score (Figure 8). Theoretically speaking, these artificially

top-coded data would generate downward bias in the estimated treatment effect which can be

17See Sawada et al. (2020) for the further discussions. Table J4 is the corresponding table.
18Although we discuss the importance of incorporating the time information in Subsection 3.2.3, it is worth

mentioning it here. As shown in Figure 9, the DT score per minute, which is the DT score divided by DT time,
does not suffer from censoring. Taking several dimensions into account might mitigate this type of censoring
issue so that the OLS estimator can be unbiased.

19Although the difference seems small, the effect is shown in the unit of standard deviation and an educational
context, a 0.04 s.d. change is large. Therefore, this downward bias is crucial.
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corrected if we employ the Tobit model.

Our actual data and analysis support these prior predictions. According to the estimation

results reported in Panel A of Table 9, we can verify the downward biases in estimated treatment

effects with top-coded data (Columns (2) and (3) ). Also, as we expect, the magnitude of the

bias is larger with a wider range of top-coding (Column (3)) is larger than that with a narrower

range of top-coding (Column (3)). In testing the difference between these estimated coefficients,

we reject the null hypothesis of the equality of these coefficients (columns (2) and (3) in panel

C. These results indicate that the bias arising from censoring of test scores is not negligible.

We adopt the Tobit model to correct the bias whose estimation results are reported in

Columns (2) and (3) in Panel A. We can observe that the estimation biases are mitigated.

Indeed, formal tests of the null hypothesis in which the original OLS estimate with non top-

coded data is equal to the Tobit estimate with top-coded data cannot be rejected statistically

(Panel C). These results suggest that the Tobit model can effectively mitigate selection bias due

to censoring.

3.2.3 Time Use

Based on the model formulated in Section 2.2, we present an analysis incorporating the time to

solve the exam questions.

First, in Table 6, it is notable that Kumon mehotd reduced the solution time of the DT

test significantly. Hence, incorporating solution time into the estimation of treatment effects on

test scores can potentially mitigate selection bias. Indeed, the DT score per minute also shows

statistically significant treatment effects. Also, as illustrated in Figure 9, it does not seem to

suffer from censoring. Therefore, using the time information could have the potential to solve

the issue of bias.

We can validate our framework by using the nation-wide Primary School Certificate (PSC)

exam as our benchmark outcome. Table 8 shows the result of empirical analyses where we

regress the GPA of PSC on DT score, DT time, and DT scores per minute at the beginning of

the intervention.20 Note that the last measure, DT score per minute, incorporates both time

and score information. This table illustrates how precisely each variable can predict the later

educational outcome, measured outside of the Kumon program, i.e., PSC exam GPA.21 Note

20Note that we did not use the clustering here because our purpose is to predict the PSC based on the baseline
outcomes.

21Note that PSC itself is measured by the score and not based on time. This approximation is a potential
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that all variables are standardized. The reported coefficients indicate how well the prediction

of PSC results based on each variable. Comparing Columns (1) and (3), which correspond to

the predictions based only on the score and on both score and time, respectively, we can see

that the latter can provide a more precise prediction because the coefficient is closer to unity

with better fitness than the former.22

4 Concluding Remarks

In this paper, we show that even in randomized controlled trials (RCTs), estimated treatment

effects can still be downward-biased due to the classical sample selection problem arising from

the existence of the upper and lower bound of the observed test scores. We provide theoretical

backgrounds of the mechanism of the underestimation. We then propose possible ways to

mitigate such a bias. In addition to the classical sample selection correction method using the

Tobit model, we can also incorporate information about the speed of solving questions. Even

if it is difficult to measure the time to solve the questions due to the standard setting of the

exams, usage of tests without an upper and lower bound of the test score would be an effective

alternative to measure the abilities accurately.

In sum, we suggest three concrete ways to correct such bias. First, by employing the

conventional sample selection correction methods; second, by using tests that are designed with

an extensive set of questions from easy to challenging levels which allow students to answer the

maximum they could; and third, by incorporating each student’s completion time in estimations.

Empirical results based on our experiment as well as an influential RCT confirm the existence

of sample selection bias. Also the proposed adjustment methods can mitigate this classical

selection bias at least partly. Especially, We conclude that using the time information when we

measure the ability seems very effective.

Our theoretical and empirical results provide important implications for future studies.

Although measuring people’s cognitive abilities by test score is very common in a wide variety

of existing studies in program evaluations and elsewhere, we need to be cautious in interpreting

the estimation results because the estimated treatment effects might involve downward bias.

caveat, but this is the only measure available outside of the Kumon program.
22The p-value of the test which examines whether the two coefficients are the same or not is 0.0164.
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Figure 1. Diagnostic Test from Kumon Ltd.

Figure 2. Distribution of Scores in Duflo, Dupas and Kremer (2011)
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Figure 3. Distribution of Scores in Duflo, Hanna and Ryan (2012)
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Figure 4. Distribution of Scores in Duflo, Dupas and Kremer (2015)
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Figure 5. Distribution of Scores in Pradhan et al. (2014)
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Table 5. Summary Statistics

Dependent Variable Treatment Control N

PTSII-C 34.665 39.040 787
[10.603] [15.508]

DT Scorea 47.419 47.291 663
[15.608] [16.555]

DT Timea 9.879 9.960 663
[0.918] [0.295]

DT Score per mina 4.894 4.757 663
[1.943] [1.693]

PSC GPAb 3.514 3.705 334
[1.529] [1.227]

Notes: Standard deviations are shown in brackets.
Asymptotic standard errors are shown in parentheses
and are clustered at the school level. The sample size
is different from Table 1 of Sawada et al. (2020), be-
cause we only focus on pupils with both baseline and
endline records for each outcomes, except for PSC.
a: DT stands for math Diagnostic Test. DT Score
per min stands for math Diagnostic Test scores per
minute..
b: PSC GPA means the Point Average of the Primary
School Certificate Grade. The letter grades from A+
to A, A-, B, C, D, and F are assigned: if the score is
in the range of 80 to 100, the letter grade is an A+;
if 70 to 79, it is an A; if 60 to 69, it is an A-; if 50 to
59, it is a B; if 40 to 49, it is a C; if 33 to 39, it is a
D; and if below 33, it is an F. GPA is calculated as 5
if A+; 4 if A; 3.5 if A-; 3 if B; 2 if C; 1 if D; and 0 if
F, following the Bangladesh government.

Table 6. Impact of Kumon on Students’ Learning Outcomes

Dependent Variable PTSII-C Scorea DT Scoreb DT Timeb DT Score per minb

(1) (2) (3) (4)

Treatment 1.212*** 0.501** -2.122*** 2.073***
(0.292) (0.226) (0.544) (0.570)

Constant 0.679*** 0.521*** -0.881*** 0.839***
(0.212) (0.142) (0.227) (0.158)

Num of Obs. 787 663 663 663
R-squared 0.193 0.048 0.182 0.168

Notes: This is from Panel C of Table E2 of Sawada et al. (2020), which focuses on the
Difference-in-Differences specification. Asymptotic standard errors based on testing the
hypotheses that the differences between the treatment and control is zero are shown in
parentheses and are clustered at the school level. The superscripts, ***, **, *, denote the
statistical significance obtained by clustered wild bootstrap-t procedures at the 1 percent,
5 percent, and 10 percent level, respectively.
a: PTSII-C Score stands for the math proficiency test scores.
b: DT stands for math Diagnostic Test. We use three outcomes of DT for measuring
cognitive abilities: DT score, DT time, and DT score per minute (DT scores per min).
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Table 7. Impact of Kumon on Students’ Learning Outcomes

Dependent Variable DT Scorea

OLS Tobit

(1) (2)

Treatment 0.490*** 0.563***
(0.137) (0.175)

Constant 0.600*** 0.616***
(0.104) (0.111)

N 663 663

R-squaredb 0.095 0.045

Notes: This is from Table 2 of Sawada et al.
(2020). Asymptotic standard errors based
on testing the hypotheses that the differences
between the treatment and control is zero
are shown in parentheses and are clustered
at the school level. We focus on pupils with
both baseline and endline records for each out-
comes. In addition, we omit the observa-
tions with wrong level DT from the analysis
on DT. All variables are standardized. The
superscripts, ***, **, *, denote the statist-
ical significance obtained by (i) clustered wild
bootstrap-t procedures for the OLS and (ii)
(standard) clustered for the Tobit model at the
1 percent, 5 percent, and 10 percent level, re-
spectively.
a: DT stands for math Diagnostic Test.
b: For the Tobit model, this corresponds to
the pseudo-R-squared.

Table 8. Prediction of PSC Results

Independent Variable: DT Scorea DT Timea DT Score Per Mina

(1) (2) (3)

Coefficient 0.152* 0.006 0.165**
(0.080) (0.084) (0.082)

Constant 3.558*** 3.582*** 3.567***
(0.075) (0.075) (0.075)

Num of Obs. 367 367 367
R-squared 0.010 0.000 0.011

Notes: Asymptotic clustered standard errors are shown in parentheses.
The sample size is different from Table 1 of Sawada et al. (2020), because
we only focus on pupils with both baseline and endline records for each
outcomes. In addition, we omit the observations with wrong level DT
from the analysis on DT. All variables are standardized. The superscripts,
***, **, *, denote the statistical significance at the 1 percent, 5 percent,
and 10 percent level, respectively.
a: DT stands for math Diagnostic Test. DT Score per min stands for
math Diagnostic Test scores per minute.
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Table 9. Comparison of Estimates between Censored and Non-censored Outcomes

Dependent Variable PTSII-C Scorea

Original Censored at 80 Censored at 60

(1) (2) (3)

Panel A: OLS Estimates

A. Treatment 0.754*** 0.729*** 0.514***
(0.171) (0.165) (0.107)

Constant -0.372*** -0.379*** -0.471***
(0.086) (0.084) (0.060)

Num of Obs. 787 787 787

Panel B: Tobit Correction

B. Treatment 0.750*** 0.754***
(0.172) (0.170)

Constant -0.370*** -0.396***
(0.087) (0.087)

Num of Obs. 787 787

Panel C: p-values of Statistical Tests

I. Difference among OLS Estimates A(1) = A(2) A(1) = A(3)
0.022** 0.001***

II. Difference between Specifications A(2) = B(2) A(3) = B(3)
0.047** 0.001***

III. Difference between the Original Value A(1) = B(2) A(1) = B(3)
and the Corrected Values 0.344 0.999

Notes: Asymptotic standard errors are shown in parentheses and are clustered at the school
level. The superscripts, ***, **, *, denote the statistical significance obtained by clustered
wild bootstrap-t procedures for Panel A and ones by clustered for Panel B and C, at the 1
percent, 5 percent, and 10 percent level, respectively.
a: PTSII-C Score stands for the math proficiency test scores.
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