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ABSTRACT

Access to high-dimensional data has made the use of machine learning in the causal inference

more common in recent years. The double/debiased machine learning (DML) estimator for the

treatment effect is designed to obtain the valid inference when nuisance functions, in the treat-

ment and the outcome equations, are estimated using machine learning methods. However,

when some covariates in the treatment equation are not correlated with the outcome, inclusion

of such covariates, called instruments, in the estimation of the propensity score in the treat-

ment equation will result in increasing bias and variance of DML estimator. To solve this issue,

we introduce an outcome-adaptive DML estimator which incorporates the outcome-adaptive

lasso to exclude the instruments from the propensity score. We evaluate the performance of

the proposed method using Monte Carlo simulation. The results indicate that our proposed

method outperforms other methods in many cases.

Keywords: Causal inference, Double/debiased Machine Learning, High-dimensional data, Ma-

chine Learning, Outcome-Adaptive Lasso.

Abbreviations: ATE, Average treatment effect; IPW, Inverse probability weighted estimator;

DR, Doubly robust estimator; DML, Double/debiased machine learning estimator.
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INTRODUCTION

In an observational study where the allocation of the treatment of interest is not randomized,

the treatment allocation to each subject depends on clinicians or subjects, causing imbalances

in the characteristics of the subjects between the groups with and without treatment. Such

imbalances often introduce a selection bias to the estimation of the true treatment effect. To

remove the selection bias and accurately estimate the true treatment effect, one should consider

controlling these unbalanced characteristics by including covariates in a statistical model such

as a multivariate regression model. However, in case that the regression model includes a large

number of covariates relative to the number of the subjects, the problem of overfitting results in

poor performance of regression analysis[1]. In recent years, high-dimensional data is commonly

used in observational studies as a result of increasing access to electronic medical records and

health claim data. Analysts need to take extra caution in the variable selection, especially if

too many candidates of covariates are available in high-dimensional data.

The propensity score approach is useful in the estimation of the treatment effect with

high-dimensional data, because the propensity score, defined as the probability of receiving

a treatment conditioned on observed covariates, aggregates information from many covariates

into a single value[2]. There are several different ways of using the propensity score to remove

selection bias in the evaluation of the treatment effect, such as the matching method based

on the propensity score[3], stratification according to propensity score intervals[4], and inverse

probability weighted (IPW) estimation[4, 5, 6]. The propensity score is often calculated using a

multivariate logistic regression model, in which the treatment variable is generated as a function

of the covariates representing characteristics of the subjects. As suggested by Schuster et al.

(2016)[7] and Chen et al. (2016), overfitting in the propensity score model can lead to inflation

of the variance of the treatment effect estimator. So, the overfitting problem remains on how to

account for many covariates with high-dimensional data even if one uses the propensity score

approach.

In the presence of high-dimensional covariates, the machine learning methods are helpful

in reducing the dimension of covariates through regularization [8, 9, 10, 11]. For example,

Setoguchi et al. (2008)[12] and Lee et al. (2010)[13] have examined the performance of the
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propensity score approaches combined with the machine learning methods in Monte Carlo

simulation. They have shown some advantages of using the machine learning methods when

the true propensity score model involves non-linearities and interaction terms. At the same

time, as pointed out by Chernozhucov et al. (2017, 2018)[14, 15], regularization by the machine

learning method may exclude variables relate to both of the outcome and treatment variable

which may result in a type of omitted variable bias, which is often referred to as regularization

bias. To reduce the regularization bias, Chernozhucov et al. (2018) proposed double/debiased

machine learning (DML) estimator which is closely related to the doubly robust (DR) estimator

of Robins et al. (1995)[16], Hahn (1998)[17] and Bang and Robins (2005)[18]. The DR estimator

controls the effect of covariates by estimating a pair of nuisance functions: (1) the unknown

propensity score in the treatment equation, and (2) the unknown conditional mean function in

the outcome equation. It is considered robust because the treatment effect can be estimated

even if one of the two functions is misspecified. At the same time, the DR estimator is known

to be asymptotically more efficient than the IPW estimator[4].

Chernozhukov et al. (2018) pointed out that the DR estimator removes the regularization

bias even if the pair of nuisance functions are estimated by machine learning methods because

it satisfies Neyman orthogonal property. It is known that using moment condition that satisfies

Neyman orthogonal property reduces the sensitivity with respect to nuisance functions in the

estimation of the parameter of the interest. At the same time, however, Chernozhukov et

al. (2018) suggested that the original DR estimator is subject to a bias from overfitting and

the DML removes the bias from overfitting by cross-fitting. In the process of cross-fitting,

the dataset is randomly resampled into the auxiliary samples and the main samples. Then,

the nuisance functions for the outcome and treatment are estimated using auxiliary samples,

whereas the parameter of interest is estimated using main samples. While DML is expected to

work well in the presence of many confounders, i.e., covariates that associate with the outcome

and the treatment, its performance regarding the variable selection is not yet systematically

investigated.

In estimating the unknown propensity score in the treatment equation, the machine learning

methods tend to select the variables which have stronger association with the treatment and
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exclude the variables which have no association. Brookhart et al. (2006)[19], Bhattacharya et

al. (2007)[20], Patric et al. (2011)[21], and Myers et al. (2011)[22] suggested that the inclu-

sion of covariates associated with the treatment variable but not with the outcome variable,

i.e., instruments into the propensity score model causes the variance inflation of the estimated

treatment effect. Hence, in order to remove the instruments from the propensity score model

automatically, Shortreed and Ertefaie (2017)[23] proposed the propensity score estimation using

outcome-adaptive lasso which weakly penalizes the coefficients of covariates that are strongly

related to the outcome, and selects these covariates in the propensity score model while ex-

cluding other covariates such as the instruments. While they focus on the IPW estimator, we

are interested in whether the outcome-adaptive approach is also useful in the variable selection

when the true effect of the treatment is estimated by the DML estimator.

In this paper, we propose a modification of DML estimator using the outcome-adaptive

lasso, so that all true confounders and predictors of outcome are automatically selected and

other covariates are excluded in the estimation of the propensity score. We call our proposed

estimator by the outcome-adaptive DML estimator. To see if our proposed method works, we

conduct simulation experiments to evaluate the performance of our proposed outcome-adaptive

DML estimator in various settings. In our simulation, we generate the high-dimensional data

where some covariates are (i) confounders, namely, variables correlated with both treatment

and outcome, (ii) outcome predictors, namely variables correlated with outcome but not treat-

ment, and (iii) instruments, namely, variables correlated with treatment but not outcome. The

performance of our outcome-adaptive DML estimator is compared with that of the IPW esti-

mator using the standard machine learning method considered in Setoguchi et al. (2008) and

Lee et al. (2010), the outcome-adaptive IPW estimator considered by Shortreed and Ertefaie

(2017), DR estimator and the original DML estimator. Note that two nuisance functions of the

DR estimator in our simulation are estimated using the standard machine learning method.

Because the effect of variable selection in such a DR estimator is not yet known, we also com-

pare it with the outcome-adaptive DR estimator, which is the outcome-adaptive version of the

DR estimator.
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METHODS

IPW, DR and DML estimators

We first provide the basic formula for IPW, DR and DML estimators for average treatment

effects (ATE). Let Di ∈ {0, 1} be the binary treatment variable and Yi be the scalar continuous

outcome variable. We follow Chernozhukov et al. (2017, 2018) and consider a model of a vector

(Yi, Di, Xi) given by

Yi = g(Di, Xi) + Ui, (1)

Di = m(Xi) + Vi, (2)

for i = 1, ..., N , where Xi = (X1i, X2i, ..., Xpi) is the p-dimensional vector of the confounders,

g(D,X) = E[Y |D,X] is the conditional mean function of the outcome equation, m(X) =

Pr[D = 1|X] is the propensity score, and Ui and Vi are error terms that satisfy E[U |D,X] = 0

and E[V |X] = 0, respectively. In this model, ATE is defined as

θ = E[g(1, X)− g(0, X)] (3)

which is the target parameter of interest.

The standard estimators of ATE include the IPW estimator given by

θ̂IPW =

{
N∑
i=1

Di

m̂(Xi)

}−1 N∑
i=1

DiYi
m̂(Xi)

−

{
N∑
i=1

(1−Di)

1− m̂(Xi)

}−1 N∑
i=1

(1−Di)Yi
1− m̂(Xi)

(4)

and the DR estimator given by

θ̂DR =
1

N

N∑
i=1

{
ĝ(1, Xi)− ĝ(0, Xi) +

Di(Yi − ĝ(1, Xi))

m̂(Xi)
− (1−Di)(Yi − ĝ(0, Xi))

1− m̂(Xi)

}
(5)

where ĝ(D,X) and m̂(X) are estimators of g(D,X) and m(X), respectively. Under the un-

confoundedness assumption of Rosenbaum and Rubin (1983), both IPW and DR estimators

are known to be consistent for θ. Since both g(D,X) and m(X) are unknown and potentially
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complex, they can be estimated using the machine learning methods. For example, in simula-

tion experiments, Setoguchi et al. (2008) and Lee et al. (2010) evaluate the effect of using the

machine learning method to obtain m̂(X) in the IPW estimator (4). Similarly, the machine

learning method can also be employed in the DR estimator (5) to obtain ĝ(D,X) and m̂(X).

As pointed out by Chernozhukov et al. (2017, 2018), however, naive application of machine

learning methods to these estimators leads to bias from overfitting. To overcome this problem,

Chernozhukov et al. (2017, 2018) proposed the DML estimator for ATE. The DML estimator

is computed using the following steps of cross-fitting. For simplification, we assume that N is a

multiple of integer K. Take a K-fold random partition (Ik)
K
k=1 of {1, ..., N}, such that the size of

each fold Ik is fixed at n = N/K. For each set Ik, define its complement by Ick = {1, ..., N}\Ik.

In the first step, for each k(= 1, ..., K), estimate the ATE by

θ̂(Ik, I
c
k) =

1

n

∑
i∈Ik

{
ĝ(1, Xi; I

c
k)− ĝ(0, Xi; I

c
k) +

Di(Yi − ĝ(1, Xi; I
c
k))

m̂(Xi; Ick)
− (1−Di)(Yi − ĝ(0, Xi; I

c
k))

1− m̂(Xi; Ick)

}

where ĝ(D,X; Ick) and m̂(X; Ick) are g(D,X) and m(X) estimated using (Yi, Di, Xi) for i ∈ Ick,

respectively. In the second step, aggregate θ̂(Ik, I
c
k) for all k ∈ {1, ..., K} and DML estimator

is given by

θ̂DML =
1

K

K∑
k=1

θ̂(Ik, I
c
k). (6)

Outcome-adaptive approach for variable selection

Let us now generalize the covariate X in (1) and (2) to incorporate beyond confounders. In

particular, we follow Shortreed and Ertefaie (2017) to classify the covariates into four types of

variables. The first type of covariates is confounders, that are associated with both treatment

and outcome. The second type is outcome predictors, that are associated with outcome but

not with treatment. The third type is instruments, that are associated with treatment but

not with outcome. The last type is spurious (or irrelevant) variables, that are not associated

with treatment nor outcome. We introduce mutually exclusive and exhaustive sets of index

to covariates, C, P , I and S, for confounders, outcome predictors, instruments, and spurious

variables, respectively. For expositional simplicity, we also follow Shortreed and Ertefaie (2017)
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and impose the linearity of the conditional mean functions. Using this rule of notation, the

conditional mean function in (1) and the propensity score in (2) can respectively be written

as g(D,X) = θD +
∑p

j=1 βjXj with βj = 0 for j ∈ I, S and the propensity score m(X) ={
1 + exp

(
−
∑p

j=1 αjXj

)}−1
with αj = 0 for j ∈ P , S.

Note that for all of three estimators, namely, IPW estimator (4), DR estimator (5) and DML

estimator (6), estimation of m(X) is required. For the IPW estimator (4) with many covariates,

for example, natural choice is to employ adaptive lasso for the estimation ofm(X). In particular,

adaptive lasso estimator of α = (α1, α2, .., αp)
′ in m(X) =

{
1 + exp

(
−
∑p

j=1 αjXj

)}−1
is given

by

α̂AL = arg min
α

[
N∑
i=1

{
−Di

(
p∑
j=1

αjXji

)
+ log

(
1 + exp

(
p∑
j=1

αjXji

))}
+ λN

p∑
j=1

ωj|αj|

]
(7)

where λN is the regularization parameter, ωj = |α̃j|−γ with γ > 0 and α̃ = (α̃1, α̃2, ..., α̃p)
′ is

the first-step estimator of α using ridge regression. Shortreed and Ertefaie (2017) proposed

the outcome-adaptive approach for the variable selection in (2) for computing the IPW esti-

mator. In this approach, adaptive lasso estimator α̂AL is modified so that the penalties for

the coefficients of covariates depend on the strength of relations to the outcome. To be spe-

cific, their proposed outcome-adaptive lasso estimator α̂OAL replaces ωj = |α̃j|−γ in (7) by

ωj = |β̃j|−γ, where β̃ = (β̃1, β̃2, ..., β̃p)
′ is the ridge regression estimator of β = (β1, β2, .., βp)

′ in

g(D,X) = θD+
∑p

j=1 βjXj. As shown by Shortreed and Ertefaie (2017), provided λN/
√
N → 0

and λNN
(γ−1)/2 → ∞, an outcome-adaptive lasso estimator is consistent in the sense that

α̂OAL →p α∗, where α∗ is a pseudo true value satisfying α∗j = 0 for j ∈ I, S. As long

as the outcome-adaptive lasso correctly selects confounders, the bias from misspecifying the

propensity score is typically smaller than the bias and variance that come from selecting in-

struments. This is an intuitive explanation of why the outcome-adaptive approach works in

the presence of instruments. In this paper, we introduce an outcome-adaptive DML estimator

where m̂(Xi; I
c
k) in DR estimator (6) is estimated by α̂OAL using a subsample from the set Ick.

From the argument of Chernozhukov et al. (2017, 2018), an outcome-adaptive DML estimator

is asymptotically equivalent to the original DML estimator as long as their assumption 5.1

8



is satisfied with the original score function m(X) =
{

1 + exp
(
−
∑p

j=1 αjXj

)}−1
replaced by

m∗(X) =
{

1 + exp
(
−
∑p

j=1 α
∗
jXj

)}−1
.

Simulation design

To evaluate the performance of our proposed DML estimator and other estimators for ATE,

we conduct Monte Carlo simulation experiments. We fix the number covariates at p = 200,

the sample size at N = 500, and generate Xi = (X1i, X2i, ..., X200i) for i = 1, ..., 500 from

independent multivariate standard normal distribution N(0, I200). For each draw, an associated

binary treatment variable Di is given by a Bernoulli distribution with its success probability

given by the propensity score m(Xi) = Pr[Di = 1|Xi] =
{

1 + exp
(
−
∑200

j=1 αjXji

)}−1
. A

continuous outcome variable is then generated from the outcome equation Yi = g(Di, Xi) + Ui

where g(Di, Xi) = θDi +
∑200

j=1 βjXji and Ui ∼ i.i.d.N(0, 1). We follow Shortreed and Ertefaie

(2017) and set the target parameter, ATE, at θ = 0 or 2. The role of covariates are controlled

by the choice of parameter values in α = (α1, α2, .., α200)
′ and β = (β1, β2, .., β200)

′. Four types

of covariates are given as follows: (i) a covariate Xj is a confounder (j ∈ C) if αj 6= 0 and βj 6= 0;

(ii) a covariate Xj is an outcome predictor (j ∈ P) if αj = 0 and βj 6= 0; (iii) a covariate Xj is

an instrument (j ∈ I) if αj 6= 0 and βj = 0; and (iv) a covariate Xj is a spurious (irrelevant)

variable (j ∈ S) if αj = 0 and βj = 0. The relationship between the treatment, outcome,

and all four types of covariates is illustrated in Figure 1. To evaluate the effect of strength of

instruments and the proportion of confounders, we employ the following sets of parameters in

four data generating processes (DGPs).

DGP 1. Benchmark

α = (1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, ..., 0.0)′

β = (0.6, 0.6︸ ︷︷ ︸
C={1,2}

, 0.6, 0.6︸ ︷︷ ︸
P={3,4}

, 0.0, 0.0︸ ︷︷ ︸
I={5,6}

, 0.0, ..., 0.0︸ ︷︷ ︸
S={7,...,200}

)′
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DGP 2. Strong instruments

α = (1.0, 1.0, 0.0, 0.0, 3.0, 3.0, 0.0, ..., 0.0)′

β = (0.6, 0.6︸ ︷︷ ︸
C={1,2}

, 0.6, 0.6︸ ︷︷ ︸
P={3,4}

, 0.0, 0.0︸ ︷︷ ︸
I={5,6}

, 0.0, ..., 0.0︸ ︷︷ ︸
S={7,...,200}

)′

DGP 3. Many confounders

α = (1.0, ..., 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, ..., 0.0)′

β = (0.6, ..., 0.6︸ ︷︷ ︸
C={1,...,20}

, 0.6, 0.6︸ ︷︷ ︸
P={21,22}

, 0.0, 0.0︸ ︷︷ ︸
I={23,24}

, 0.0, ..., 0.0︸ ︷︷ ︸
S={25,...,200}

)′

DGP 4. Strong instruments and many confounders

α = (1.0, ..., 1.0, 0.0, 0.0, 3.0, 3.0, 0.0, ..., 0.0)′

β = (0.6, ..., 0.6︸ ︷︷ ︸
C={1,...,20}

, 0.6, 0.6︸ ︷︷ ︸
P={21,22}

, 0.0, 0.0︸ ︷︷ ︸
I={23,24}

, 0.0, ..., 0.0︸ ︷︷ ︸
S={25,...,200}

)′

DGP 1 is the benchmark setting identical to the one used by Shortreed and Ertefaie (2017) in

their evaluation of the outcome-adaptive IPW estimator. In DGP 2, βj’s for instruments become

three times larger than those in DGP 1 to consider the case of stronger correlation between

instruments and treatment. In DGP 3, the number of confounders has been increased from 2

to 20, ten times larger than the number in DGP 1. In DGP 4, we consider the combination of

stronger instruments in DGP 2 and more confounders in DGP 3.

For each artificially generated data, we compute six estimators for ATE: (i) IPW estimator;

(ii) outcome-adaptive IPW estimator; (iii) DR estimator; (iv) outcome-adaptive DR estima-

tor; (v) DML estimator; and (vi) outcome-adaptive DML estimator. For the estimation of

the propensity score m(Xi), adaptive lasso is employed for IPW estimator, DR estimator and

DML estimator, while outcome-adaptive lasso is employed for outcome-adaptive IPW estima-

tor, outcome-adaptive DR estimator and outcome-adaptive DML estimator. For the choice of

the regularization parameter λN required for adaptive lasso and outcome-adaptive lasso, we

follow the procedure suggested by Shortreed and Ertefaie (2017) and search over the values in
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{N−10, N−5, N−1, N−0.75, N−0.5, N−0.25, N0.25, N0.49} to minimize the weighted absolute mean

difference between the exposure groups defined in their paper. Adaptive lasso is employed for

the estimation of the conditional mean function g(Di, Xi) required to compute DR estimator,

outcome-adaptive DR estimator, DML estimator and outcome-adaptive DML estimator. For

the cross-fitting used in the DML estimator and outcome-adaptive DML estimator, we use

10-fold random partition (K = 10) so that the size of each fold is set at n = 500/10 = 50.

To incorporate uncertainty induced by sample splitting, we also follow the recommendation by

Chernozhukov et al. (2017, 2018) and use the mean value after repeating the cross-fitting 5

times.

We evaluate the performance of six estimators using (i) the absolute bias computed as

R−1
∑R

r=1 |θ̂r − θ|; (ii) standard deviation (SD) computed as

√
R−1

∑R
r=1(θ̂r − θ̂)2 where θ̂ =

R−1
∑R

r=1 θ̂r; and (iii) root mean square error (RMSE) computed as

√
R−1

∑R
r=1(θ̂r − θ)2 where

θ̂r represents each of the six estimators using r-th data set in a total of R replications. To

evaluate the validity of the variable selection procedure using adaptive lasso and outcome-

adaptive lasso, we also compute relative frequencies of selecting each type of covariates in the

propensity score estimation in R replications. For example, if X1 is a confounder, we count how

often the coefficient α1 is estimated to be non-zero in R replications. Since there is more than

one variable in each type of covariate, we only report the average of selected frequencies among

the same type of covariate. In our experiment, the number of replications is set at R = 1, 000.

All the experiments are conducted using R version 3.6.1 (https://www.r-project.org/).

RESULTS

The results of our Monte Carlo experiments are presented in Figure 2 and Tables 1 and 2. Since

similar results are obtained between the cases with θ = 0 and θ = 2, we only report the result

of the former case. Figure 2 shows the box plots of 1,000 realizations of six estimators for ATE.

Table 1 reports the performance of six estimators in terms of absolute bias, SD and RMSE. It

should be noted that mean square error (MSE) can be decomposed into the sum of squared

bias and variance. Therefore, by definition, if all three metrics, namely, absolute bias, SD and

RMSE are squared, the first two values should sum up to the third value. For this reason, we
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can discuss the trade-off between bias and variance using Table 1. Table 2 presents the relative

frequencies of selected covariates in propensity score estimation.

DGP 1: The outcome-adaptive approach works well for all three estimators, namely,

outcome-adaptive IPW estimator, outcome-adaptive DR estimator and outcome-adaptive DML

estimator in reducing the bias and variance. For example, the absolute bias of the IPW esti-

mator is reduced from 0.12 to 0.03, while SD is reduced from 0.23 to 0.12. As a result, all the

outcome-adaptive estimators have very small RMSE around 0.11, with both outcome-adaptive

DR estimator and outcome-adaptive DML estimator performing slightly better than outcome-

adaptive IPW estimator. The top panel of Table 2 clearly shows the source of this improvement

comes from the fact that outcome-adaptive lasso selects outcome predictors for 100% of the

time, while instruments are selected only for less than 5% of the time. In contrast, when the

standard adaptive lasso is used, instruments are selected for almost all the time, which results

in larger bias and variance.

DGP 2: For the case of strong instruments, overall results are somewhat similar to the

benchmark case of DGP 1 with an exception of IPW estimator. Compared to the case of DGP 1,

both bias and variance of IPW estimator are much larger in the case of DGP 2. However, for the

outcome-adaptive IPW estimator, both bias and variance in the case of DGP 1 indeed become

smaller in the case of DGP 2. As a result, improvement of MSE in DGP 2 from IPW estimator to

outcome-adaptive IPW estimator stands out. In this sense, outcome-adaptive IPW estimator of

Shortreed and Ertefaie (2017) could become very effective when correlation of instruments and

treatment becomes stronger. At the same time, overall performance of outcome-adaptive IPW

estimator, outcome-adaptive DR estimator and outcome-adaptive DML estimator suggests that

the outcome-adaptive approach works equally well. This is also confirmed by the fact that the

proportion of selecting each covariate shown in the second panel of Table 2 is very similar to

the values in the top panel of Table 2.

DGP 3: For the case of many confounders, both DML estimator and outcome-adaptive

DML estimator outperform other estimators in term of bias reduction. While the outcome-

adaptive approach reduces bias from 2.61 to 1.73 for IPW estimator and from 1.61 to 1.33

for DR estimator, the size of reduction seems to be limited. The bias of DML estimator
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is smaller than those of outcome-adaptive IPW estimator and outcome-adaptive DR estima-

tor. However, both bias and variance of DML estimator can be further reduced by employing

outcome-adaptive DML estimator. Overall, outcome-adaptive DML estimator performs best

among all six estimators in terms of bias and MSE. It may be worth noting that the proportion

of selecting instruments by outcome-adaptive lasso reported in the third panel of Table 2 is

increased to around 9%.

DGP 4: For the case of strong instruments and many confounders, outcome-adaptive DML

estimator also performs best among all six estimators. When outcome-adaptive DML estimator

is employed, bias is smallest. At the same time, MSE is also the smallest. The bottom panel

shows that the proportion of selecting instruments by outcome-adaptive lasso is now above 25%

but is still much smaller than the 100% selection probability by adaptive lasso.

DISCUSSION

The DML estimator for treatment effects is designed to incorporate the machine learning meth-

ods in estimating unknown nuisance functions when many covariates are available. This paper

proposes the outcome-adaptive DML estimator which modifies the DML estimator for the

purpose of including outcome predictors and excluding instruments in the process of variable

selection in computing propensity scores. The performance of the proposed estimator is exam-

ined in a set of Monte Carlo simulation.

With the outcome-adaptive approach, confounders and outcome predictors are likely to be

selected, and instruments are likely to be excluded in the propensity score estimation. These

results suggest that the outcome-adaptive approach originally applied to IPW estimator by

Shortreed and Ertefaie (2017) is also useful in DR estimator and DML estimator. As noted

by Brookhart et al. (2006), inclusion of the confounders and the outcome predictors in the

propensity score tends to reduce the bias in the ATE estimation. At the same time, as discussed

in Brookhart et al. (2006), Bhattacharya et al. (2007), Patric et al. (2011), and Myers et al.

(2011) among others, inclusion of instruments in the propensity score tends to increase the

variance. As a consequence, bias and variance are reduced by employing the outcome-adaptive

DR estimator and outcome-adaptive DML estimator.
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It is true that the inclusion of instruments in the propensity score improves the prediction

accuracy of the treatment allocation for each patient. However, it is important to realize that

improving the accuracy in the treatment allocation does not necessarily improve the accuracy

of estimation of the treatment effect, which is the main parameter of interest (see also Westreich

et al. (2011)[24]). When the machine learning methods are naively employed in IPW estimator,

DR estimator and DML estimator with many covariates, they automatically select variables in

the propensity score to maximize the predictability of the treatment. However, when selecting

instruments are not desirable, outcome-adaptive lasso seems to be a reasonable choice of a

machine learning method.

We also find that, when there is a stronger correlation between the instruments and treat-

ment (DGP 2 and 4), bias and variance of the typical estimators become larger. For the case of

strong instruments, adaptive lasso tends to downplay the relative role of confounders and this

may be the reason why the standard estimators do not work well. In contrast, since outcome-

adaptive lasso selects both confounders and outcome predictors regardless of the strength of

instruments, the outcome-adaptive approach remains valid.

Even if there are many confounders, both the original DML estimator and the outcome-

adaptive DML estimator outperform other estimators in terms of bias reduction (DGP 3 and

DGP 4). The outcome-adaptive DML estimator performs best among all methods even if

many confounders are combined with strong instruments. In summary, outcome-adaptive DML

estimator provides the smallest MSE for all the data generating processes including the case

of many confounders. As a nature of clinical observational study, there are a large number of

candidates for confounders available in the clinical database. In such an environment, outcome-

adaptive DML estimator is expected to perform well. For the reasons described above, the use

of our proposed outcome-adaptive DML estimator is highly recommended.
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APPENDIX

Example: Right Heart Catheterization

As an example of applying outcome-adaptive DML estimator and other estimators, we use

SUPPORT (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treat-

ments) dataset of Murphy and Cluff (1990) [25]. Connors et al. (1996) [26] examined the

treatment effect of right heart catheterization (RHC) within the first 24 hours in the intensive

care unit (ICU) and provided the causal evidence on increased length of hospital stay, increased

total cost for cares, and decreased survival time among 5735 subjects (2184 subjects received

the treatment of RHC and 3551 subjects did not receive the treatment).

Using the same dataset, we estimate the ATE of RHC on the length of hospital stay, by six

estimators: (i) IPW estimator; (ii) outcome-adaptive IPW estimator; (iii) DR estimator; (iv)

outcome-adaptive DR estimator; (v) DML estimator; and (vi) outcome-adaptive DML estima-

tor. The outcome variable is the length of hospital stay. Covariates included in this analysis are:

age, gender, race, history of education, income, insurance, main disease category, sub disease

category, admission diagnosis, ADL, DASI (Duke Activity Status Index), resuscitate status on

day1, cancer, Support model estimate of the probability of surviving 2 months, APACHE score,

Glasgow Coma Scale, weight, temperature, mean blood pressure, respiratory rate, heart rate,

PaO2/FiO2, PaCO2, pH, White blood cell count, hematocrit, sodium, pottasium, creatinine,

bilirubin, albumin, urine output volume, and comorbidities category. Table 3 provides the point

estimates, standard errors, and 95% confidence intervals of ATE from six estimators. When

the outcome-adaptive approach is used, estimators of ATE are greater than those based on

adaptive lasso. This suggests the possiblity of some negative bias in estimating ATE without

using outcome-adaptive lasso. It is also interesting to note that ATE is significantly positive

only when outcome-adaptive DML estimator is used.
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TABLES

Table 1. Performance of six estimators for average treatment effects.

Metrics IPW
Outcome-adaptive

IPW
DR

Outcome-adaptive

DR
DML

Outcome-adaptive

DML

DGP 1 Bias 0.12 0.03 0.07 0.03 0.15 0.03

SD 0.23 0.12 0.14 0.10 0.24 0.11

RMSE 0.25 0.12 0.16 0.11 0.28 0.11

DGP 2 Bias 0.56 0.00 0.09 0.01 0.01 0.02

SD 0.36 0.09 0.16 0.10 0.25 0.09

RMSE 0.66 0.09 0.18 0.10 0.25 0.09

DGP 3 Bias 2.61 1.73 1.61 1.33 0.58 0.11

SD 0.63 0.66 0.37 0.37 1.14 0.93

RMSE 2.68 1.85 1.66 1.38 1.28 0.94

DGP 4 Bias 3.29 0.46 1.14 0.65 0.58 0.08

SD 0.80 0.42 0.37 0.27 0.81 0.43

RMSE 3.39 0.62 1.19 0.70 0.99 0.44

Bias, absolute bias; SD, standard deviation; RMSE, root mean square error; IPW, Inverse

probability weighted estimator; DR, Doubly robust estimator; DML, Double/debiased machine

learning estimator.

Metrics are computed in 1,000 replications.
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Table 2. Proportion of selected covariates in propensity score estimation.

Methods Confounders (C) Outcome predictors (P) Instruments (I)

DGP 1 Adaptive lasso 99.9% 7% 99.9%

Outcome-adaptive lasso 100% 100% 4.8%

DGP 2 Adaptive lasso 96.5% 5% 100%

Outcome-adaptive lasso 100% 100% 5.3%

DGP 3 Adaptive lasso 97.8% 9% 97.8%

Outcome-adaptive lasso 100% 100% 8.9%

DGP 4 Adaptive lasso 91.2% 6.9% 100%

Outcome-adaptive lasso 100% 100% 25.9%

Proportion of covariates with non-zero coefficients in 1,000 replications.

Table 3. Average treatment effects of right heart catheterization.

95% Confidence Interval

ATE Standard Error Lower Upper

IPW 1.82 1.27 -0.66 4.3

Outcome-adaptive IPW 2.31 1.23 -0.11 4.72

DR 1.16 1.42 -1.61 3.94

Outcome-adaptive DR 1.97 1.31 -0.61 4.54

DML 2.38 1.24 -0.05 4.8

Outcome-adaptive DML 2.77 1.21 0.4 5.15

ATE, Average treatment effect; IPW, Inverse probability weighted estimator; DR, Doubly ro-

bust estimator; DML, Double/debiased machine learning estimator.
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Figure 1. Relationship between treatment, outcome and four types of covariates

in simulation design.
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Figure 2. Distribution of six estimators for ATE (θ = 0) in 1,000 replications.

ATE, Average treatment effect; IPW, Inverse probability weighted estimator; DR, Doubly

robust estimator; DML, Double/debiased machine learning estimator.
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