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Abstract

While they are rare, superspreading events (SSEs), wherein a few primary cases infect an

extraordinarily large number of secondary cases, are recognized as a prominent determinant

of aggregate infection rates (R0). Existing stochastic SIR models incorporate SSEs by fitting

distributions with thin tails, or finite variance, and therefore predicting almost deterministic

epidemiological outcomes in large populations. This paper documents evidence from recent

coronavirus outbreaks, including SARS, MERS, and COVID-19, that SSEs follow a power

law distribution with fat tails, or infinite variance. We then extend an otherwise standard

SIR model with the fat-tailed power law distributions, and show that idiosyncratic uncer-

tainties in SSEs will lead to large aggregate uncertainties in infection dynamics, even with

large populations. That is, the timing and magnitude of outbreaks will be unpredictable.

While such uncertainties have social costs, we also find that they on average decrease the

herd immunity thresholds and the cumulative infections because per-period infection rates

have decreasing marginal effects. Our findings have implications for social distancing in-

terventions: targeting SSEs reduces not only the average rate of infection (R0) but also its

uncertainty. To understand this effect, and to improve inference of the average reproduction

numbers under fat tails, estimating the tail distribution of SSEs is vital.
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1 Introduction

On March 10th, 2020, choir members were gathered for their rehearsal in Washington. While
they were all cautious to keep distance from one another and nobody was coughing, three
weeks later, 52 members had COVID-19, and two passed away. There are numerous similar
anecdotes worldwide.1 Many studies have shown that the average basic reproduction number
(R0) is around 2.5-3.0 for this coronavirus (e.g. Liu et al., 2020), but 75% of infected cases do
not pass on to any others (Nishiura et al., 2020). The superspreading events (SSEs), wherein
a few primary cases infect an extraordinarily large number of others, are responsible for the
high average number. As SSEs were also prominent in SARS and MERS before COVID-19,
epidemiology research has long sought to understand them (e.g. Shen et al., 2004). In particu-
lar, various parametric distributions of infection rates have been proposed, and their variances
have been estimated in many epidemics under an assumption that they exist (e.g. Lloyd-Smith
et al., 2005). On the other hand, stochastic Susceptible-Infectious-Recovered (SIR) models have
shown that, as long as the infected population is moderately large, the idiosyncratic uncertain-
ties of SSEs will cancel out each other (Roberts et al., 2015). That is, following the Central Limit
Theorem (CLT), stochastic models quickly converge to their deterministic counterparts, and be-
come largely predictable. From this perspective, the dispersion of SSEs is unimportant in itself,
but is useful only to the extent it can help target lockdown policies to focus on SSEs to efficiently
reduce the average ratesR0 (Endo et al., 2020).

In this paper, we extend this research by closely examining the distribution of infection rates,
and rethinking how its dispersion influences the uncertainties of aggregate dynamics. Using
data from SARS, MERS, and COVID-19 from around the world, we provide consistent evidence
that SSEs follow a power law, or Pareto, distribution with fat tails, or infinite variance. That is,
the true variance of infection rates cannot be empirically estimated as any estimate will be an
underestimate however large it may be. When the CLT assumption of finite variance does not
hold, many theoretical and statistical implications of epidemiology models will require rethink-
ing. Theoretically, even when the infected population is large, the idiosyncratic uncertainties in
SSEs will persist and lead to large aggregate uncertainties. Statistically, the standard estimate of
the average reproduction number (R0) may be far from its true mean, and the standard errors
will understate the true uncertainty. Because the infected population for COVID-19 is already
large, our findings have immediate implications for statistical inference and current policy.

We begin with evidence. Figure 1 plots the largest clusters reported worldwide for COVID-
19 from data gathered by Leclerc et al. (2020). If a random variable follows a power law distri-
bution with an exponent α, then the log of its scale (e.g. a US navy vessel had 1,156 cases tested
positive) and the log of its severity rank (e.g. that navy case ranked 1st in severity) will have a
linear relationship, with its slope indicating −α. Figure 1 shows a fine fit of the power law dis-

1See Table A.2 in Appendix for a list of several examples.
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Figure 1: Log cluster size vs log rank for COVID-19 worldwide
Notes: Figure 1 plots the number of total cases per cluster (in log) and their ranks (in log) for COVID-19,
last updated on June 3rd. It fits a linear regression for the clusters with size larger than 40. The data
are collected by the Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working
Group (Leclerc et al., 2020).

tribution.2 Moreover, the slope is very close to 1, indicating a significant fatness of the tail to the
extent that is analogous to natural disasters such as earthquakes (Gutenberg and Richter, 1954)
that are infrequent but can be extreme3. While data collection through media reports may be
biased towards extreme cases, analogous relationships consistently hold for other SARS, MERS,
and COVID-19 data based on surveillance data, with exponents often indicating fat tails. Note
that other distributions, including the negative binomial distributions commonly applied in

2In Appendix A.2.2, we also estimate the exponent with a small sample bias correction proposed by Gabaix
and Ibragimov (2011), which shows the exponent is 1.16, and the R2 is 0.98. With maximum likelihood estimation,
the exponent is 1.01. When using the Kolmogorov-Smirnov test (Clauset et al., 2009), the p-value given α = 1.01
is 0.75, failing to reject the null hypothesis that the empirical observation arises from the power law distribution.
On the other hand, the p-value given α = 2 is 0.000, rejecting the null hypothesis that the distribution is observed
from power law distribution with a finite variance.

3The power law distribution with α = 1 is called the Zipf’s law.
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epidemiology research, cannot predict these relationships, and significantly underestimate the
risks of extremely severe SSEs.

Using fat-tailed power law distributions, we show that stochastic SIR models predict sub-
stantial uncertainties in aggregate epidemiological outcomes. Concretely, we consider a stochas-
tic model with a population of one million, whereby a thousand people are initially infected,
and apply epidemiological parameters adopted from the literature. We consider effects of tails
of distribution while keeping the average rate (R0) constant. Under thin-tailed distributions,
such as the estimated negative binomial distribution or power law distribution with α = 2, the
epidemiological outcomes will be essentially predictable. However, under fat-tailed distribu-
tions close to those estimated in the COVID-19 data worldwide (α = 1.1), there will be immense
variations in all outcomes. For example, the peak infection rate is on average 14%, but its 90the
percentile is 31% while its 10th percentile is 4%. Under thin-tailed distribution such as negative
binomial distribution, the average, 90th percentile and 10th percentile of the peak infection is
all concentrated at 26-27%, generating largely deterministic outcomes.

While our primary focus was on the effect on aggregate uncertainty, we also find important
effects on average outcomes. In particular, under a fat-tailed distribution, the cumulative and
peak infection, as well as the herd immunity threshold, will be lower, and the timing of out-
break will come later than those under a thin-tailed distribution, on average. For example, the
average herd immunity threshold is 66% with thin-tailed distribution, it is 39% with a fat-tailed
distribution.These observations suggest that the increase in aggregate uncertainty over R0 has
effects analogous to a decrease in average R0. This relationship arises because the average fu-
ture infection will be a concave function of today’s infection rate: because of concavity, mean
preserving spread will lower the average level. In particular, today’s higher infection rate has
two countering effects: while it increases the future infection, it also decreases the suscepti-
ble population, which decreases it. We provide theoretical interpretations for each outcome by
examining the effect of mean-preserving spread ofR0 in analytical results derived in determin-
istic models.

Our findings have critical implications for the design of lockdown policies to minimize the
social costs of infection. Here, we study lockdown policies that target SSEs. We assume that
the maximum size of infection rate can be limited to a particular threshold (e.g., 50, 100, or 1000
per day) with some probabilities by banning large gatherings. Because both the uncertainty
and mean of the infection rate in the fat-tailed distribution are driven by the tail events, such
policies substantially lower the uncertainty and improve the average outcomes. Because the
cost of such policy4 is difficult to estimate reliably, we do not compute the cost-effectiveness of
such policy. Nonetheless, we believe this is an important consideration in the current debates
on how to re-open the economy while mitigating the risks of subsequent waves.

Finally, we also show the implications of a fat-tailed distributions for the estimation of the
4For example, it is prohibitively costly to shut down daycare, but it is less costly to prevent a large concert.
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average infection rate. Under such a distribution with small sample sizes, the sample mean
yields estimates that are far from the true mean and standard errors that are too small. To ad-
dress such possibility, it will be helpful to estimate the power law exponent. If the estimate
indicates a thin-tailed distribution, then one can be confident with the sample mean estimate. If
it indicates a fat-tailed distribution, then one must be aware that there is much uncertainty in the
estimate not captured by its confidence interval. While such fat-tailed distributions cause no-
toriously difficult estimation problems, we explore a “plug-in” method that uses the estimated
exponent. Such estimators generate median estimates closer to the true mean with adequate
confidence intervals that reflect the substantial risk of SSEs.

Related Literature. First, our paper belongs to a large literature on stochastic epidemiolog-
ical models. The deterministic SIR model was initiated by Kermack and McKendrick (1927),
and later, Bartlett (1949) and Kendall (1956) developed stochastic SIR models (see Britton (2010,
2018) , Britton et al. (2015) for surveys). The traditional view of the stochastic SIR model is that
while useful when the number of infected is small, once the infected population is moderately
large, it behaves similarly to the deterministic model due to the CLT. Britton (2010) writes “Once
a large number of individuals have been infected, the epidemic process may be approximated
by the deterministic counter-part.” Roberts (2017) also considers an SIR model with small fluc-
tuations of epidemiological parameters, but shows that deterministic models approximate its
average reasonably. Here, we consider large aggregate fluctuations arising from idiosyncratic
shocks and show that even the average deviates significantly from preditions of deterministic
models. There are recent applications of stochastic SIR models that study the very beginning of
COVID-19 outbreaks when the number of infection is small (for example, Abbott et al. (2020),
Karako et al. (2020), Simha et al. (2020) and Bardina et al. (2020)). However, the major model-
ing effort has been to use deterministic models based on the common justification above. Our
point is that when the distribution is fat-tailed, which we found an empirical support for, the
CLT no longer applies, and hence the stochastic model behaves qualitatively differently from
its deterministic counterpart even with a large number of infected individuals.

Second, the empirical importance of SSEs is widely recognized in the epidemiological lit-
erature before COVID-19 (Lloyd-Smith et al., 2005; Galvani and May, 2005) and for COVID-19
(Frieden and Lee, 2020; Endo et al., 2020). These papers fit the parametric distribution that is
by construction thin-tailed, such as negative binomial distribution. It has been common to es-
timate “the dispersion parameter k” of the negative binomial distribution. We argue that the
fat-tailed distribution provides a better fit to the empirical distribution of SSEs, in which a tail
parameter, α, parsimoniously captures the fatness of the tail. A recent contribution by Cooper
et al. (2019) consider Pareto rule in the context of malaria transmission, but they nonetheless
estimate the dispersion with finite variance for the entire infections.

Third, our paper also relates to studies that incorporate heterogeneity into SIR models, in-
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corporating differences in individual characteristics or community structures. Several recent
papers point out that the permanent heterogeneity in individual infection rates lower the herd
immunity threshold (Gomes et al., 2020; Hébert-Dufresne et al., 2020; Britton et al., 2020). Al-
though we obtain a similar result, our underlying mechanisms are distinct from theirs. In our
model, there is no ex-ante heterogeneity across individuals, and thus their mechanism is not
present. Zhang et al. (2013) and Szabó (2020) consider a model in which individuals have
heterogeneous infection rates that follow power laws in scale-free networks, but their hetero-
geneity is permanent (i.e. due to individual characteristics). Instead, what matters for us is
the aggregate fluctuations in R0 (i.e. due to idiosyncratic variations in environments), which
their models do not exhibit. Some recent papers emphasize the importance of age-dependent
heterogeneity and its implications for lockdown policies (Acemoglu et al., 2020; Davies et al.,
2020; Gollier, 2020; Rampini, 2020; Glover et al., 2020; Brotherhood et al., 2020). We emphasize
another dimension of targeting: targeting toward large social gatherings, and this policy re-
duces the uncertainty regarding various epidemiological outcomes. Roberts (2013) analyzes a
deterministic model in which basic reproduction number is estimated with noise, and derives
probability distributions over epidemiological outcomes due to the uncertainty of the estimates.

Finally, it is well-known that many variables follow a power law distribution. These include
the city size (Zipf, 1949), the firm size (Axtell, 2001), income (Atkinson et al., 2011), wealth
(Kleiber and Kotz, 2003), consumption (Toda and Walsh, 2015) and even the size of the earth-
quakes (Gutenberg and Richter, 1954), the moon craters and solar flares (Newman, 2005). Re-
garding COVID-19, Beare and Toda (2020) document that the cumulative number of infected
population across cities and countries is closely approximated by a power law distribution.
They then argue that the standard SIR model is able to explain the fact. We document that the
infection at the individual level follows a power law. We are also partly inspired by economics
literature which argue that the fat-tailed distribution in firm-size has an important consequence
for the macroeconomics dynamics, originated by Gabaix (2011). We follow the similar route in
documenting that the SSEs are well approximated by a power law distribution and arguing that
such empirical regularities have important consequences for the epidemiological dynamics.

Roadmap. The rest of the paper is organized as follows. Section 2 documents evidence that
the distribution of SSEs follows power law. Section 3 embed the evidence into an otherwise
standard SIR models to demonstrate its implications for the epidemiological dynamics. Sec-
tion 4 studies estimation of the reproduction numbers under fat-tailed distribution. Section 5
concludes by discussing what our results imply for ongoing COVID-19 pandemic.
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2 Evidence

We present evidence from SARS, MERS, and COVID-19 that the SSEs follow power law dis-
tributions. Moreover, our estimates suggest the distributions are often fat-tailed, with critical
implications for the probabilities of extreme SSEs. Evidence also suggests a potential role of
policies in reducing the tail distributions.

2.1 Statistical model

Let us define the SSEs and their distribution. Following the notations of Lloyd-Smith et al.
(2005), let zit ∈ {0, 1, 2, ...} denote the number of secondary cases5 an infected individual i has
at time t. Then, given some threshold Z, an individual i is said to have caused SSE at time t if
zit ≥ Z . To make the estimation flexible, suppose the distribution for non-SSEs, zit < Z, needs
not follow the same distribution as those for SSEs.

In this paper, we consider a power law (or Pareto) distribution on the distribution of SSE.
Denoting its exponent by α, the countercumulative distribution is

P (zit ≥ Z) = π (Z/Z)−α for Z ≥ Z, (1)

where π is the probability of SSEs. Notably, its mean and variance may not exist when α is suf-
ficiently low: while its mean is α

α−1 Z if α > 1, it is ∞ if α ≤ 1. While its variance is α
(α−1)2(α−2)Z2

if α > 2, it is ∞ if α ≤ 2. In this paper, we formally call a distribution to be fat-tailed if α < 2 so
that they have infinite variance. While non-existence of mean and variance may appear patho-
logical, a number of socioeconomic and natural phenomenon such as city sizes (α ≈ 1), income
(α ≈ 2), and earthquake energy (α ≈ 1) have tails well-approximated by this distribution as
reviewed in the Introduction. One concrete example6 that can explain a power law distribution
is due to the result in Beare and Toda (2019): suppose each participant can invite some others
with some probability. Conditional on inviting, the number of people each paritipant invites
follows some distributions such as log-normal distribution. Then, the resulting distribution of
all participants follows a power law.

This characteristics stands in contrast with the standard assumption in epidemiology liter-
ature that the full distribution of zit follows a negative binomial (or Pascal) distribution7 with
finite mean and variance. The negative binomial distribution has been estimated to fit the data

5Note that the number of “secondary” cases include only direct transmissions and exclude indirect transmis-
sions. This is how the COVID-19 data in Figure 1 were also collected (Leclerc et al., 2020).

6Another theoretical reason why this distribution could be relevant for airborne diseases is that the number of
connections in social networks often follow a power law (Barabasi and Frangos, 2014).

7Denoting its mean by R and dispersion parameter by k, the distribution is

P (zit ≥ Z) = 1−
Z

∑
z=0

Γ(z + k)
z!Γ(k)

(
R
k

)z (
1 +
R
k

)−(z+k)
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better than Poisson or geometric distribution for SARS (Lloyd-Smith et al., 2005), and given its
theoretical bases from branching model (e.g. Gay et al., 2004), it has been a standard distribu-
tional assumption in the epidemiology literature (e.g. Nishiura et al., 2017).

2.2 Data

This paper uses five datasets of recent coronavirus outbreaks for examining the distribution of
SSEs: COVID-19 data from (i) around the world, (ii) Japan, and (iii) India, and (iv) SARS data,
(v) MERS data.

(i) COVID-19 data from around the world: this dataset contains clusters of infections found
by a systematic review of academic articles and media reports, conducted by the Centre of the
Mathematical Modelling of Infectious Diseases COVID-19 Working Group (Leclerc et al., 2020).
The data are restricted to first generation of cases, and do not include subsequent cases from
the infections. The data are continuously updated, and in this draft, we have used the data
downloaded on June 3rd. There were a total of 227 clusters recorded.

(ii) COVID-19 data from Japan: this dataset contains a number of secondary cases of 110
COVID-19 patients across 11 clusters in Japan until February 26th, 2020, reported in Nishiura
et al. (2020). This survey was commissioned by the Ministry of Health, Labor, and Welfare of
Japan to identify high risk transmission cases.

(iii) COVID-19 data from India: this dataset contains the state-level data collected by the
Ministry of Health and Family Welfare, and individual data collected by covid19india.org.8 We
use the data downloaded on May 31st.

(iv) SARS from around the world: this dataset contains 15 incidents of SSEs from SARS
in 2003 that occured in Hong Kong, Beijing, Singapore, and Toronto, as gathered by Lloyd-
Smith et al. (2005)9 through a review of 6 papers. The rate of community transmission was
not generally high so that, for example, the infections with unknown route were only about
10 percent in the case of Beijing. The data consist of SSEs, defined by epidemiologists (Shen
et al., 2004) as the cases with more than 8 secondary cases. For Singapore and Beijing, the
contact-tracing data is available from Hsu et al. (2003) and Shen et al. (2004), respectively. When
compare the fit to the negative binomial distribution, we compare the fit of power law to that
of negative binomial using these contact tracing data.

(v) MERS from around the world: this dataset contains MERS clusters reported up to Au-
gust 31, 2013. The cases are classified as clusters when thee are linked epidemiologically. The

The variance of this distribution is R
(

1 + R
k

)
. The distribution nests Poisson distribution (as k → ∞) and geo-

metric distribution (when k = 1.)
8https://www.kaggle.com/sudalairajkumar/covid19-in-india. covid19india.org is a volunteer-based or-

ganization that collects information from municipalities.
9Even though Lloyd-Smith et al. (2005) had analyzed 6 other infectious diseases, SARS was the only one with

sufficient sample sizes to permit reliable statistical analyses.
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data come from three published studies were used in Kucharski and Althaus (2015). Total of
116 clusters are recorded.

We use multiple data sets in order to examine the robustness of findings.10 Having multiple
data sets can address each other’s weaknesses in data. While data based on media reports is
broad, they may be skewed to capture extreme events; in contrast, data based on contact tracing
may be reliable, but are restricted to small population. By using both, we can complement each
data’s weaknesses.

2.3 Estimation

The datasets report cumulative number of secondary cases, either ∑i zit (when a particular
event may have had multiple primary cases) or ∑t zit (when an individual infects many oth-
ers through multiple events over time). Denoting these cumulative numbers by Z, we consider
this distribution for some Z ≥ Z∗. As discussed in Appendix A.1, we can interpret the esti-
mates of this tail distribution as approximately the per-period and individual tail distribution
and therefore map directly to the parameter of the SIR model in the next section. The thresholds
for inclusion, Z∗, will be chosen to match the threshold for SSEs when possible, but also adjust
for the sample size. For COVID-19 in the world, we apply Z = 40 to focus on the tail of the
SSE distribution. For SARS, we apply Z = 8 as formally defined (Shen et al., 2004). For other
samples, we apply Z = 2 because the sample size is limited.

To assess whether the distribution of Z follows the power law, we adopt the regression-
based approach that is transparent and commonly used. If Z follows power law distribu-
tion, then by (1), the log of Z and the log of its underlying rank have a linear relationship:
log rank(Z) = −α log Z + log(NπZα). This is because, when there are N individuals, the ex-
pected ranking of a realized value Z is Erank(Z) ' P(z ≥ Z)N for moderately large N. Thus,
when N is large, we obtain a consistent estimate of α by the following regression:

log rank(Z) = −α log Z + log(NπZα) + ε (2)

When N is not large, however, the estimate will exhibit a downward bias because log is a con-
cave function and thus E log rank(Z) < log Erank(Z). While we present the analysis according
to (2) in Figures 1 and 2 for expositional clarity, we also report the estimates with small sam-
ple bias correction proposed by Gabaix and Ibragimov (2011) in Appendix A.2.2.11 We also

10he infectious diseases considered here share some commonalities as SARS-CoV that causes SARS, MERS-CoV
that causes MERS, and SARS-CoV-2 that causes COVID-19 are human coronaviruses transmitted through the air.
They have some differences in terms of transmissibility, severity, fatality, and vulnerable groups (Petrosillo et al.,
2020). But overall, as they are transmitted through the air, they are similar compared to other infectious diseases.

11Their approach is to turn the dependent variable into log
[
rank(Z)− 1

2

]
instead of log [rank(Z)]. We examine

the performance of their bias correction method through a estimating regression given random variables generated
from power law distributions. While their bias correction almost eliminates bias when N is moderately large, it

8



estimate using the maximum likelihood in Appendix A.2.2. Note that when there are ties (e.g.
second and third largest had 10 infections), we assigned different values to each observation
(e.g. assigning rank of 2 and 3 to each observation).

Next, we also compare the extent to which a power law distribution can approximate the
distribution of SSEs adequately relative to the negative binomial distribution. First, we plot
what the predicted log-log relationship in (2) would be given the estimated parameters of neg-
ative binomial distribution.12 Second, to quantify the predictive accuracy, we compute the ratio
of likelihood of observing the actual data.

2.4 Results

Our analysis shows that the power law finely approximates the distribution of SSEs. Figure 1
visualizes this for COVID-19 from across the world, and Figure 2 for SARS, MERS, and COVID-
19 in Japan and India. Their R2 range between 0.93 and 0.99, suggesting high levels of fit to the
data. Because our focus is on upper-tail distribution, Figure 1 truncates below at the cluster
size 40, Figure 2 truncates at 8 for SARS and at 2 for MERS and COVID-19 in India and Japan.
Figure A.1 in Appendix presents a version of Figure 1 truncated below at 20.

In addition, the estimates of regression (2) suggest that the power law exponent, α, is below
2 and even close to 1. Table 1 summarizes the main findings. The estimated exponents near
1 suggest that extreme SSEs are not uncommon. For COVID-19 in Japan and India, the esti-
mated exponents are larger than 1 but often below 2. Since applying the threshold of Z∗ = 2
is arguably too low, we must interpret out-of-sample extrapolation from these estimates with
caution. When higher thresholds are applied, the estimated exponents tend to be higher. For
example, when applying the threshold of Z∗ = 8 as in SARS 2003 to COVID-19 in India, the
estimated exponent is 1.85 or 2.25. This pattern is already visible in Figure 2. Table A.1 in Ap-
pendix A.2.2 presents results using bias correction technique of Gabaix and Ibragimov (2011)
as well as maximum likelihood. The results are very similar.

Notably, the estimated exponent of India is higher than those of other data. There are two
possible explanations. First, the lockdown policies in India have been implemented strictly rel-
ative to moderate approaches in Japan and some other parts of the world during the outbreaks.
By discouraging and prohibiting large-scale gatherings, sometimes by police enforcement, they
may have been successful at targeting SSEs. Second, contact tracing to ensure data reliability
may have been more difficult in India until end of May than in Japan until end of February.13

has an upward bias of α whereas the equation (2) has a downward bias. The magnitude of bias is similar when
N = 10 or N = 15. Thus, our preferred approach is to refer to both methods for robustness.

12This approach stands in contrast with a common practice to plot the probability mass functions. Unlike such
approaches where differences in tail densities are invisible since it is very close to zero, this approach highlights
the differences in tail densities.

13Concretely, there were only 248 cases of more than one secondary infections reported in the data among
27,890 primary cases in the data from India. That is, only 0.8 percents of primary cases were reported to have
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Figure 2: Log size vs log rank for COVID-19

Notes: Figure 2 plots the number of total cases per cluster (in log) and their ranks (in log) for MERS,
and the number of total cases per cluster (in log) and their ranks (in log) for SARS and COVID-19 in
Japan and India. The data for SARS are from Lloyd-Smith et al. (2005), and focus on SSEs defined
to be the primary cases that have infected more than 8 secondary cases. The data for MERS come
from Kucharski and Althaus (2015). The data for Japan comes from periods before February 26, 2020,
reported in Nishiura et al. (2020). The data for India are until May 31, 2020, reported by the Ministry
of Health and Family Welfare, and covid19india.org. The plots are restricted to be the cases larger than
2.
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COVID-19 SARS MERS

World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

α̂ 1.07 1.17 1.62 0.85 0.75 0.75 1.17

(0.04) (0.10) (0.03) (0.06) (0.08) (0.06) (0.07)

Z 40 2 2 8 2 2 2

Obs. 60 11 109 15 19 8 36

R2 0.98 0.93 0.97 0.96 0.91 0.94 0.96

log10 LR - 11.39 - - 19.51 8.04 40.89

Table 1: Estimates of power law exponent (α̂) and their fit with data

Notes: Table 1 summarizes the estimates of power law exponent (α̂) given as the coefficient of regression
of log of number of infections (or size of clusters) on the log of their rankings. Heteroskedasticity-
robust standard errors are reported in the parenthesis. Z denote the threshold number of infection to
be included. log10(LR) denotes “likelihood ratios”, expressed in the log with base 10, of probability
of observing this realized data with power law distributions relative to that with estimated negative
binomial distributions. Columns (1)-(3) report estimates for COVID-19; columns (4)-(6) for SARS, and
column (7) for MERS.

While missing values will not generate any biases if the attritions were proportional to the num-
ber of infections, large gatherings may have dropped more than in Japan where the SSEs were
found through contact tracing. Nonetheless, these estimates suggest that various environments
and policies could decrease the risks of the extreme SSEs. This observation motivates our policy
simulations to target SSEs.

Next, we compare the assumption of power law distribution relative to that of a negative
binomial distribution. Figure 3 shows that the negative binomial distributions would predict
that the extreme SSEs will be fewer than the observed distribution: while it predicts the overall
probability of SSEs accurately, they suggest that, when they occur, they will not be too extreme
in magnitude. Table 1 reports the relative likelihood, in logs, of observing the data given the
estimated parameters. It shows that, under the estimated power law distribution relative to the
estimated negative binomial distribution, it is 108− 1020 times more likely to observe the SARS
data (1040 times more for MERS, and 1011 times more COVID-19 data in Japan). Such large
differences emerge because the negative binomial distribution, given its implicit assumption
of finite variance, suggests that the extreme SSEs are also extremely rare when estimated with

infected more than one persons. In contrast, there were 27 cases with more than one secondary infections among
110 primary cases in Japan. That is, 25 percent of primary cases were infectious. This difference in ration likely
reflects the data collection quality than actual infection dynamics.
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Figure 3: Comparison of power law and negative binomial distributions

Notes: Figure 3 plots the predicted ranking of infection cases given the estimated negative binomial
(NB) distribution, in addition to the log-log plots and estimated power law (PL) distributions. The
negative binomial distribution is parameterized by (R, k), where R is mean and k is the dispersion
parameter with the variance being R(1 + R/k). The estimates for SARS Singapore come from our own
estimates using the maximum likelihood (R = 0.88, k = 0.09); MERS come from the world (R =

0.47, k = 0.26) estimated in Kucharski and Althaus (2015); and COVID-19 in Japan were from our own
estimates using the maximum likelihood (R = 0.56, k = 0.21). The estimates of Singapore is slightly
different from Lloyd-Smith et al. (2005) because we pool all the samples.

entire data sets14. If our objective is to predict the overall incidents of infections parsimoniously,
then negative binomial distribution is well-validated and theoretically founded (Lloyd-Smith
et al., 2005).15 However, if our goal is to estimate the risks of extreme SSEs accurately, then
using only two parameters with finite variance to estimate together with the entire distribution
may be infeasible.

These distributional assumptions have critical implications for the prediction of the extreme
SSEs. Table 2 presents what magnitude top 1%, top 5%, and top 10% among SSEs will be given
each estimates of the distribution. Given the estimates of the negative binomial distribution,
even the top 1% of SSEs above 8 cases will be around the magnitude of 19-53. However, given
a range of estimates from power law distribution, the top 1% could be as large as 569. Thus, it
is no longer surprising that the largest reported case for COVID-19 will be over 1,000 people.

14For example, the binomial distribution estimate suggests an incidence of 185 cases (residential infection in
Hong Kong) only has a chance of 9.5× 10−10 occurring for any single primary case.

15Since the power law distribution is fitted only to SSEs, estimated power law distribution may fit the data
better than the estimated negative binomial distribution that was meant to fit the entire data set. Rather than
making such comparison, this estimation is intended to illustrate the magnitude of difference between the two
distributional assumptions. Because of significant missing values for the low number of infections in the COVID-
19 from across the world and India, we will not use the data sets for estimation of negative binomial distributions.
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Power Law Negative Binomial
α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2 SARS MERS COVID-19

1% 569 526 371 172 80 44 18 19
5% 128 122 97 59 36 31 15 15
10% 67 65 55 37 25 25 13 14

Table 2: Probabilities of extreme SSEs under each distribution

Notes: Table 2 shows the size of secondary cases at each quantile, top 1 percentile, 5 percentile, and 10
percentile, given each distributions. The negative binomial distribution’s estimates for SARS are from
Singapore, for COVID-19 are from Japan, and for MARS is from around the world.

In contrast, such incidents have vanishingly low chance under binomial distributions. Since
the SSEs are rare, researchers will have to make inference about their distribution based some
parametric methods. Scrutinizing such distributional assumptions along with the estimation of
parameters themselves will be crucial in accurate prediction of risks of extreme SSEs.

3 Theory

Motivated by the evidence, we extend an otherwise standard stochastic SIR model with a fat-
tailed SSEs. Unlike with thin-tailed distributions, we show that idiosyncratic risks of SSEs
induce aggregate uncertainties even when the infected population is large. We further show
that the resulting uncertainties in infection rates have important implications for average epi-
demiological outcomes. Impacts of lockdown policies that target SSEs are discussed.

3.1 Stochastic SIR model with fat-tailed distribution

Suppose there are i = 1, ..., N individuals, living in periods t = 1, 2, .... Infected individuals pass
on and recover from infection in heterogeneous and uncertain ways. Let βit denote the number
of new infection in others an infected individual i makes at time t. Let γit ∈ {0, 1} denote the
recovery/removal, where a person recovers (γit = 1) with probability γ ∈ [0, 1]. Note that,
whereas zit in Section 2 was a stochastic analogue of “effective” reproduction number, βit here
is such analogue of “basic reproduction number.” Assuming enough mixing in the population,
these two models are related by zit = βit

St
N , where St is a number of susceptible individuals in

the population.
This model departs from other stochastic SIR models only mildly: we consider a fat-tailed,

instead of thin-tailed, distribution of infection rates. Based onthe evidence, we consider a power
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Parameter Description Value Source
A. Common parameters
γ recovery & death rate 7/18 Wang et al. (2020)
N total population 105

I0 initially infected populatoion 103 1% of population
R0 ≡ E[βit]/γ mean basic reproduction number 2.5 Remuzzi and Remuzzi (2020)
B. Power law
π probability of infecting 0.25 Nishiura et al. (2020)
α tail parameter {1.08, 1.1, 1.2, 1.5, 2}
C. Negative binomial
k overdispersion parameter 0.16 Lloyd-Smith et al. (2005)

Table 3: Parameter values

law distribution of βit: its countercumulative distribution is given by

P (βit ≥ β) = π(β/β)−α

for the exponent α and a normalizing constant β, and π ∈ [0, 1] is the probability that β ≥ β.
Note that the estimated exponent α can be mapped to this model, as discussed in Appendix A.1.
If we assume βit is distributed according to exponential distribution or negative binomial dis-
tribution, we obtain a class of stochastic SIR models commonly studied in the epidemiological
literature (see Britton (2010, 2018) for surveys). We will compare the evolution dynamics under
this power law distribution against those under negative binomial distribution as commonly
assumed, keeping the average basic reproduction number the same. To numerically implement
this, we will introduce normalization to the distributions.

The evolution dynamics is described by the following system of stochastic difference equa-
tions. Writing the total number of infected and recovered/removed populations by It and Rt,
we have

St+1 − St = −
It

∑
i=1

βit
St

N
(3)

It+1 − It =
It

∑
i=1

βit
St

N
−

It

∑
i=1

γit (4)

Rt+1 − Rt =
It

∑
i=1

γit. (5)

This system is a discrete-time and finite-population analogue of the continuous-time and continuous-
population differential equation SIR models.
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Parametrization: we parametrize the model as follows. The purpose of simulation is a
proof of concept, rather than to provide a realistic numbers. We take the length of time to
be one week. We set the sum of the recovery and the death rate per day is 1/18 following
Wang et al. (2020), so that γ = 7/18. The total population is set to N = 105, and initially
infected population is 1% of the total population. As a benchmark case, we set α = 1.1, which
is in line with the estimates for the COVID-19 data worldwide, but we explore several other
parametrization, α ∈ {1.08, 1.2, 1.5, 2}. As documented in Nishiura et al. (2020), 75% of people
did not infect others. We therefore set π = 0.25. This number is also in line with the evidence
from SARS reported in Lloyd-Smith et al. (2005), in which 73% of cases were barely infectious.
We choose β, which controls the mean of βit, so that the expected R0 ≡ Eβit/γ per day is 2.5,
corresponding to the middle of the estimates obtained in Remuzzi and Remuzzi (2020). This
leads us to choose β = 0.354 in the case of α = 1.1.

We will contrast the above model to a model in which βit is distributed according to negative
binomial, βit/γ ∼ negative binomial(R0, k). The mean of this distribution is Eβit/γ = R0,
ensuring that it has the same mean basic reproduction number as in the power law case, and
the variance is R0(1 +R0/k). The smaller values of k indicate greater heterogeneity (larger
variance). We use the estimates of SARS by Lloyd-Smith et al. (2005), k = 0.16. The mean is set
to the same value as power law case,R0 = 2.5,

3.2 Effects of fat-tailed distribution on uncertainty

Figure 4a shows 10 sample paths of infected population generated through the simulation of
the model with α = 1.1. One can immediately see that even though all the simulation start
from the same initial conditions under the same parameters, there is enormous uncertainty in
the timing of the outbreak of the disease spread, the maximum number of infected, and the final
number of susceptible population. The timing of outbreak is mainly determined by when SSEs
occur. To illustrate the importance of a fat-tailed distribution, Figure 4b shows the same sample
path but with a thin-tailed negative binomial distribution. In this case, as already 1,000 people
are infected in the initial period, the CLT implies the aggregate variance is very small and the
model is largely deterministic. This is consistent with Britton (2018). Britton (2018) shows that
when the total population is as large as 1,000 or 10,000, the model quickly converges to the
deterministic counterpart.

Figure 5 compares the entire distribution of the number of cumulative infection (top-left),
the herd immunity threshold (top-right), the peak number of infected (bottom-left), and the
days it takes to infect 5% of population (bottom-right). The herd immunity threshold is defined
as the cumulative number of infected at which the number of infected people is at its peak. The
histogram contrast the case with power law distribution with α = 1.1 to the case with negative
binomial distribution. It is again visible that uncertainty remains in all outcomes when the
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(a) Power law (α = 1.1)
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Figure 4: Ten sample paths from simulation

Note: Figure 4 plots 10 sample path of the number of infected population from simulation, in which
we draw {βit, γit} randomly every period in an i.i.d. manner. Figure 4a plots the case with power law
distribution, and Figure 4b plots the case with negative binomial distribution.

distribution of infection rate is fat-tailed. For example, the cumulative infection varies from
65% to 100% in the power law case, while the almost all simulation is concentrated around 92%
in the case of negative binomial distribution.

Table 4 further shows the summary statistics for the epidemiological outcomes for various
power law tail parameters, α, as well as for negative binomial distribution. With fat-tails, i.e. α

close to one, the range between 90th percentile and 10th percentile for all statistics is wide, but
this range is substantially slower as the tail becomes thinner (α close to 2). For example, when
α = 1.08 the peak infection rate can vary from 6% to 32% as we move from 10the percentile
to 90th percentile. In contrast, when α = 2, the peak infection rate is concentrated at 26–
27%. Moreover, when α = 2, the model behaves similarly to the model with negative binomial
distribution because the CLT applies to both cases.
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Figure 5: Histogram from 1000 simulation

Note: Figure 5 plots the histogram from 1000 simulations, in which we draw {βit, γit} randomly every
period in an i.i.d. manner. The cumulative number of infected is ST , where we take T = 204 weeks.
The herd immunity threshold is given by the cumulative number of infected, at which the infection is
at the peak. Formally, St∗ where t∗ = arg maxt It. The peak number of infected is maxt It.

3.3 Effects of fat-tailed distribution on average

While our primary focus was the effect on the uncertainty of epidemiological outcomes, Figure
5 also shows significant effects on the mean. In particular, fat-tailed distribution also lowers
cumulative infection, the herd immunity threshold, the peak infection, and delays the time it
takes to infect 5% of population, on average. Why could such effects emerge?

To understand these effects, we consider a deterministic SIR model with continuous time
and continuum of population. In such a textbook model, we consider the effect of small un-
certainties (i.e. mean-preserving spread) in R0. Such theoretical inquiry can shed light on the
effect because the implication of fat-tailed distribution is essentially to introduce time-varying
fluctuation in aggregateR0. We can thus examine how the outcome changes byR0, and invoke
Jensen’s inequality to interpret the results.16

16This assumes thatR0 is drawn at time 0, and stay constant thereafter for each simulation. This exercise is not
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Power law Negative
α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2 binomial

1. Cumulative infected
mean 60% 73% 89% 92% 92% 92%
90th percentile 85% 91% 95% 93% 92% 92%
50th percentile 59% 71% 88% 92% 92% 92%
10th percentile 39% 59% 84% 91% 92% 92%

2. Herd immunity threshold
mean 39% 49% 62% 65% 66% 66%
90th percentile 65% 75% 78% 71% 69% 69%
50th percentile 35% 45% 59% 65% 66% 66%
10th percentile 17% 29% 51% 60% 62% 64%

3. Peak infection
mean 14% 18% 25% 27% 27% 27%
90th percentile 31% 34% 36% 29% 28% 27%
50th percentile 9% 13% 22% 26% 27% 27%
10th percentile 4% 7% 18% 25% 26% 26%

4. Days infecting 5%
mean (days) 137 93 47 37 35 35
90th percentile 252 147 56 42 35 35
50th percentile 119 84 49 35 35 35
10th percentile 49 42 35 35 35 35

Table 4: Summary statistics for epidemiological outcomes

Note: Table 4 shows the summary statistics from 1000 simulations for five different tail parameters for
the case of power law distribution, and for the negative binomial distribution.

1. Effect on cumulative infection: note that the cumulatively infected population is given
by 1 − S∞/N, where S∞ is the ultimate susceptible population as t → ∞. Taking the
standard derivation, S∞ satisfies the following equation:17

log(S∞/N) = −R0(1− S∞/N) (6)

In Appendix B, we prove that S∞ is a convex function ofR0 ifR0 > 1.125, , which is likely
to be met in SARS or COVID-19.18 Thus, the cumulative infection is concave in R0, and
the mean-preserving spread inR0 lowers the cumulative infection.

exactly the same as our original SIR model because thereR0 fluctuates over time within a simulation. Thus this is
for providing intuition, rather than a proof.

17Here, we set the initially recovered population to zero, R0 = 0.
18Numerically, we did not find any counterexample even whenR0 ∈ [1, 1.125].
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2. Effect on herd immunity threshold: denoting the number of recovered/removed and
infected population by R, the infection will stabilize when R0

(N−R
N
)
= 1. Rearranging

this condition, the herd immunity threshold, R∗ is given by

R∗

N
= 1− 1

R0
, (7)

where R0 ≡ β/γ. Since R∗ is concave in R0, the mean-preserving spread in R0 lowers
the herd immunity threshold.

3. Effect on timing of outbreak: let us consider the time t∗ when some threshold of outbreak( I
N
)∗

is reached. Supposing S/N ≈ 1 at the beginning of outbreak, t∗ satisfies(
I
N

)∗
≈ I0

N
exp(

1
γ
(R0 − 1)t∗) (8)

Thus, t∗ is convex in R0, and the mean-preserving spread in R0 delays the timing of the
outbreak.

4. Effect on peak infection rate: the peak infection rate, denoted by Imax

N , satisfies

Imax

N
= 1− 1

R0
− 1
R0

log(R0S0), (9)

where S0 is initial susceptible population. We show in the Appendix that (9) implies that
the peak infection, Imax/N, is a concave function of R0 if and only if R0 ≥ 1

S0
exp(0.5). If

we let S0 ≈ 1, this impliesR0 ≥ exp(0.5) ≈ 1.65. This explains why we found a reduction
in peak infection rate, as we have assumed R0 = 2.5. Loosely speaking, since the peak
infection rate is bounded above by one, it has to be concave for sufficiently highR0.

Overall, we have found that the increase in the uncertainty over R0 has effects similar to a
decrease in the level ofR0. This is because the aggregate fluctuations inR0 introduce negative
correlation between the future infection and the future susceptible population. High value of
today’s R0 ≡ E

βit
γ increases tomorrow’s infected population, It+1, and decreases tomorrow’s

susceptible population, St+1. That is, Cov(St+1, It+1) < 0. Because the new infection tomorrow
is a realization of βt+1 multiplied by the two (that is, βt+1 It+1

St+1
N ) this negative correlation

reduces the spread of the virus in the future on average, endogenously reducing the magnitude
of the outbreak.

This interpretation also highlights the importance of intertemporal correlation of infection
rates, Cov(βt, βt+1). When some individuals participate in events at infection-prone environ-
ments more frequently than others, the correlation will be positive. Such effects can lead to a
sequence of clusters and an extremely rapid rise in infections (Cooper et al., 2019) that over-
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whelm the negative correlation between St+1 and It+1 highlighted above. On the other hand,
when infections take place at residential environments (e.g. residential compound in Hong
Kong for SARS, and dormitory in Singapore for COVID-19), then the infected person will be
less likely to live in another residential location to spread the virus. In this case, the correlation
will be negative. In this way, considering the correlation of infection rates across periods will
be crucial.

Note that the mechanism we identified on herd immunity thresholds is distinct from the
ones described in Gomes et al. (2020); Hébert-Dufresne et al. (2020); Britton et al. (2020). They
note that when population has permanently heterogenous activity rate, which captures both
the probability of infecting and being infected, the herd immunity can be achieved with lower
threshold level of susceptible. They explain this because majority of “active” population be-
comes infected faster than the remaining population. Our mechanism does not hinge on the
permanent heterogeneity in population, which could have been captured by Cov(βit, βit+1) =

1. The fat-tailed distribution in infection rate alone creates reduction in the required herd im-
munity rate in expectation.

3.4 Lockdown policy targeted at SSEs

How could the policymaker design the mitigation policies effectively if the distribution of in-
fection rates is fat-tailed? Here, we concentrate our analysis on lockdown policy. Unlike the
traditionally analyzed lockdown policy, we consider a policy that particularly targets SSEs.
Specifically we assume that the policy can impose an upper bound on βit ≤ β̄ with probability
φ. The probability φ is meant to capture some imperfection in enforcements or impossibility in
closing some facilities such as hospitals and daycare19. Here, we set φ = 0.5. For tractability,
we assume that the government implements targeted lockdown policies for entire periods. We
experiment with β̄ for various values: 1000 cases per day, 100 cases per day, and 50 cases per
day.

While Table B.3 in Appendix presents results in detail, we briefly summarize the main re-
sults here. First, the policy reduces the mean of the peak infection rate if and only if the dis-
tribution features fatter tails. Second, the targeted lockdown policy is effective in reducing the
volatility of the peak infection rate in the case that such risks exist in the first place. For ex-
ample, consider the case with α = 1.1. Moving from no policy to the upper-limit of 100 cases
reduces the 90th percentile of peak infection from 31% to 17%.20 In contrast, when α = 2 or

19Note that, even though the theoretical variance is infinite, the realized variance in numerical simulations will
always be finite. Therefore, such stochastic reductions can still reduce the simulated variance even though the
theoretical variance remains infinite.

20We may be concerned that the unbounded support of power law distribution is unrealistic; at the extreme
case, one cannot infect more than 8 billion people since that will exceed the world population. Imposing some
upperbound on the distribution of infection rate will be equivalent to imposing a lockdown policy with perfect
implementation (φ = 1). As shown in the results of lockdown policy, imposing such upperbounds can significantly
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with negative binomial distribution, the policy has virtually no effect. Therefore the policy is
particularly effective in mitigating the upward risk of overwhelming the medical capacity. This
highlights that while the fat-tailed distribution induces the aggregate risk in the epidemiologi-
cal dynamics, the government can partly remedy this by appropriately targeting the lockdown
policy.

We conclude this section by discussing several modeling assumptions. First, we have as-
sumed that {βit} is independently and identically distributed across individuals and over time.
This may not be empirically true. For example, a person who was infected in a big party is more
likely to go to a party in the next period. This introduces ex ante heterogeneities as discussed
in (Gomes et al., 2020; Hébert-Dufresne et al., 2020; Britton et al., 2020), generating positive cor-
relation in {βit} along the social network. Or, a person who tends to be a superspreader may
be more likely to be a superspreader in the next period. This induces a positive correlation
in {βit} over time. If the resulting cascading effect were large, then the average effects on the
epidemiological outcomes we have found may be overturned. Second, we have exogenously
imposed power law distributions without fully exploring underlying data generation mecha-
nisms behind them. The natural next step is to provide a model in which individual infection
rate follows a power law. We believe SIR models with social networks along the line of Pastor-
Satorras and Vespignani (2001), Moreno et al. (2002), Castellano and Pastor-Satorras (2010),
May and Lloyd (2001), Zhang et al. (2013), Gutin et al. (2020), and Akbarpour et al. (2020) are
promising avenue to generate endogenous power law in individual infection rates.

4 Estimation methods

We began with the evidence that SSEs follow a power law distribution with fat tails in many
settings, and showed that such distributions substantively change the predictions of SIR mod-
els. In this Section, we discuss the implications of power law distributions for estimating the
effective reproduction number.

4.1 Limitations of sample means

Estimation of average reproduction numbers (Rt) has been the chief focus of empirical epi-
demiology research (e.g. Becker and Britton, 1999). Our estimates across five different data sets
suggest that the exponent satisfies α ∈ (1, 2) in many occasions: that is, the infection rates have
a finite mean but an infinite variance. Since the mean exists, by the Law of Large Numbers,
the sample mean estimates (see e.g. Nishiura, 2007) that have been used in the epidemiology

reduce the volatility relative to the unbounded case, and nonetheless, some uncertainties will persist and remain
much larger than the predictions of negative binomial distributions.
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Estimates under distributions with fat tails
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Figure 6: An example of sample mean estimates

Notes: Figure 6 depicts an example of sample mean estimates for thin-tailed and fat-tailed distributions.
The draws of observations are simulated through the inverse-CDF method, where the identical uniform
random variable is applied so that the sample means are comparable across four different distributions.
All distributions are normalized to have the mean of 2.5. The negative binomial (NB) distribution has
the dispersion parameter k = 0.16 taken from (Lloyd-Smith et al., 2005). The range of power law (PL)
parameters is also taken from the empirical estimates.

research will be consistent (i.e. converge to the true mean asymptotically) and also unbiased
(i.e. its expectation equals the true mean with finite samples.)

Due to the infinite variance property, however, the sample mean will converge very slowly
to the true mean because the classical CLT requires finite variance. Formally, while the conver-
gence occurs at a rate

√
N for distributions with finite variance, or thin tails, it occurs only at

a rate N1− 1
α for the power law distributions with fat tails, α ∈ (1, 2) (Gabaix, 2011).21 Under

distributions with infinite variance, or fat tails, the sample mean estimates could be far from
the true mean with reasonable sample sizes, and their estimated 95 confidence intervals will
be too tight. Figure 6 plots a Monte Carlo simulation of sample mean’s convergence property.
For thin-tailed distributions such as the negative binomial distribution or the power law distri-
bution with α = 2, even though the convergence is slow due to their very large variance, they
still converge to the true mean reasonably under a few 1,000 observations. In contrast, with fat-

21For α = 1 exactly, the convergence will occur at rate ln N.
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tailed distributions such as power law distribution with α = 1.1 or α = 1.2, the sample mean
will remain far from the true mean. Their sample mean estimates behave very differently as the
sample size increases. Every so often, some extraordinarily high values occur that significantly
raises the sample mean and its standard errors. When such extreme values are not occurring,
the sample means gradually decrease. With thin tails, such extreme values are rare enough not
to cause such sudden increase in sample means; however, with fat tails, the extreme values are
not so rare.

4.2 Using power law exponents to improve inference

What methods could address the concerns that the sample mean may be empirically unstable?
One approach may be to exclude some realizations as an outlier, and focus on subsamples with-
out extreme values22. However, such analysis will neglect major source of risks even though
extreme "outlier" SSEs may fit the power law distributions as shown in Figure 1. While esti-
mating the mean of distributions with rare but extreme values has been notoriously difficult23,
there are some approaches to address this formally.

With power law distributions, the estimates of exponent have information that can improve
the estimation of the mean. Figure 7 shows that the exponents α can be estimated adequately
with reasonable sample sizes.24 If α > 2, as may be the case for the India under strict lockdown,
then one can have more confidence in the reliability of sample mean estimates. However, if
α < 2, the sample mean may substantially differ from the true mean. At the least, one can be
aware of the possibility.

One transparent approach is a “plug-in” method: to estimate the exponent α̂, and plug into
the formula of the mean α̂

α̂−1 Z. This method yields a valid 95 confidence intervals (C.I.) of the
median25 since the estimated α̂ has valid confidence intervals.26 Figure 7 shows the estima-
tion results for the same data with α = 1.1, 1.2 as shown in Figure 6. First, while the sample
mean in Figure 6 had substantially underestimated the mean, this estimated median is close to

22In Japan, the case of over 620 infections in the cruise ship Diamond Princess was excluded from all other
analyses.

23Consider, for example, a binary distribution of infection rates such that one infects N others with 1/N prob-
ability, and 0 others with 1− 1/N probability. In this case, the true mean Rt = 1. Suppose a statistician observes
10 infected cases for each estimation. If N were 1,000, then with 99(≈ 0.99910) percent chance, nobody becomes
infected so that R̂t = 0, and the estimates’ confidence interval will be [0, 0]. But with less than 1 percent chance
when any infection occurs, R̂t will be larger than 100. Thus, the 95 percent confidence interval contains the true
mean in less than 1 percent of the time. To the best of our knowledge, there is no techniques that can help us
completely avoid this problem given the fundamental constraint of small sample size.

24The standard errors are computed by the maximum likelihood approach, as the linear regressions are known
to underestimate the standard errors (see Gabaix and Ibragimov, 2011).

25Note that the estimate corresponds to the median estimate because α̂
α̂−1 is a non-linear transformation of α̂.

26To be more formal, the correct C.I. will be to consider the uncertainties with the mean of observations below Z.
To focus on the uncertainty from upper tail, we construct the 95 percent C.I. from that of the estimate of $\alpha$
here.
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Estimates of power law exponents (α)
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Figure 7: An example of “plug-in” estimates

Notes: Figure 7 plots the estimates of power law exponents and the resulting estimates of sam-
ple median, using the same data as in Figure 6. Note that while the number of observations
contains all observations, the data points contributing to the estimates are only above some
thresholds: only less than 25 percents of the data contribute to the estimation of the exponents.

the true mean. Second, while the sample mean estimation imposed symmetry between lower
and upper bounds of 95 percent confidence intervals, this estimate reflects the skewness of un-
certainties: upward risks are much higher than downward risks because of the possibility of
extreme events. Third, the standard errors are much larger, reflecting the inherent uncertainties
given the limited sample sizes.27 Fourth, the estimates are more stable and robust to the ex-
treme values28 than the sample mean estimates that have sudden jumps in the estimates after
the extreme values.

Table 5 demonstrates the validity of the “plug-in” method through a simulation experiment.
The table shows the comparison of the probability that the constructed 95% C.I. covers the true
mean using the 1,000 Monte-Carlo simulation. When the estimate is unbiased and has correct

27When the number of observations is less than 1000, the estimated confidence interval of α contains values
less than 1.0, turning the upper bound of the mean to be ∞. This does not mean that a correct expectation is ∞
infections in the near future, but that there is serious upward risks in infection rates.

28This is because the estimation through log-likelihood will take the log of the realized value, instead of its
level.
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α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2
1. N = 100

Sample means 21% 26% 42% 74% 89%
Plug-in 98% 98% 98% 94% 87%

2. N = 500
Sample means 24% 29% 45% 78% 90%
Plug-in 98% 98% 95% 94% 84%

3. N = 1000
Sample means 24% 26% 48% 78% 92%
Plug-in 97% 97% 93% 93% 86%

Table 5: Coverage probability of 95% confidence interval

Note: Thable 5 reports the probability that the 95% confidence interval, constructed in two different
ways, covers the true value in 1000 simulation. “Sample means” is simply uses the sample mean.
“Using power laws uses” first estimates the Pareto exponent using the maximum likelihood, and then
convert it to the mean estimates.

standard errors, this coverage probability is 95%. When the power law exponent is close to
one, the traditional “sample means” approach has the C.I. that covers the true mean only with
20-40% for all sample sizes. By contrast the “plug-in” method covers the true estimates close
to 95%. As the tail becomes thinner toward α = 2, the difference between the two tends to
disappear, with “sample mean” approach performing better some times. When the underlying
distribution has fat-tails, however, estimation using the plug-in method is preferred.

While the C.I. in the plug-in method has adequate coverage probabilities, it is often very
large and possibly infinite. Figure 7 visualizes this. This large C.I. occurs especially when
α ' 1 because the mean of a power law distribution is proportional to α

1−α . How could the
policymakers plan their efforts do given such large uncertainty in R0? Given the theoretical
results in Section 3 that the epidemiological dynamics will be largely uncertain even when α ' 1
is perfectly known, we argue that applying the estimated R0 into a deterministic SIR model
will not lead to a reliable prediction. Instead of focusing on the mean, it will be more adequate
and feasible to focus on the distribution of near-future infection outcomes. For example, using
the estimated power law distribution, policymakers can compute the distribution of the future
infection rate. The following analogy might be useful: in planning for natural disasters such as
hurricanes and earthquakes, policymakers will not rely on the estimates of average rainfall or
average seismic activity in the future; instead, they consider the probabilities of some extreme
events, and propose plans contingent on realizations. Similar kinds of planning may be also
constructive regarding preparation for future infection outbreaks.

To overcome data limitations, epidemiologists have developed a number of sophisticated
methods such as backcalculation assuming Poisson distribution (Becker et al., 1991), and ways
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to account for imported cases. There are also a number of methods developed to account for
fat-tailed distributions (see e.g. Stoyanov et al., 2010, for a survey), such as tail tempering (Kim
et al., 2008) and separating the data into sub-groups (Toda and Walsh, 2015). In the future, it
will be important to examine what power law distributions will imply about existing epidemio-
logical methods, and how statistical techniques such as plug-in methods can be combined with
epidemiological techniques to allow more reliable estimation of risks.

5 Conclusion: implications for COVID-19 pandemic

Most research on infection dynamics has focused on deterministic SIR models, and have esti-
mated its key statistics, the average reproduction number (R0). In contrast, some researchers
have concentrated on SSEs, and estimated the dispersion of infection rates using negative bino-
mial distributions. Nonetheless, stochastic SIR models based on estimated distributions have
predicted that idiosyncratic uncertainties in SSEs would vanish when the infected population
is large, and thus, the epidemiological dynamics will be largely predictable. In this paper,
we have documented evidence from SARS, MERS, and COVID-19 that SSEs actually follow a
power law distribution with the exponent α ∈ (1, 2): that is, their distributions have infinite
variance, or fat tails. Our stochastic SIR model with these fat-tailed distributions have shown
that idiosyncratic uncertainties in SSEs will persist even when the infected population is large,
inducing major unpredictability in aggregate infection dynamics.

Since the currently infected population is estimated to be around 3 million in the COVID-
19 pandemic,29 our analysis has immediate implications for policies of today. For statistical
inference, the aggregate unpredictability suggests caution is warranted on drawing inferences
about underlying epidemiological conditions from observed infection outcomes. First, large
geographic variations in infections may be driven mostly by idiosyncratic factors, and not by
fundamental socioeconomic factors. While many looked for underlying differences in public
health practices to explain the variations, our model shows that these variations may be more
adequately explained by the presence of a few, idiosyncratic SSEs. Second, existing stochastic
models would suggest that, keeping the distribution of infection rates and pathological envi-
ronments constant, recent infection trends can predict the future well. In contrast, our analysis
shows that even when the average number of new infections may seem to have stabilized at a
low level in recent weeks, subsequent waves can suddenly arrive in the future.

Such uncertainties in outbreak timing and magnitude introduce substantial socioeconomic
difficulties, and measures to assess and mitigate such risks will be invaluable. The death rate
is shown to increase when the medical capacity binds. Thus, reducing uncertainties can reduce
average fatality. Furthermore, uncertainties can severely deter necessary investments and im-

29According to worldometers.info, the cumulative infection worldwide is 7 million, among which 4 million
have already recovered or died, as of June 9, 2020.
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pede planning for reallocation and recovery from the pandemic shocks. To assess such risks,
we can estimate the tail distributions to improve our inference on the average number. To ad-
dress such risks, social distancing policies and individual efforts can focus on large physical
gatherings in infection-prone environments. Our estimates suggest, like earthquakes, infection
dynamics will be largely unpredictable. But unlike earthquakes, they are a consequence of so-
cial decisions, and efforts to reduce SSEs can significantly mitigate the uncertainty the society
faces as a whole.
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Appendix

A Empirical Appendix

A.1 Relating empirical distribution of Z to theoretical distribution of βit

In this paper, we have used the estimates from the data to simulate the evolution dynamics of
the epidemiological model. The key step in our argument is that the tail distribution of ∑i zit

or ∑t zit, the cumulative “effective” number of infections, is equivalent to the tail distribution of
βit, the individual and per-period “basic” number of infection. However, in general, this needs
not hold: for example, even if βit were normally distributed (i.e. thin tailed), Z may follow a t-
distribution (i.e. fat-tailed). Under what conditions is our interpretation about the relationship
between distribution of Z and distribution of βi valid? Are they plausible in the settings of the
coronaviruses?

To clarify this question, let us lay out a model. Formally, Z is a mixture distribution of the
weighted sum of βit. Here, we provide notations for ∑t zit but the identical argument will also
apply to ∑i zit. Specifically, suppose i stays infected for t periods, and let the probability mass
be δ

(
t
)
. In the case of exponential decay as in the SIR model, δ

(
t
)
= γt. Denoting the counter-

cumulative distribution of Zi by Φ, and that of βit by F, we have

Φ (Zi) =
∞

∑
t=1

δ
(
t
)

Gt

(
t

∑
t=1

St

N
βit

)
, βit ∼ F,

where Gt denotes the distribution of ∑t
t=1

St
N βit.

A.1.1 Empirical evidence on causes of SSEs

First, we may be concerned that, even if Φ is a power law distribution, F may not be a power law
distribution. A counterexample is that a geometric Brownian motion with stochastic stopping
time that follows exponential distribution can also generate power law distributions of the tail
(Beare and Toda, 2020). That is, the tail property of Φ needs not be due to tails of F: for ∑t zit , it
could also due to some individuals staying infectious for an extremely long periods. For ∑i zit,
it could also be due to some events having extremely high number of infected primary cases.

While we acknowledge such possibilities, we argue that for superspreaders or SSEs of the
coronaviruses, the main mechanism of extremely high number of cumulative infection is pri-
marily due to some extreme events at particular time t. Let us be concrete. If the counterexam-
ple’s reasoning were true for ∑t zit, then a superspreader is someone who goes, for example, to
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a restaurant and infect two other people at time t, and then goes to a shopping mall and infects
three other people at time t + 1, and then goes to meet her two friends and infect them, and
so on. However, this interpretation is inconsistent with numerous anecdotes. Instead, a super-
spreader infects many people because he attends a SSE that has infection-prone environment at
a particular time t. Conferences, parties, religious gatherings, and sports gyms are a particular
place that can infect many at the same time. Moreover, Nishiura et al. (2020) paper whose data
we use has identified particular environment that has caused SSEs. This interpretation is impor-
tant because, if the extremely high cumulative number of infection were due to some staying
infectious for a long time or some events having extremely high number of primary cases, then
our model’s prediction of sudden outbreak due to SSE is no longer a valid prediction.

A.1.2 Theoretical analysis on interpretation of exponents

Second, we may be concerned that the exponent of Φ (Zi) may be different than the exponent
of F (βiτ), even if both have tails that follow power laws. We use two steps to show that this is
not a concern:

(i) if a random variable has a power law distribution with exponent α, then its weighted sum
also has a tail distribution that follows a power law with exponent α (see e.g. Jessen and
Mikosch (2006) or Gabaix (2009)). Thus, neither summation over multiple periods nor the
weights of Sτ

N will change this.

(ii) the tail property of distribution can be examined by considering αF (Z) = f (Z)
f (cZ) for some

c 6= 1 and taking its limit. In particular, if F has a power law distribution, then αF (Z) =
cα.30 Denoting the probability mass of Gt (·) by gt (·), and the normalizing constant of
each t by At,

lim
Z→∞

αΦ (Z) =
∑∞

t=1 δ
(
t
)

limZ→∞ gt (Z)

∑∞
t=1 δ

(
t
)

limZ→∞ gt (cZ)
=

∑∞
t=1 δ

(
t
)

AtZ
−α

∑∞
t=1 δ

(
t
)

At (cZ)−α = cα.

Thus, the exponent of Φ (Zi) will be identical to the exponent of F (βiτ) asymptotically.

This discussion suggests that whenever possible, it is desirable to take the estimates from the
tail end of the distribution instead of using moderate values of Z. For the COVID-19 from the
world, the distributions are estimated from the very extreme tail. But when the sample size of
SSEs is limited, choice of how many observations to include thus faces a bias-variance trade-off.
Nonetheless, as many statistical theories are based on asymptotic results, these arguments show
that it is theoretically founded to interpret the exponent of Φ (Zi) as the exponent of F (βiτ), at
least given the data available.

30This capture the essence of power laws – that whatever the value of Z, its frequency and frequency of cZ has
the same ratio.
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A.2 Robustness

We present several robustness checks on our empirical results.

A.2.1 Figure 1 with a different cut-off

In Figure 1, we truncated the size of cluster from below at 40. Figure A.1 instead show results
with a cut-off of 20. The fit is worse at the lower tail of the distribution, which suggests that
the lower tail may not be approximated by power law distribution. This is a common feature
among many examples. However, what matters for the existence of variance is the upper tail
distribution, we do not think this is a concern. Moreover, given that the data partly come
from media reports, the clusters of small sizes likely suffer from omission due to lack of media
coverage.

A.2.2 Robustness of power law exponents estimates

Gabaix and Ibragimov (2011) show that an estimate of 2 is biased in a small sample and propose
a simple bias correction method that replace the dependent variable with ln(rank− 1/2). Panel
A of Table A.1 show the results with this bias correction method. The results are broadly very
similar to our baseline results in Table 1.

Panel B of Table A.1 conduct another robustness check, where we estimate using the maxi-
mum likelihood. Again, the point estimates are overall similar to the baseline results, although
standard errors are larger.

A.3 Additional Tables and Figures

Table A.2 shows fseveral examples of superspreading events during COVID-19 pandemic.
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COVID−19 Cluster Sizes Worldwide
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Source: CMMID COVID−19 Working Group online database (Leclerc et al., 2020)
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Figure A.1: Log size vs log rank for Superspreading Events in SARS 2003
Notes: Figure A.1 plots the number of total cases per cluster (in log) and their ranks (in log) for COVID-
19, last updated on June 3rd. It fits a linear regression for the clusters with size larger than 20. The data
are collected by the Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working
Group (Leclerc et al., 2020).
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Panel A. Bisas corrected regression estimates

COVID-19 SARS MERS

World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

α̂ 1.16 1.45 1.70 1.02 0.86 0.96 1.29

(0.07) (0.16) (0.06) (0.10) (0.12) (0.10) (0.11)

Z 40 2 2 8 2 2 2

Obs. 60 11 109 15 19 8 36

R2 0.97 0.93 0.96 0.95 0.89 0.93 0.95

log10 LR - 11.73 - - 19.92 8.05 41.19

Panel B. Maximum likelihood estimates

COVID-19 SARS MERS

World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

α̂ 1.01 1.96 1.71 0.89 1.21 0.87 1.49

(0.13) (0.59) (0.16) (0.23) (0.28) (0.31) (0.25)

Z 40 2 2 8 2 2 2

Obs. 60 11 109 15 19 8 36

log10 LR - 11.93 - - 20.34 8.07 46.93

Table A.1: Estimates of power law exponent: robustness

Notes: Table A.1 summarizes two robustness check exercises of power law exponent (α̂). Panel A. bias
corrected estimates take log(rank− 1

2 ) as the dependent variable. This is a small sample bias correction
proposed by Gabaix and Ibragimov (2011). Heteroskedasticity-robust standard errors are reported in
the parenthesis. Panel B. presents the maximum likelihood estimates. Standard errors are reported in
the parenthesis. In both panels, log10(LR) denotes “likelihood ratios”, expressed in the log with base
10, of probability of observing this realized data with power law distributions relative to that with
estimated negative binomial distributions. Columns (1)-(3) report estimates for COVID-19; columns
(4)-(6) for SARS, and column (7) for MERS.
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Major super-spraeding evernts Confirmed cases Date
Choir practice in Washington, the US 52 03/10
Conference in Boston, the US 89 02/26
Religious gathering in Daegu, South Korea 49 02/19
Religious gathering in Frankfurt, Germany 49 02/19
Wedding ceremony in New Zealand 76 03/21
Prison in IL, the US 351 04/23
Food processing plant in Ghana 533 05/11
Dormitory in Singapore 797 04/09

Table A.2: Examples of superspreading events
Noes: Table A.2 summarizes some examples of superspreading events, their dates and the number of
confirmed cases for COVID-19. Source: COVID-19 settings of transmission - database (accessed, June
4, 2020)
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B Theory Appendix

B.1 Proof that S∞ is convex inR0 ifR0 >
9

8(1−R0)

We show that S∞ is a concave function inR0. Recall that S∞ is a solution to

log S∞ = −R0(1− S∞).

By the implicit function theorem,

dS∞

dR0
= − 1(

1
S∞
−R0

) (1− S∞)

< 0.

because S∞ < 1/R0. Applying the implicit function theorem again,(
1

S∞
−R0

)
︸ ︷︷ ︸

>0

d2S∞

dR2
0
=

dS∞

dR0︸︷︷︸
<0

(
2− 1/S∞ − 1

1−R0S∞

)
.

It remains to show that
(

2− 1/S∞−1−R0
1−R0S∞

)
< 0. We can rewrite this as

f (S0) ≡ 2R0S2
∞ − 3S∞ + 1 > 0.

Note that f (·) is minimized at S∗∞ = 3
4R0

. The minimum value is

min
S0

f (S∞) = − 9
8R0

+ 1.

Therefore f (S∞) > 0 for all S∞ if and only if R0 > 9
8 . This implies that when R0 > 9

8 , S∞ is a
concave function ofR0.

B.2 Proof that Imax is concave inR0 if and only ifR0 >
1
S0

exp(0.5)

Recall that the peak infection rate is given by

Imax/N = 1− 1
R0
− 1
R0

log(R0S0).
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The derivative is

dImax/N
dR0

=
1

(R0)2 log(R0S0).

The second derivative is

d2(Imax/N)

dR2
0

=
1

(R0)3 (1− 2 log(R0S0)) ,

which is negative if and only ifR0 > 1
S0

exp(0.5).

B.3 Results for targeted lockdown policy experiment

Table B.3 shows the simulation results with lockdown policies targeted at SSEs. β̄ is the daily
upperbound of infection rates due to policies, and we consider cases of β̄ = 1000, 100, 50. As
already discussed in the main text, when the distribution is fat-tailed, the targeted policy is not
only effective in reducing the mean of the peak infection rate, but also its volatility (the interval
between 90 percentile and 10 percentile).
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Power law Negative

α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2 binomial

1. β̄: 1000 cases per day

mean 11% 15% 23% 27% 27% 27%

90th percentile 19% 23% 29% 29% 28% 27%

50th percentile 8% 12% 21% 26% 27% 27%

10th percentile 4% 7% 17% 25% 26% 26%

3. β̄: 100 cases per day

mean 9% 12% 20% 26% 27% 27%

90th percentile 17% 20% 26% 27% 28% 27%

50th percentile 5% 8% 18% 26% 27% 27%

10th percentile 3% 5% 16% 24% 26% 26%

3. β̄: 50 cases per day

mean 8% 11% 19% 26% 27% 27%

90th percentile 14% 19% 26% 27% 28% 27%

50th percentile 4% 8% 17% 25% 27% 27%

10th percentile 2% 5% 14% 24% 26% 26%

Table B.3: Peak infection under targeted lockdown policy

Note: Table B.3 shows the summary statistics for peak infection rates from 1000 simulations with vari-
ous policy parameters β̄, where β̄ is the upperbound on the infection imposed by the policy.
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