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Abstract 

  
 We experimentally examine repeated prisoner’s dilemma with random termination, in which 
monitoring is imperfect and private. Our estimation indicates that a significant proportion of the 
subjects follow generous tit-for-tat strategies, which are stochastic extensions of tit-for-tat. 
However, the observed retaliating policies are inconsistent with the generous tit-for-tat 
equilibrium behavior. Showing inconsistent behavior, subjects with low accuracy do not tend to 
retaliate more than those with high accuracy. Furthermore, subjects with low accuracy tend to 
retaliate considerably with lesser strength than that predicted by the equilibrium theory, while 
subjects with high accuracy tend to retaliate with more strength than that predicted by the 
equilibrium theory, or with strength almost equivalent to it. 
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1. Introduction 

 

 Long-run strategic interactions facilitate collusion among players whose interests 

conflict with that of each other. The premise is that each player observes the actions that 

opponents have selected previously and retains this information. However, even if the 

monitoring of opponents’ actions is imperfect (i.e., each player cannot directly observe 

the opponents’ action choices but can observe only the informative signals they generate), 

theoretical studies have shown that patient players can still employ, to a greater or lesser 

degree, cooperative strategies as an equilibrium. To be more precise, the folk theorem 

indicates that if the discount factor is sufficient (i.e., close to unity) and each player can 

indirectly—but not directly—observe opponents’ action choices through noisy signals, a 

wide variety of allocations can be attained by subgame perfect equilibria in the infinitely 

repeated game (e.g., Fudenberg, Levine, and Maskin, 1994; Sugaya, 2012). Indeed, the 

folk theorem can be applied to a wide range of strategic conflicts. 

 However, the folk theorem does not specify what kind of equilibria emerge 

empirically or the strategies associated with the equilibria that people follow. Given the 

lack of consensus on the strategies that people empirically follow, this study 

experimentally analyzes subjects’ behavior in a repeated prisoner’s dilemma. 

 Our experimental setup is imperfect monitoring. Each player cannot directly observe 

his or her opponent’s action choice; instead, he or she observes a signal, which is either 

good or bad. The good (bad) signal is more likely to occur when the opponent selects a 

cooperative (defective) action rather than a defective (cooperative) action. The probability 

of a player observing the good (bad) signal when the opponent selects the cooperative 

(defective) action is referred to as monitoring accuracy; it is denoted by 1( ,1)2p . The 

study experimentally controls the levels of monitoring accuracy as treatments (high 

accuracy 0.9p   and low accuracy 0.7p  ). Specifically, the monitoring technology 

is private in that a player does not receive any information about what the opponent 

observes about his or her choices (i.e., the signals are observable only by the receivers). 

 To examine the strategies used by the subjects, we employ the strategy frequency 
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estimation method (SFEM) developed by Dal Bó and Fréchette (2011). SFEM lists 

various potential strategies, such as tit-for-tat (TFT), grim-trigger, long-memory 

(lenience), and long-term punishment strategies, all of which comprise a significant 

proportion of the strategies found in existing studies of experimental repeated games. 

SFEM then allows us to estimate the frequencies of each strategy, wherein the 

heterogeneity of the strategies followed by the subjects is treated explicitly. Existing 

experimental studies use SFEM to examine the prevalence of strategies (e.g., Fudenberg, 

Rand, and Dreber, 2012; Aoyagi, Bhaskar, and Fréchette, 2019). 

 Unlike these experimental studies, we rigorously include stochastic strategies in our 

SFEM list. Importantly, we include straightforward stochastic extensions of TFT, that is, 

generous tit-for-tat (g-TFT). According to TFT, a player mimics his or her opponent’s 

action by making a cooperative (defective) action choice whenever he or she observes a 

good (bad) signal. G-TFT is defined as the stochastic extension of TFT, according to 

which, the probability of a player making a cooperative (defective) action choice is higher 

when he or she observes a good (bad) signal than when he or she observes a bad (good) 

signal. 

 TFT is considered as a reciprocal behavioral mode that describes cooperation, 

retaliation, and forgiveness in a simple and tractable manner.5 However, TFT has several 

drawbacks. For instance, TFT fails to be a subgame perfect equilibrium. Further, TFT 

cannot escape the death spiral, where players endlessly repeat the alternating play of 

cooperation and defection, once they fall into it. 

 In contrast, g-TFT overcomes these drawbacks; g-TFT equilibria always exist, 

irrespective of the level of monitoring accuracy, provided the discount factor is sufficient. 

G-TFT can avoid the death spiral of endless retaliations among players. Hence, it is 

reasonable to expect human beings and animals to conduct such random experimentations 

as g-TFT implies. Indeed, evolutionary biology finds that animals maintain peaceful 

coexistence, instead of weak costs, by adopting g-TFT (e.g., Molander, 1985; Nowak and 

Sigmund, 1992). In human societies, g-TFT provides an opportunity to avoid the crisis of 

 
5  Axelrod (1984), and Wu and Axelrod (1995) showed that TFT and g-TFT are one of the most 
successful strategies in round-robin tournament experiments and computer simulations. In response, 
the public praised TFT as the basic principle of implicit collusion. On the contrary, some game 
theorists criticize the insufficiency of Axelrod's evolutionary simulations (e.g., Binmore, 1994, 
Chapter 3). 
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nuclear war and build peaceful relationships among countries. G-TFT strategies offer the 

briefest way to explain the principle of cooperation. 

 In this study, using the SFEM framework, we estimate the fraction of subjects 

playing g-TFT strategies, as well as those playing other strategies that are common in 

existing studies of experimental repeated games. We also include various long-memory 

(lenient) strategies and their stochastic versions in the list. 

 Our estimates indicate that a significant proportion (approximately 60–80%) of our 

subjects follow g-TFT strategies, albeit heterogeneous ones. Although existing empirical 

or theoretical studies emphasize grim, long-memory (lenient), and long-term punishing 

strategies, our experimental results demonstrate that the empirical importance of g-TFT 

is supported experimentally as well as theoretically as mentioned earlier. 

 Moreover, observing that many of our subjects follow g-TFT strategies, we 

empirically examine their retaliation policies. We focus on the contrast in the probabilities 

of cooperative action choices contingent on good and bad signals, that is referred as the 

retaliation intensity.6 

 Fixing a sufficient discount factor, retaliation intensities are common across all g-

TFT equilibria depending on the level of monitoring accuracy. As the level of monitoring 

accuracy decreases, common retaliation intensity increases. This property plays a central 

role in improving monitoring technology and effectively saving welfare loss caused by 

the monitoring imperfection. 

 However, the retaliation intensities observed in our experimental data are contrary 

to the predictions of the above-mentioned equilibrium theory; our subjects with low 

accuracy do not retaliate more than those with high accuracy. To be precise, the retaliation 

intensity with low accuracy is slightly lesser than, or at the most equivalent to, the 

retaliation intensity with high accuracy. Furthermore, subjects with low accuracy tend to 

retaliate with lesser strength than that expected by the equilibria, while subjects with high 

accuracy tend to retaliate with more than the expected strength, or with the almost 

equivalent strength, implied by the equilibria. Hence, when monitoring is inaccurate, the 

expected payoff from cooperation tends to be considerably less than that from defection 

and when monitoring is accurate, the expected payoff to an individual subject from 

 
6 Note that TFT corresponds to the g-TFT whose retaliation intensity equals unity. 
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cooperation tends to be greater than that from defection. 

 The rest of this paper is organized as follows. Section 2 reviews the literature. 

Section 3 presents the basic model. Section 4 introduces the g-TFT strategy. Section 5 

explains the experimental design. Section 6 presents the experimental results for 

aggregate behavior. Section 7 explains the SFEM. Section 8 presents the experimental 

results for individual strategies. Section 9 is the conclusion. 

 

2. Literature Review 

 

 This study contributes to the long history of research in the repeated game literature. 

Equilibrium theory demonstrates folk theorems in various environments, which 

commonly show that a wide variety of outcomes is sustained by perfect equilibria, 

provided the discount factor is sufficient. Fudenberg and Maskin (1986) and Fudenberg, 

Levine, and Maskin (1994) proved folk theorems for perfect monitoring and imperfect 

public monitoring, respectively. These studies used the self-generative nature of perfect 

equilibria explored by Abreu (1988) and Abreu, Pearce, and Stacchetti (1990), which, 

however, crucially relied on the publicity of signal observations. 

 In studying imperfect private monitoring, Ely and Välimäki (2002) and Piccione 

(2002) explored belief-free nature as an alternative to self-generation, which motivates a 

player to select both cooperative action and defective action at all times. These studies 

presented the folk theorem for prisoner’s dilemma, wherein monitoring is private and 

almost perfect7 Based on this belief-free nature, Molander (1985), Nowak and Sigmund 

(1992), and Takahashi (2010) studied g-TFT strategies in various situations, such as 

biological populations and large communities with random matching. Matsushima (2013) 

studied g-TFT equilibria in a class of prisoner’s dilemma games in which monitoring is 

private and far from perfect. 

 The literature of experimental studies on repeated games has examined the 

 
7 For a survey of almost perfect private monitoring, see Mailath and Samuelson (2006). Matsushima 
(2004) proved the folk theorem in the prisoner’s dilemma game with imperfect private monitoring by 
constructing review strategy equilibria as lenient behavior with long-term punishments, in which we 
permit the monitoring technology to be arbitrarily inaccurate. Sugaya (2012) proved the folk theorem 
with imperfect private monitoring for a very general class of infinitely repeated games by extending 
self-generation to imperfect private monitoring and then combining it with the belief-free nature. 
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determinants of cooperation and tested various theoretical predictions to find clues to 

resolving the multiplicity problem (for a review, see Dal Bó and Fréchette, 2016). The 

SFEM employed in this study is frequently used in the literature on experimental repeated 

games (e.g., Dal Bó and Fréchette, 2011; Fudenberg, Rand, and Dreber, 2012; Aoyagi, 

Bhaskar, and Fréchette, 2019; Breitmoser, 2015). This study includes various stochastic 

strategies from the SFEM list. The inclusion of such stochastic action choices is scant in 

the literature on experimental repeated games. Fudenberg, Rand, and Dreber (2012) 

include only a few g-TFT strategies, aiming only to perform robustness checks for their 

claim that their experimental subjects tend to employ lenient (i.e., long-memory) 

strategies.8 

 By contrast, we rigorously include many variants of g-TFT in our SFEM list. We 

also include various long-memory (lenient) strategies and their stochastic variants, which 

are more complicated than TFT and g-TFT. Our experimental results support the idea that 

players do not retaliate every time they observe a single occurrence of a bad signal, not 

because they delay punishment until additional occurrences of bad signals, but because 

they employ (non-trivial) stochastic strategies. This finding contrasts with that of 

Fudenberg, Rand, and Dreber (2012), and Aoyagi, Bhaskar, and Fréchette (2019). Both 

studies stress long-memory strategies rather than memory-one strategies within the scope 

of deterministic strategies. 

 

3. The Model 

 

 The study investigates a repeated game played by two players (players 1 and 2), 

using a discrete time horizon. This game has a finite round-length, but the terminating 

round is randomly determined and, therefore, is unknown to players. The component 

game of this repeated game is denoted by {1,2}( , )i i iS u  , where iS  denotes the set of all 

actions for player {1,2}i  , i is S  , 1 2S S S   , 1 2( , )s s s S   , :iu S R  , and 

( )iu s  denotes the payoff for player i  induced by action profile s S . 

 
8 The experimental setup in Fudenberg, Rand, and Dreber (2012) is imperfect public monitoring in 
which the stochastic strategies have lesser importance than in the case of imperfect private monitoring. 
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 In each round, two noisy signals 1 1    and 2 2    occur after the action 

choices are made, where i   denotes the set of possible i  , 1 2( , )    , and 

1 2  . A signal profile   is randomly determined according to a conditional 

probability function ( | ) :f s R   , where ( | ) 1f s





   for all s S  . We 

assume full support in that ( | ) 0f s   for all   and s S . 

 Let ( | ) ( | )
j j

i if s f s


 


  , and we assume that ( | )i if s  is independent of 
js . 

Hence, we denote ( | )i i if s  instead of ( | )i if s . We use i i   to denote the signal 

for player i s  action choice. Player 'i s  action choice is  influences the occurrence 

of the signal for his or her action choice i , but does not influence the occurrence of the 

signal for the opponent’s action choice j , where j i . 

 We assume that monitoring is imperfect. In every round {1,2,...}t  , player i  

cannot directly observe either the action ( )j js t S  that the opponent j i  has selected, 

or the realized payoff profile 2
1 2( ( )) ( ( ( )), ( ( )))u s t u s t u s t R   , in which the action 

profile selected in round t is denoted by 1 2( ) ( ( ), ( ))s t s t s t S   . Instead, player i  

observes the signal for opponent 'j s   action choice ( )j jt    by which player i  

monitors opponent 'j s  action choice ( )js t  indirectly and imperfectly.9 

 We further assume that monitoring is private. Each player is unable to know the type 

of signal his or her opponent receives about his or her own action choice. Hence, each 

player i  knows ( )is t  and ( )j t  but does not know either ( )js t  or ( )i t . 

 This study specifies the component game as a prisoner’s dilemma with symmetry 

and additive separability as follows: 1 2 { , }S S C D   ; 1 2( , ) ( , ) 1u C C u C C   ; 

1 2( , ) ( , ) 0u D D u D D   ; 1 2( , ) ( , )u C D u D C g    ; and 1 2( , ) ( , ) 1u D C u C D g    , 

 
9 Our specification of the monitoring structure is in contrast to previous works, such as Green and 
Porter (1984) and Aoyagi and Fréchette (2009). These studies commonly assumed that the distribution 
of a noisy signal depends on all players’ action choices, while we assume the abovementioned 
independence. 
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where it is assumed that 0g   . Let us call C   and D   the cooperative action and 

defective action, respectively. Selecting C instead of D costs g  but gives the opponent 

the benefit 1 g . The payoff vector induced by the cooperative action profile ( , )C C  

maximizes welfare 1 2( ) ( )u s u s   with respect to s S  . The defective action profile 

( , )D D  is the dominant strategy profile and a unique Nash equilibrium. 

 We specify { , }i c d   , ( | ) ( | )i if c C f d D p   , and 1 12 p   . Let us call c 

and d  the good signal and bad signal, respectively. The probability index p  implies 

the level of monitoring accuracy. The greater the value of p , the more accurately each 

player can monitor the opponent’s action choice. Inequality 1
2p   implies that the 

probability of a good signal c occurring for a player is greater when this player selects 

C  rather than D . 

 Let 1( ) ( ( ), ( ))th t s      denote the history up to round t . { ( ) | 0,1,...}H h t t   

denotes the set of possible histories, where (0)h  denotes the null history. Player 'i s  

strategy in the repeated game is defined as : [0,1]i H  . According to i , he or she 

selects cooperative action C  with probability ( ( 1))i h t   in each round t , provided 

history ( 1)h t    up to round 1t   occurs. Let i   denote the set of all strategies for 

player i . Let 1 2( , )    and 1 2    . 

We assume constant random termination in which (0,1)  denotes the probability 

of the repeated game continuing after the end of each round t  , provided the game 

continues up to round 1t . Hence, the repeated game is terminated at the end of each 

round 1t   with probability 1(1 )t   . The expected payoff for player i  induced by 

    when the level of monitoring accuracy is given by (0,1)p  and is defined as 

  1

1

( ; ) (1 ) [ ( ( )) | , ]i iU p E u s p



    






   . 

where [ | , ]E p   denotes the expectation operator conditional on ( , )p  . A strategy 

profile      is said to be an equilibrium in the repeated game with monitoring 

accuracy (0,1)p  if 
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    ( ; ) ( , ; )i i i jU p U p    for all {1,2}i  and all i i  .10 

 For each history ( )h t H  up to round t , we define the frequency of cooperative 

action choice C , or the cooperation rate, by 

    1 2{ {1,..., } | ( ) } { {1,..., } | ( ) }
( ( ))

2

t S C t S C
h t

t

   


    
 . 

The expected frequency of cooperative action choice C  (i.e., the expected cooperation 

rate induced by    ) is denoted by 

    

1

1

1

1

[ (1 ) ( ( )) | , ]
( ; )

(1 )

t

t

t

t

E t h t p
p

t

   
 

 



















. 

 

4. Generous Tit-For-Tat Strategy 

  

 A strategy i i    is said to be a generous tit-for-tat (g-TFT) if there exists 

3( , ( ), ( )) [0,1]q r c r d    such that ( ) 0r c   , ( (0))i h q   , and for every 2t    and 

( 1)h t H  , 

  ( ( 1)) ( )i h t r c      if ( 1)j t c   , 

and 

  ( ( 1)) ( )i h t r d      if ( 1)j t d   . 

In round 1, player i  makes the cooperative action choice C  with probability q . In 

each round 2t  , player i  makes the cooperative action choice C  with probability 

( )jr   when he or she observes signal ( 1)j jt    for the opponent’s action choice in 

round 1t   . Hence, we simply write ( , ( ), ( ))q r c r d   instead of i   for any g-TFT 

strategy. A g-TFT strategy ( , ( ), ( ))q r c r d   is said to be an equilibrium in the repeated 

game with accuracy (0,1)p  if the corresponding symmetric g-TFT strategy profile is 

an equilibrium in the repeated game with accuracy p . 

 
10  The full-support assumption makes the distinction between Nash equilibrium and sequential 
equilibrium redundant. 
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 Define 

    ( , , ) ( )
(2 1)(1 )

g
w p g w p

p g



 

 
. 

Note that ( ) 0w p  , and 

  ( ) 1w p  , if and only if 
(2 1)(1 )

g

p g
 

 
. 

According to the belief-free nature (e.g., Ely and Välimäki, 2002; Piccione, 2002; 

Bhaskar and Obara, 2002), we can prove that a g-TFT strategy ( , ( ), ( ))q r c r d   is an 

equilibrium if and only if the difference in the cooperation rate between the good and bad 

signals, that is, ( ) ( )r c r d , is equal to ( )w p . 

 

The Proposition: A g-TFT strategy ( , ( ), ( ))q r c r d   is an equilibrium in the repeated 

game with accuracy p  if and only if 0 ( ) 1w p  , and 

(1)    ( ) ( ) ( )r c r d w p  . 

 

Proof: See Appendix A. 

  

 This study regards the observed difference in cooperation rate between the good and 

bad signals as the intensity with which subjects retaliate against their opponents. We call 

it the retaliation intensity. Note from this proposition that if subjects play a g-TFT 

equilibrium, then the resultant retaliation intensity should be (approximately) equal to 

( )w p . 

 Importantly, the retaliation intensity implied by the g-TFT equilibria ( )w p  is seen 

to decrease in p ; this implies that the less accurate the monitoring technology, the more 

severely the players retaliate against their opponents. This decreasing property is essential 

for understanding how players overcome the difficulty of achieving cooperation under 

imperfect private monitoring. 

 To incentivize a player to make the cooperative action choice, it is necessary that his 

or her opponent makes the defective action choice when observing the bad signal more 

often than when observing the good signal. In other words, the retaliation intensity must 

be positive. 
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 When monitoring is inaccurate, it is difficult for the player’s opponent to detect 

whether the player actually makes the cooperative action choice or the defective action 

choice. In this case, enhancement in retaliation intensity is necessary to incentivize the 

player. Hence, the retaliation intensity must be decreasing at the level of monitoring 

accuracy. This decreasing property plays a central role in improving welfare by utilizing 

noisy signals as much as possible. Since monitoring is imperfect, it is inevitable that the 

opponent observes a bad signal even if the player has actually made the cooperative action 

choice. This inevitably leads to welfare loss, because the opponent might retaliate against 

the player even if he or she has made the cooperative action choice. In such as case, if the 

monitoring technology is more accurate, the opponent can incentivize the player well by 

being less sensitive to whether the observed signal is good or bad, thereby safely lowering 

the retaliation intensity. This serves to decrease the welfare loss caused by the monitoring 

imperfection. Hence, it is crucial from the viewpoint of welfare to examine whether the 

experimental results satisfy this decreasing property. 

 

5. Experimental Design 

 

 We conducted eight sessions of computer-based laboratory experiments at the Center 

for Advanced Research for Finance, University of Tokyo, in October 2018 and June 

2019.11 We recruited 224 subjects from a subject pool consisting of undergraduate and 

graduate students in various fields. Our subjects were given monetary incentives; the 

points earned in the experiments were converted into Japanese yen at a fixed rate (0.9 

JPY per point). In addition, our subjects were each paid a fixed participation fee of 1,500 

JPY. 

 To simplify the structure of the game, we adopt the prisoner’s dilemma with 

symmetry and additive separability for our component game, where we assume 2
9g  . 

The payoff parameters have a structure in which the cost for cooperation, g , is small so 

that g-TFT equilibria exist even if the monitoring technology is poor. To make all payoffs 

greater than 0, we further make a positive linear transformation with a variable coefficient 

 
11 The experiment was programmed and conducted with z-Tree software (Fischbacher, 2007). 
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45 and a constant coefficient 15. The payoff matrix employed in the experiments is 

displayed in Table 1. The labels on the actions and signals are presented in neutral 

language (i.e., the actions are labeled “A” and “B” instead of “C [cooperation]” and “D 

[defection],” and the signals are labeled “a” and “b” instead of “c [good]” and “d [bad]”). 

 

[TABLE 1 HERE] 

 

 The experiments have two treatments that differ with respect to monitoring accuracy; 

in one treatment, monitoring accuracy is high. In this treatment, the signals the player 

observes and the action choices made by the opponent coincide with a 90% chance 

( 0.9p   ); the chance of mismatch is 10%. We refer to this treatment as the “high 

accuracy treatment.” The other treatment is the case where monitoring technology is 

poorer. The chance of the signals observed by the player matching the opponent’s action 

choices is only 70% ( 0.7p  ). We refer to this treatment as the “low accuracy treatment.” 

The 224 subjects were divided into two teams of 112 each, with one team assigned to the 

high accuracy treatment and the other to the low accuracy treatment, respectively.  

After playing a short, repeated game of two rounds as practice, each subject plays 

five repeated games in the assigned treatment. At the start of each repeated game, subjects 

were randomly paired, and the pairs remained unchanged until the end of the repeated 

game. With respect to the determination of the final round in each repeated game, we let 

the continuation probability be 0.967    ( 29 / 30  ); the very high continuation 

probability mimics the discount factor that is sufficiently large, thereby supporting the 

existence of equilibria in which players collude with each other. Hence, by assuming that 

the discount factor is close to unity and that the gain from deviation is small, we make the 

incentive to cooperate compatible with the incentive to retaliate in terms of monetary 

interests, even if the monitoring technology is poor. In fact, there exists a cooperative g-

TFT equilibrium even with low accuracy ( 0.7p  ).  

Employing the continuation probability mentioned above, we randomly generate 

four sequences of five numbers, and each sequence is used as the number of rounds for 

five repeated games of a session once in both treatments; each treatment includes four 

identical sequences of repeated games. This procedure for matching the sequences of 
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repeated games across the two treatments erases the possible heterogeneities in the 

learning effects owing to the randomness of the number of experienced rounds across 

treatments. Table 2 displays the summary of sequences of repeated games, their treatment, 

and the number of subjects. 

 

[TABLE 2 HERE] 

 

Our subjects were not informed in advance about which was the final round in each 

repeated game. To help our subjects understand that the probability of termination used 

for generating the sequences of repeated games is 1/30, we presented 30 cells (numbered 

1 to 30) on the computer screen at the end of each round. The 30th cell in the computer 

screen turned green when the repeated game was terminated. Otherwise, all the cells 

numbered 1 to 29 turned green simultaneously and the repeated game continued. The 

screen is demonstrated in the Online Appendix C.  

Using printed experimental instructions, each subject was informed of the rules of 

the game and the ways in which the game would proceed. The instructions were explained 

using a recorded voice. Using the computer screen during the experiments, our subjects 

could review the structure of the game and the history up to the latest round, the history 

of one’s own actions, and the signals of the opponent’s actions. See Online Appendix G 

for the experimental instructions and the images on the computer screen, which have been 

translated into English from the original Japanese. 

 

6. Aggregate-Level Analysis of Experimental Results 

 

6.1. Overall Cooperation Rates and Round 1 Cooperation Rates 

 

[TABLE 3 HERE] 

 

 Table 3 displays the descriptive summary of the data. In each treatment of 

monitoring accuracy, a group of 112 subjects made 16,968 decisions. The overall 

frequency of cooperative choices (i.e., the cooperation rate) is 0.845 in the high accuracy 
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treatment, and 0.598 in the low accuracy treatment. Statistically, the former frequency is 

significantly larger than the latter ( 0.001p   ). A first look at the cooperation rates 

suggests that our subjects cooperate more as the monitoring technology improves. 

 

 [TABLE 4 HERE] 

 

 Table 4 presents the round 1 cooperation rates, that is, the frequency of cooperative 

action choices in round 1. The round 1 cooperation rate is 0.905 in the high accuracy 

treatment and 0.748 in the low accuracy treatment, with the latter frequency being 

significantly smaller ( 0.001p   ) than the former. Our subjects tend to start repeated 

games with cooperative action choices not only in the high accuracy treatment but even 

in the low accuracy treatment. However, their initial motivation for cooperation 

diminishes slightly with an increase in the noise in the signal.  

 

6.2. Signal-Contingent Cooperation Rates 

 

 Table 4 also presents the signal-contingent cooperation rates. The frequency of 

cooperative actions after observing a good signal is computed as the simple mean of all 

choices, and denoted by ( ; )r c p . The simple mean of all choices in the high accuracy 

treatment is 0.924. In addition, Table 4 reports an alternative value, which is the mean of 

individual-level means; it is concerned with the possibility that the behavior of the 

cooperative subjects might be over-represented in the simple mean of choices.12  The 

mean of individual-level means in the high accuracy treatment is 0.918, which is 0.006 

less than the simple mean of choices, implying that there could be over-representation. 

However, both measures are consistently high, touching 0.9, thereby indicating that our 

subjects are quite cooperative when they observe a good signal.  

Even in the low accuracy treatment, the cooperation rate after observing a good 

signal is high, although it is not as high as in the high accuracy treatment. The simple 

 
12 Since subjects who are cooperative might observe good signals more often and adopt cooperative 
actions more often, their cooperative choices might be over-represented in the computation of 
cooperation rates that are contingent on a good signal. 
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mean of the cooperative choices in the low accuracy treatment is 0.726, and the mean of 

individual-level means is 0.706. As in the case of the round 1 cooperation rate, to some 

extent, our subjects are reluctant to cooperate even after observing good signals in the 

low accuracy treatment. A direct comparison of the cooperation rates between the two 

treatments indicates that the cooperation rate after observing a good signal in the high 

accuracy treatment is larger than that in the low accuracy treatment ( 0.001p   for both 

the simple mean and the mean of individual-level means). 

 As in the case of the cooperation rates after observing a bad signal, denoted by

( ; )r d p , the simple mean of cooperative choices in the high accuracy treatment is 0.560, 

and the mean of individual-level means is 0.621. Both measures are considerably smaller 

than that after observing a good signal in the treatment (Table 5). Bad signals tend to 

make our subjects consider more of defection. 

 The tendency of our subjects towards defection upon getting a bad signal is also 

observed in the low accuracy treatment. The simple mean of cooperative actions across 

all choices is 0.437 and the mean of individual-level means is 0.460, both of which are 

consistently smaller than the means in the high accuracy treatment ( 0.002p   for the 

simple mean, and 0.001p   for the individual-level mean). Observing a bad signal, our 

subjects tend to defect more in the low accuracy treatment than in the high accuracy 

treatment. Again, both measures are considerably smaller than that after observing a good 

signal in the treatment (Table 5). 

 The overall picture of the round 1 cooperation rates and the signal-contingent 

cooperation rates shown above robustly demonstrates that, irrespective of the type of 

signal observed, our subjects make more cooperative action choices when the signal 

quality is better. These findings imply that the strategies our subjects employ differ with 

the change in signal quality. 

 

RESULT 1-a: Our subjects in the high accuracy treatment tend to cooperate more than 

those in the low accuracy treatment, and thus the strategies they employ differ according 

to the monitoring accuracy. 

 

6.3. Retaliation Intensity 
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[TABLE 5 HERE] 

 

 We examine whether the observed retaliation intensity, defined as the difference in 

cooperation rate ( ; ) ( ; )r c p r d p , coincides with the theoretical value implied by the g-

TFT equilibria ( )w p . Table 5 presents the retaliation intensities at the aggregate level. 

 In the high accuracy treatment, the retaliation intensity ( ;0.9) ( ;0.9)r c r d  is 0.365 

in the simple mean of all choices and 0.297 in the mean of individual-level means. Both 

measures consistently differ from 0 in a statistically significant manner ( 0.001p   for 

both). These results indicate that our subjects use signal-contingent information in their 

action choices. However, both measures are larger and statistically significant than the 

level implied by the g-TFT equilibria ( (0.9) 0.235w  , 0.001p   for the simple mean, 

and 0.003p    for the individual-level mean), although the difference between the 

theoretical level and the individual-level mean is only 0.062. Thus, empirically, our 

subjects tend to punish partners slightly more than necessary, or almost just enough, to 

incentivize them to collude in the high accuracy treatment. 

    This deviation from the equilibria can be perceived more in the low accuracy 

treatment. The retaliation intensity ( ;0.7) ( ;0.7)r c r d  is 0.289 in the simple mean of 

all choices and 0.247 in the mean of individual-level means. Both measures consistently 

and with statistical significance differ from 0 ( 0.001p   for both), which demonstrates 

that our subjects use signal-contingent information even with poorer monitoring 

technology. However, unlike the case of the high accuracy treatment, the retaliation 

intensity in the low accuracy treatment is considerably lower than the level implied by 

the g-TFT equilibria ( (0.7) 0.47w  ) for both measures ( 0.001p   for both). Although 

our subjects retaliate according to the signals even in the low accuracy treatment, the 

strength of the retaliation is considerably below the theoretical level, allowing the 

opponents to defect permanently to pursue larger payoffs.13  

 
13 There might be concerns that the seemingly weaker retaliation intensities observed in this study do 
not necessarily imply weak retaliation policies of our subjects, since our subjects might use long-term 
(multi-round) punishments; long-term punishing strategies punish opponents even when observing a 
good signal during punishing phases, which could lower the retaliation intensity computed here. 



17 
 

    Not only do the retaliation intensities mismatch with the value implied by the g-TFT 

equilibria, but the players do not retaliate strongly with low accuracy than with high 

accuracy as predicted by the g-TFT equilibria. The direct comparison of the observed 

retaliation intensities across the two treatments (presented in Table 5) indicate that the 

retaliation intensity in the low accuracy treatment is not larger than the retaliation 

intensity in the high accuracy treatment, while the former is larger than the latter by a 

value of 0.235 as predicted by the equilibrium theory 

( (0.7) (0.9) 0.47 0.235 0.235w w    ). Rather, the observed retaliation intensity in 

the low accuracy treatment is slightly smaller than that in the high accuracy treatment as 

evaluated from the point estimates (statistically significant or marginally significant, 

0.023p   for the simple mean, and 0.079p   for the individual-level mean).  

 

RESULT 2-a: In the low accuracy treatment, our subjects tend to retaliate lesser than the 

level implied by the g-TFT equilibria, while they tend to retaliate at a higher level than, 

or at the same level, as implied by the g-TFT equilibria in the high accuracy treatment. 

Inconsistent with the theoretical predictions, the retaliation intensity does not increase 

when the monitoring technology becomes poorer. 

 

6.4. Impact of Experiences 

 

 Several studies have reported that the frequency of cooperation changes as people 

experience repeated games (e.g., Dal Bó and Fréchette; 2016). To examine the learning 

effects of repeated games, we perform reduced-form linear regression analyses. The 

results indicate that, despite some learning effects observed in the early stage of the 

experiments, the final three repeated games in both treatments have almost none or 

insignificantly small learning effects uniformly among overall cooperation rates, signal 

contingent-cooperation rates, and retaliation intensities. A detailed discussion on this is 

given in Online Appendix D. 

 
However, our analysis in Section 8 indicates that only a small number of our subjects adopted long-
term punishing strategies, and, hence, the effect of long-term punishments is minimal. 
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7. Estimation of Individual Strategies—Methodology 

 

 In this section and the following one, we present direct estimations of individual 

strategies of our subjects. Given the recent consensus in the literature of experimental 

repeated games that a substantial amount of heterogeneity exists in the strategies 

employed by subjects (Dal Bó and Fréchette, 2016), we list various strategies and estimate 

the frequency with which each strategy emerges among our subjects. The primary goal 

of our exercise is to perform detailed analyses from the viewpoint of individual strategies. 

 We employ SFEM methodology developed by Dal Bó and Fréchette (2011). The 

SFEM is a maximum likelihood estimation (MLE) of a finite mixture model of strategies 

that subjects use; the model parameters to be estimated are the frequencies of each 

strategy emerging among subjects, and parameter   , which controls the stochastic 

mistakes of action choices or implementation errors, and whose probability of occurrence 

is 1/ (1 exp(1/ )) . The details of the computation of the likelihood are provided in 

Appendix B. The validity of this method is verified in the Monte Carlo simulations in 

Fudenberg, Rand, and Dreber (2012). We also perform simulation exercises to examine 

the validity of the SFEM that includes a larger set of g-TFT strategies in the strategy list 

with the sample size of the current study; the results are reported in Online Appendix E. 

The underlying assumption for SFEM is that each subject continues to employ a 

specific strategy across all repeated games in each treatment. As discussed in Online 

Appendix D, the final three repeated games in both treatments include almost none or 

insignificant learning effects. This implies that there is a lesser possibility of the subjects 

systematically changing their strategies in the final three repeated games. Thus, we 

employ the data in the final three repeated games for the SFEM for both treatments. 

However, we also perform estimations employing the final four repeated games as 

robustness checks and find few changes in the estimates in each treatment; this would not 

be the case if our subjects systematically changed their strategies. The summary of the 

estimation results is documented in Online Appendix F. 

 

[TABLE 6 HERE] 
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 Given the difficulty of covering all possible sets of strategies, we include only the 

strategies that share significant proportions in existing studies on experimental repeated 

games and their stochastic variations. Table 6 displays the list of strategies in our SFEM. 

The list includes TFT, TF2T, TF3T, 2TFT, 2TF2T, Grim (trigger strategy),14 Grim-2, 

Grim-3, always cooperate (ALL-C), and always defect (ALL-D), all of which are listed 

in the literature of infinitely repeated games in imperfect monitoring (e.g., Fudenberg, 

Rand, and Dreber, 2012).15,16 

 Among these, ALL-D is a non-cooperative strategy, while the others (TFT, TF2T, 

TF3T, 2TFT, 2TF2T, Grim, Grim-2, Grim-3, and ALL-C) are cooperative strategies that 

involve cooperation at the start of each repeated game and continue to involve cooperation 

unless the belief sets in that the opponent might switch to defection. TF2T, TF3T, 2TF2T, 

Grim-2, and Grim-3 are “lenient” strategies (Fudenberg, Rand, and Dreber, 2012) that 

start punishing only after observing several consecutive occurrences of bad signals. TF2T 

(TF3T) retaliates once after observing two (three) consecutive bad signals, and 2TF2T 

retaliates twice after observing two consecutive bad signals; these correspond to a simple 

form of so-called “review strategies” (lenient strategies with long-term punishments in 

the proof of the limit folk theorem; see Matsushima, 2004; Sugaya, 2012) Grim-2 (Grim-

3) is a lenient variant of Grim strategy, which triggers continuous defection after 

observing two (three) consecutive deviations from ( , )c C , that is, the combination of a 

good signal from the opponent and the subject’s own cooperative choice. 

 We further include various stochastic strategies, such as g-TFT, g-2TFT, and g-TF2T, 

in the following manner. Importantly, we add many variants of g-TFT to our SFEM list 

 
14 Here, the definition of the Grim strategy is modified to cover the private monitoring case, in which 
no common signals are observable. The player starts to continuously choose defection if he or she 
observes a bad signal or has played defection in the previous round. Note that he or she could 
mistakenly play defection before the “trigger” is pulled because implementation errors of action 
choices are allowed in the SFEM framework. 
15 The literature has often added to the strategy set D-TFT, where defection is played in round 1, 
followed by TFT in round 2. However, we find no significant frequency of D-TFT in either treatment 
in our SFEM estimates even if we include D-TFT. 
16 The literature has often added to the strategy set Perfect tit-for-tat (P-TFT), wherein cooperation is 
chosen if both players choose defection in the previous round; otherwise, the action choices are 
identical to that in TFT. However, we find no significant frequency of P-TFT in either treatment in our 
SFEM estimates, even if we include P-TFT. 
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to identify strategies with various retaliation intensities. We allow the probabilities of 

cooperation, given a bad signal (i.e., ( )r d ), to take nine distinct values in decrements of 

12.5% (i.e., 100%, 87.5%, 75%, 62.5%, 50%, 37.5%, 25%, 12.5%, and 0%). Moreover, 

we allow the probabilities of cooperation, given a good signal (i.e., ( )r c ), to take nine 

distinct values in increments of 12.5% (i.e., 100%, 87.5%, 75%, 62.5%, 50%, 37.5%, 

25%, 12.5%, and 0%). Here, g-TFT- ( )r c  - ( )r d   denotes the g-TFT that plays 

cooperation after observing a good signal with probability ( )r c  and after observing a 

bad signal with probability ( )r d  .17  We list all possible combinations of ( )r c   and 

( )r d  in g-TFT in our strategy set as long as the g-TFT has a non-negative retaliation 

intensity (i.e., ( ) ( )r c r d ). 

 Specifically, we refer to the g-TFT strategies playing cooperation with constant 

probabilities r  , irrespective of the type of signals, as random strategies (denoted by 

Random- r ); they are primitive, signal non-contingent, zero retaliation variants of g-TFT, 

and include ALL-C and ALL-D as special cases. We regard a g-TFT strategy as non-

cooperative if both ( )r c   and ( )r d   are no more than 0.5. Otherwise, the g-TFT 

strategies are cooperative. 

 We add a family of g-2TFT as strategies that mete out even stronger punishments 

than TFT. The motivation for this comes from our earlier analysis in Section 6, where we 

find that our subjects, in aggregate, adopt stronger retaliation intensities than the level 

implied by the standard theory in the high accuracy treatment. The family of g-2TFT 

strategies (g-2TFT- r ) allows the second retaliations to be stochastic (play cooperation 

with probability r  in the second punishment) as the generous variants of 2TFT.18  

 We also include a family of g-TF2T (g-TF2T- r ) as the generous variants of TF2T; 

these allow stochastic punishments if two consecutive bad signals occur (play cooperation 

 
17 For simplicity, we assume that the probability of playing cooperation in round 1 coincides with the 

choice probability, given a good signal (i.e., ( )r c ). 
18  Unlike g-TFT, g-2TFT does not allow defections until the punishing phases start. Allowing 
defections outside of punishing phases starts reduces the retaliation intensities, which is contrary to 
the motivation for employing stronger (multi-round) punishments, rather than punishing in only one 
round. In addition, the strategies are assumed to play cooperation in round 1, as in TFT; these are 
multi-round punishing variants of TFT. 
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with probability after observing two consecutive bad signals).19 

 

8. Estimation of Individual StrategiesResults 

 

8.1. Cooperative and Non-Cooperative Strategies 

 

[Table 7 HERE] 

 

[Table 8 HERE] 

 

 Table 7 presents the estimates for the frequencies of strategies our subjects follow, 

and Table 8 displays the aggregated frequencies.  In the high accuracy treatment, the 

share of cooperative strategies, that is, strategies other than ALL-D, Random with a 

cooperation rate of no more than 0.5, and g-TFT that is less cooperative than Random-

0.5 (g-TFT-0.5- ( )r d , g-TFT-0.375- ( )r d , g-TFT-0.25- ( )r d , and g-TFT-0.125- ( )r d ), is 

98.8%, while that of non-cooperative strategies is 1.2%; thus, the share of cooperative 

strategies exceeds that of non-cooperative strategies. Statistically, the latter is 

significantly smaller than the former ( 0.001p  ). Although there are considerable 

heterogeneities in the strategies that our subjects follow, as Table 7 shows, most of our 

subjects adopt cooperative strategies in the high accuracy treatment. 

 In the low accuracy treatment, the share of cooperative strategies is 88.2%, while 

that of non-cooperative strategies is 11.8%; again, the share of non-cooperative strategies 

exceeds that of cooperative strategies. Statistically, the latter is significantly smaller than 

the former ( 0.001p  ). Many of our subjects follow cooperative strategies even when 

the monitoring technology is considerably poor, although the share of non-cooperative 

strategies in the low accuracy treatment is significantly larger than in the high accuracy 

treatment ( 0.007p  ).  

 
19 Unlike g-TFT, g-TF2T does not allow defections until the punishing phases start; this is because 
defections outside of punishing phases are contrary to the motivation for employing lenient strategies 
that allow “giving the benefit of the doubt” to an opponent after the first defection (Fudenberg, Rand, 
and Druber, 2012). For the same reason, the strategies are assumed to play cooperation in round 1.  
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RESULT 1-b:  Many of our subjects follow cooperative strategies in both the high and 

low accuracy treatments, although the frequency of cooperative strategies is larger in the 

high accuracy treatment than in the low accuracy treatment.  

 

Remark: Fudenberg, Rand, and Dreber (2012) reported in their imperfect public 

monitoring experiment that frequencies of cooperative strategies drop as the level of noise 

is increased from 1/16 to 1/8. Our study demonstrates that, even with the more drastic 

change in signal noise from 1/10 to 3/10 in imperfect private monitoring, the poorer signal 

quality does not drastically discourage our subjects from adopting cooperative strategies. 

 

8.2. Proportion of g-TFT Strategies 

 

 We now examine the share of g-TFT. Our SEFM estimates in Tables 7 and 8 indicate 

that there is a substantial proportion of the g-TFT family in our imperfect private 

monitoring. In the high accuracy treatment, independently, g-TFT-0.875-0.5 has the 

highest share among the various strategies (13.4%), followed by g-TFT-1-0.75 with an 

almost identical share (13.1%). The total share of the g-TFT family (g-TFT- ( )r c - ( )r d ), 

including TFT but excluding signal non-contingent variants of g-TFT (i.e., ALL-C (g-

TFT-1-1), ALL-D (g-TFT-0-0), and Random- r  (g-TFT- r - r )), is as large as 52.6%. The 

extended family of g-TFT, which includes the signal non-contingent, primitive variants 

of g-TFT, has a 62.5% share. As shown by these large numbers, a considerable proportion 

of our subjects follow one of the strategies in the g-TFT class. The share of g-TFT is also 

substantially large in the low accuracy treatment. The share of the g-TFT family is 58.5%, 

while the extended family with signal non-contingent variants comprises 78.1% of the 

strategies.  

Regardless of the treatment, we find a substantial proportion of our subjects 

following strategies in g-TFT family. This indicates that our subjects’ decisions on 

retaliation largely depend on a single occurrence of a bad signal (c.f. long-memory 

strategies).20 

 
20 The result that our SFEM estimates find many of our subjects playing g-TFT in our imperfect 
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RESULT 3: Our SFEM estimates indicate that the g-TFT family comprises a 

substantial portion of the strategies our subjects follow in both treatments. 

 

8.3. Retaliation Intensity 

 

 Observing that many of our subjects follow g-TFT, we investigate the proportion of 

our subjects adopting retaliation intensities that are consistent with g-TFT equilibria. In 

the high accuracy treatment, g-TFT-1-0.75, g-TFT-0.875-0.625, g-TFT-0.75-0.50, g-

TFT-0.625-0.375, g-TFT-0.5-0.25, g-TFT-0.375-0.125, and g-TFT-0.25-0 have 

approximately the same retaliation intensity as implied by the g-TFT equilibria 

( (0.9) 0.235w  ) in our list. However, our SFEM estimates in Tables 7 and 8 indicate that 

the joint share of these strategies is only 13.1%, though it is statistically significantly 

different from 0 at the 5% significance level ( 0.029p  ); a very small fraction of our 

subjects follow g-TFT equilibria retaliation intensity in the high accuracy treatment. This 

finding also holds for the low accuracy treatment in which g-TFT-1-0.5, g-TFT-0.875-

0.375, g-TFT-0.75-0.25, g-TFT-0.625-0.125, and g-TFT-0.5-0 have approximately the 

same retaliation intensity as implied by the g-TFT equilibria ( (0.7) 0.47w  ). However, 

the joint share of these strategies in the low accuracy treatment is only 4.6%, which is not 

statistically significantly different from 0 ( 0.321p  ). Despite many subjects following 

one of the g-TFT strategies in both treatments, very few of them follow the retaliation 

intensities implied in the g-TFT equilibria. 

 We further address how they tend to deviate from the theoretical prediction in terms 

of proportions of strategies. Our SFEM estimates in Tables 7 and 8 indicate that the group 

of stronger retaliation variants of g-TFT, that is, g-TFT strategies with retaliation 

 
private monitoring is seemingly less consistent with the finding of Fudenberg, Rand, and Dreber 
(2012), which found only a small proportion of their subjects playing g-TFT in their imperfect public 
monitoring. However, we are not able to identify the exact factors behind the discrepancy between our 
results and theirs; this is because our experimental settings different in terms of payoff parameters, 
discount factor, and signal accuracy. Perhaps, most importantly, our setting is a private monitoring 
environment in which g-TFT plays an important role as an equilibrium strategy. However, as discussed 
later, we corroborate Fudenberg, Rand, and Dreber (2012) by finding considerable proportions of our 
subjects following long-memory strategies in both treatments. 
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intensities of more than 0.25, comprising g-TFT-1-0.625/0.5/0.375/0.25/0.125/0, g-TFT-

0.875-0.5/0.375/0.25/0.125/0, g-TFT-0.75-0.375/0.25/0.125/0, g-TFT-0.625-

0.25/0.125/0, g-TFT-0.5-0.125/0, g-TFT-0.375-0, and g-2TFT-

0.875/0.75/0.625/0.5/0.375/0.25/0.125/0, jointly comprises 29.1% in the high accuracy 

treatment (significant, 0.001p  ). Since approximately 60% of our subjects follow g-

TFT in the high accuracy treatment, the results indicate that roughly half of them retaliate 

more strongly than the g-TFT equilibria require. Moreover, the share of the weaker 

retaliation variants of g-TFT, that is, g-TFT-1-0.875, g-TFT-0.875-0.75, g-TFT-0.75-

0.625, g-TFT-0.625-0.5, g-TFT-0.5-0.375, g-TFT-0.375-0.25, g-TFT-0.25-0.125, g-

TFT-0.125-0, ALL-C, ALL-D, and Random- r , reaches a somewhat equivalent share, 

which is 20.4% (significant, 0.002p  ), as the share does not statistically significantly 

differ from that of the group of stronger retaliation variants ( 0.327p  ). In the high 

accuracy treatment, the deviation from equilibria is roughly unsystematic, or slightly 

towards stronger retaliation as evaluated from the point estimates. 

 The deviation from the equilibria is systematic in the low accuracy treatment. Our 

SFEM estimates indicate that the group of weaker retaliation variants of g-TFT, that is, 

g-TFT-1-0.875, g-TFT-1-0.75, g-TFT-1-0.625, g-TFT-0.875-0.75, g-TFT-0.875-0.625, 

g-TFT-0.875-0.5, g-TFT-0.75-0.625, g-TFT-0.75-0.5, g-TFT-0.75-0.375, g-TFT-0.625-

0.5, g-TFT-0.625-0.375, g-TFT-0.625-0.25, g-TFT-0.5-0.375, g-TFT-0.5-0.25, g-TFT-

0.5-0.125, g-TFT-0.375-0.25, g-TFT-0.375-0.125, g-TFT-0.375-0, g-TFT-0.25-0.125, g-

TFT-0.25-0, ALL-C, ALL-D, and Random- r , jointly comprise 64.2% (significant, 

0.001p  ), while strong retaliation variants of g-TFT comprise only 9.3% (significant 

at the 5% level, 0.017p  ); indeed, the group of weaker retaliation is significantly 

larger than the group of stronger retaliation ( 0.001p  ). Unlike the high accuracy 

treatment, the deviation from equilibria is systematic towards weaker retaliation in the 

low accuracy treatment. 

 In Section 6, we found that the mean retaliation intensities deviate from the values 

implied by the g-TFT equilibria at the aggregate level. We examine whether this finding 

holds even if we restrict our attention to the behavior of g-TFT players, rather than 

considering the aggregate behavior of all players. We compute the mean retaliation 

intensities conditional on the g-TFT strategies (including ALL-C, ALL-D, and Random-
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r ). The conditional mean retaliation intensity in the high accuracy treatment is 0.312 (s.e. 

0.041); this is marginally significant and larger than the value predicted by the g-TFT 

equilibria ( (0.9) 0.235w  , 0.058p  ). In the low accuracy treatment, the mean 

retaliation intensity is 0.274 (s.e. 0.029) ; this is considerably smaller than the value 

implied by the g-TFT equilibria ( (0.7) 0.47w  , 0.001p  ). A comparison of the two 

indicates that the conditional mean of retaliation intensity in the low accuracy treatment 

is not larger than that in the high accuracy treatment by the degree that the g-TFT 

equilibria imply ( (0.7) (0.9) 0.47 0.235 0.235w w     , 0.001p   ). Rather, the 

retaliation intensity in the low accuracy treatment is smaller than in the high accuracy 

treatment as evaluated from the point estimates, though the difference is not statistically 

significant ( 0.452p  ). Hence, even if we consider only g-TFT players, the behavior 

deviates from the theoretical predictions; this result echoes the findings in Section 6. 

 

RESULT 2-b: Our SFEM estimates indicate that, only a small number of our subjects 

follow the retaliation intensities implied by the g-TFT equilibria in both treatments. 

Rather, the share of weaker retaliation variants of g-TFT considerably outweighs that of 

stronger retaliation variants in the low accuracy treatment, while in the high accuracy 

treatment, the share of stronger retaliation variants of g-TFT is equivalent to that of 

weaker retaliation variants of g-TFT with some possibility that the former might be 

slightly larger than the latter. The mean retaliation intensity among g-TFT players is 

considerably smaller than the level implied by the equilibria in the low accuracy treatment, 

and is marginally larger than the level implied by the g-TFT equilibria in the high 

accuracy treatment. Inconsistent with the predictions of g-TFT equilibria, the retaliation 

intensity of g-TFT players in the low accuracy treatment does not tend to be larger than 

in the high accuracy treatment. 

 

8.4. Further Results 

 

8.4.1. Long-Term Punishment 

 

 In Section 6, we found that the aggregate level of retaliation intensity is smaller than 
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the level implied by the g-TFT equilibria in the low accuracy treatment. Here we address 

the concern that seemingly weak retaliation intensity might spuriously arise when many 

subjects employ long-term punishing strategies.  

Tables 7 and 8 indicate that, the share of strategies with long-term punishments, that 

is, a family of 2TFT, 2TF2T, Grim, Grim-2, and Grim-3 in the low accuracy treatment is 

only 12.8%; the share is statistically only marginally significant ( 0.081p  ). Likewise, 

in the high accuracy treatment, the share of long-term punishing strategies is 14.2% 

(significant, 0.001p  ).  

Since only a small number of the subjects employ long-term punishing strategies in 

both treatments, their effects are minimal. Indeed, the mean retaliation intensity among 

g-TFT players in the low accuracy treatment reported in this section, that is 0.274, is 

somewhat larger than the value reported for the mean retaliation intensity in Section 6, 

that is 0.247 (individual-level mean). However, as shown above, the value is still 

considerably below the level implied by the g-TFT equilibria ( (0.7) 0.47w  ). 

 

RESULT 2-c: The shares of strategies with long-term punishments are only marginal or 

at most small in both treatments.  

 

8.4.2. Long-Memory Strategy 

 

 Given the theories regarding review strategies (e.g., Radner, 1986; Matsushima, 

2004; Sugaya, 2012), players might rely on signals in longer histories to compensate for 

the informational disadvantages of poorer monitoring technologies. Therefore, it is 

interesting to examine whether our subjects tend to play long-memory strategies more in 

the low accuracy treatment than in the high accuracy treatment as the theories of review 

strategies suggest.  

Tables 7 and 8 indicate that, in the low accuracy treatment, the joint share of long-

memory strategies, that is, the family of g-TF2T including TF2T, TF3T, 2TF2T, Grim-2, 

and Grim-3, is 21.0% (marginally significant, 0.078p  ). Individually, Grim-3 has the 

largest proportion, which is 7.6% (significant at the 5% level, 0.021p  ). In the high 

accuracy treatment, their joint share is 37.5% (significant, 0.001p  ). Individually, g-
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TF2T-0.5, which is a hybrid of generous and long-memory strategies, has the highest 

frequency, which is 15.6% (significant at the 5% level, 0.042p  ). These results 

indicate that considerable proportions of our subjects employ long-memory strategies in 

both treatments; however, contrary to the theories of review strategies, the share does not 

increase in the poorer monitoring technology. 

 

RESULTS 4: Our estimates indicate that a considerable number of subjects employ long-

memory strategies, however there is no evidence of a larger share of the strategies in the 

low accuracy treatment as opposed to the high accuracy treatment. 

 

Remark:  These results corroborate previous findings in the literature; Fudenberg, 

Rand, and Dreber (2012) and Aoyagi, Bhaskar, and Fréchette (2019) find that a 

substantial number of players employ long-memory (lenient) strategies in imperfect 

monitoring. Moreover, similar to our case, Fudenberg, Rand, and Dreber (2012) find 

paradoxical results that the share of the long-memory players somewhat decreases as the 

monitoring technology becomes poorer. The results observed in this study echo these 

findings. 

This study originally finds that, by adding g-TFT strategies extensively in the SFEM 

list, memory-one strategies (i.e., g-TFT strategies) are employed substantially, whose 

frequency is greater than, or at least equivalent to the frequency of long-memory (lenient) 

strategies; in the high accuracy treatment, the frequencies of g-TFT strategies excluding 

signal non-contingent strategies (i.e., non-trivial memory-one strategies) is 52.6%, which 

exceeds that of long-memory strategies (37.5%) as evaluated from the point estimates. 

However, the difference is not statistically significant ( 0.261p  ). Similarly, in the low 

accuracy treatment, the frequencies of g-TFT strategies excluding signal non-contingent 

strategies is 58.5%, which is larger than that of long-memory strategies (21.0%) as 

evaluated from the point estimates; however, the difference is only marginally significant 

( 0.097p  ). 

 

9. Conclusion 
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 This study experimentally examines collusion in a repeated prisoner’s dilemma 

game with random termination in which monitoring is imperfect and private. Each player 

obtains information about the opponent’s action choice through a signal instead of a direct 

observation, and the signal the opponent observes is not observable by the player. The 

continuation probability in the experiments is large enough to allow the subjects to 

collude even if the monitoring technology is poor. Our study is the first attempt to 

investigate imperfect private monitoring. 

 Our results indicate that a significant proportion of the subjects employ g-TFT 

strategies, which are straightforward stochastic extensions of the TFT strategy. We depart 

significantly from the experimental literature by considering g-TFT strategies, which 

have attracted less attention in the empirical literature despite their theoretical and 

practical importance. Our finding that a significant proportion of our subjects follow g-

TFT strategies reveals its empirical importance. Our estimation results indicate that a 

large proportion of the subjects follow g-TFT strategies, rather than grim-trigger, long-

term punishment strategies, and their stochastic variants that frequently appear in existing 

experimental studies on repeated games. The proportion is somewhat greater than, or at 

least equivalent to the proportion of long-memory (lenient) strategies.  

 Although many subjects follow g-TFT strategies, their retaliating policies do not 

follow the predictions of the g-TFT equilibria. Inconsistent with the predictions, our 

subjects do not retaliate more with low accuracy than with high accuracy; their retaliation 

intensity in the low accuracy treatment is somewhat smaller than, or at most equivalent 

to that in the high accuracy treatment. Further, the subjects tend to retaliate considerably 

less than what the standard g-TFT equilibria predict in the low accuracy treatment, while 

they tend to retaliate somewhat more than, or almost equivalently to what is required by 

the equilibria in the high accuracy treatment. Hence, the expected payoff from 

cooperation tends to be considerably less than the expected payoff from defection when 

monitoring is inaccurate; however, the expected payoff to a subject from cooperation 

tends to be somewhat greater than that from defection when monitoring is accurate. 

 These findings indicate that subjects fail to improve their welfare by effectively 

utilizing monitoring technology, as predicted by the standard theory. Rather, this 

systematic deviation from the standard theory might present to economists a new issue 

related to incentives that encompasses the motivations for retaliations beyond just 



29 
 

maximizing pay-off.21,22 

 Further, it is meaningful to attempt various experimental designs and examine 

subjects’ choice of strategies more systematically. From this study and the previous 

experimental ones concerning imperfect monitoring, such as Fudenberg, Rand, and 

Dreber (2012), we learn that g-TFT and long-memory (lenient) strategies are remarkable 

in implicit collusion. However, grim-trigger and long-term punishing strategies are not 

so, even though they are prominent in theory and in real cartels (e.g., Igami and Sugaya, 

2018). Further experimental investigation is needed to uncover various potential factors 

that could affect players’ choices of strategies. Such factors might include pre-play 

communication and information transmission during the play; these are expected to make 

experimental environments resemble reality.  
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Table 1: 
Prisoner’s Dilemma with Symmetry and Additive Separability 

 
 C D 

C 60  60 5  70 
D 70  5 15  15 
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Table 2: 
Features of Experimental Design 

 
 Number of subjects Treatment (sequence of game lengths) 

October 2, 2018 (morning) 28 0.9 (11, 34, 48, 21, 33) 
October 3, 2018 (morning) 28 0.9 (42, 11, 30, 46, 24) 
October 3, 2018 (afternoon) 28 0.7 (11, 34, 48, 21, 33) 
October 4, 2018 (morning) 28 0.7 (42, 11, 30, 46, 24) 
June 11, 2019 (morning) 28 0.9 (7, 28, 45, 40, 28) 
June 11, 2019 (afternoon) 28 0.9 (17, 44, 17, 31, 49) 
June 12, 2019 (morning) 28 0.7 (7, 28, 45, 40, 28) 
June 14, 2019 (morning) 28 0.7 (17, 44, 17, 31, 49) 
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Table 3: 
Decisions and Signal 

 
 0.9p    0.7p   

 N Mean St. Dev.  N Mean St. Dev. 
Cooperative choice 16,968 0.845 0.362  16,968 0.598 0.490 

Good signal 16,968 0.775 0.418  16,968 0.537 0.499 
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Table 4: 
Means of Cooperative Action Choice 

 
 0.9p   0.7p    p-values 

( )q p  (round 1) 0.905 (0.019) 0.748 (0.033) < 0.001 

( ; )r c p  0.924 (0.009) 0.726 (0.025) < 0.001 

Individual-level means 0.918 (0.010) 0.706 (0.026) < 0.001 

( ; )r d p  0.560 (0.030) 0.437 (0.026)  0.002 

Individual-level means 0.621 (0.024) 0.460 (0.026) < 0.001 

Notes: The standard errors (shown in parentheses) are block-bootstrapped (individual and 
repeated game level) with 5,000 repetitions, which is used to calculate p-values. The null 
hypothesis is that the values are identical across the two treatments. 
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Table 5: 
Retaliation Intensities 

 
 Mean S.E. p-value 

( ;0.9) ( ;0.9)r c r d  0.365 0.027 < 0.001 

Individual-level means 0.297 0.021 0.003 

( ;0.7) ( ;0.7)r c r d  
0.289 0.019 < 0.001 

Individual-level means 0.247 0.020 < 0.001 

( ( ;0.9) ( ;0.9)) ( ( ;0.7) ( ;0.7))r c r d r c r d    
0.075 0.033 < 0.001 

(0.023+) 
Individual-level means 0.050 0.029 < 0.001 

(0.079+) 
Notes: The standard errors are block-bootstrapped (subject and repeated game level) with 5,000 
repetitions, which is used to calculate p-values for the hypothesis tests for the comparison to the 
value predicted by the theory ( ( )w p ), which is 0.235 in the high accuracy treatment and 0.47 in 
the low accuracy treatment. Precisely, the null hypothesis is that the mean is identical to the value 
predicted by the theory.  
+ The p-values shown in the parentheses are for hypothesis tests in which the null is that the mean 
is identical to zero.  
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Table 6: 
Strategy Set in our SFEM 

 
Strategy Description 
ALL-C Always cooperate 
TFT Tit-for-tat 

g-TFT- ( )r c - ( )r d  Generous tit-for-tat (cooperate if a good signal occurs with probability ( )r c ; forgive 

in the event of a bad signal and cooperate with probability ( )r d ) 

ALL-D Always defect 
TF2T Tit-for-two-tat (retaliate if bad signals occur in both of the last two rounds) 

g-TF2T- r  Generous tit-for-two-tat (play cooperation stochastically with probability r   even 
after observing two consecutive bad signals) 

TF3T Tit-for-three-tat (retaliate if a bad signal occurs in all of the last three rounds) 
2TFT Two tit-for-tat (retaliate twice consecutively if a bad signal occurs) 

g-2TFT- r  Generous two tit-for-tat (certainly retaliate if a bad signal occurs, but forgive and 

cooperate with probability r   in the next round if a good signal occurs (second 
punishment)) 

2TF2T Two tit-for-two-tat (retaliate twice consecutively if a bad signal occurs in both of the 
last two rounds) 

Grim Cooperate until the player chooses defection or observes a bad signal, and then play 
defection forever 

Grim-2 Cooperate until the case of twice in a row occurs, in which the player chooses defection 
or observes a bad signal, and then play defection forever 

Grim-3 Cooperate until the case of three times in a row occurs, in which the player chooses 
defection or observes a bad signal, and then play defection forever 

Random- r  Cooperate with probability r  irrespective of signals 
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Table 7: 
Maximum Likelihood Estimates of Individual Strategies 

 
 p = 0.9 S.E.  p = 0.7 S.E. 
ALL-C (g-TFT-1-1) 0.072** (0.036)  0.118*** (0.035) 
g-TFT-1-0.875 0 (0.027)  0.015 (0.017) 
g-TFT-1-0.75 0.131*** (0.049)  0.037 (0.026) 
g-TFT-1-0.625 0 (0.041)  0 (0) 
g-TFT-1-0.5 0.040 (0.037)  0 (0) 
g-TFT-1-0.375 0.023 (0.031)  0.006 (0.011) 
g-TFT-1-0.25 0.021 (0.026)  0.009 (0.016) 
g-TFT-1-0.125 0.032 (0.023)  0 (0.007) 
TFT (g-TFT-1-0) 0 (0.008)  0.018 (0.013) 
Random-0.875 (g-TFT-0.875-0.875) 0.015 (0.024)  0.003 (0.006) 
g-TFT-0.875-0.75 0.098** (0.042)  0.012 (0.024) 
g-TFT-0.875-0.625 0 (0.034)  0.070* (0.042) 
g-TFT-0.875-0.5 0.134** (0.054)  0.047 (0.042) 
g-TFT-0.875-0.375 0.011 (0.023)  0.046 (0.042) 
g-TFT-0.875-0.25 0 (0.008)  0.060 (0.037) 
g-TFT-0.875-0.125 0.012 (0.011)  0 (0.009) 
g-TFT-0.875-0 0 (0.006)  0 (0) 
Random-0.75 (g-TFT-0.75-0.75) 0 (0)  0 (0) 
g-TFT-0.75-0.625 0 (0)  0 (0.005) 
g-TFT-0.75-0.5 0 (0.009)  0.072 (0.050) 
g-TFT-0.75-0.375 0.018 (0.016)  0.087* (0.050) 
g-TFT-0.75-0.25 0 (0)  0 (0.011) 
g-TFT-0.75-0.125 0 (0.006)  0 (0) 
g-TFT-0.75-0 0 (0)  0 (0) 
Random-0.625 (g-TFT-0.625-0.625) 0 (0)  0 (0) 
g-TFT-0.625-0.5 0.006 (0.009)  0.019 (0.020) 
g-TFT-0.625-0.375 0 (0)  0 (0.013) 
g-TFT-0.625-0.25 0 (0)  0.044** (0.023) 
g-TFT-0.625-0.125 0 (0)  0 (0.004) 
g-TFT-0.625-0 0 (0.012)  0 (0) 
Random-0.5 (g-TFT-0.5-0.5) 0.012 (0)  0.004 (0.007) 
g-TFT-0.5-0.375 0 (0)  0 (0) 
g-TFT-0.5-0.25 0 (0)  0.004 (0.019) 
g-TFT-0.5-0.125 0 (0)  0 (0.010) 
g-TFT-0.5-0 0 (0)  0 (0) 
Random-0.375 (g-TFT-0.375-0.375) 0 (0)  0 (0) 
g-TFT-0.375-0.25 0 (0)  0 (0.011) 
g-TFT-0.375-0.125 0 (0)  0.014 (0.017) 
g-TFT-0.375-0 0 (0)  0 (0) 
Random-0.25 (g-TFT-0.25-0.25) 0 (0)  0.028 (0.018) 
g-TFT-0.25-0.125 0 (0)  0.024 (0.018) 
g-TFT-0.25-0 0 (0)  0 (0) 
Random-0.125 (g-TFT-0.125-0.125) 0 (0)  0 (0.006) 
g-TFT-0.125-0 0 (0)  0 (0) 
ALL-D (g-TFT-0-0) 0 (0)  0.045** (0.020) 
g-TF2T-0.875 0 (0.020)  0 (0.011) 
g-TF2T-0.75 0 (0.027)  0.018 (0.023) 
g-TF2T-0.625 0 (0.058)  0.003 (0.030) 
g-TF2T-0.50 0.156** (0.077)  0.044 (0.040) 
g-TF2T-0.375 0 (0.040)  0.027 (0.042) 
g-TF2T-0.25 0 (0.014)  0 (0.017) 
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g-TF2T-0.125 0 (0.005)  0 (0) 
TF2T (g-TF2T-0) 0.050 (0.030)  0 (0.002) 
TF3T 0.028 (0.031)  0 (0.009) 
g-2TFT-0.875 0 (0)  0 (0) 
g-2TFT-0.75 0 (0)  0 (0) 
g-2TFT-0.625 0 (0)  0 (0) 
g-2TFT-0.50 0 (0)  0 (0.002) 
g-2TFT-0.375 0 (0)  0 (0) 
g-2TFT-0.25 0 (0)  0 (0.007) 
g-2TFT-0.125 0 (0)  0 (0.006) 
2TFT (g-2TFT-0) 0 (0)  0 (0) 
2TF2T 0.014 (0.016)  0.032 (0.030) 
Grim 0 (0)  0.009 (0.007) 
Grim-2 0.044* (0.024)  0.011 (0.018) 
Grim-3 0.084* (0.046)  0.076** (0.033) 
Gamma 0.271*** (0.017)  0.351*** (0.059) 

Notes: The standard errors (shown in parentheses) are cluster-bootstrapped (individual level) with 
100 repetitions, which is used to calculate p-values. * 0.1p  , ** 0.05p  , *** 0.01p  .  
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Table 8: 
Frequency of Cooperative Strategies, g-TFT, Retaliation Intensities (RI) 

 
  p = 0.9  p = 0.7 
Cooperative strategies  98.8%  88.2% 
Non-cooperative strategies  1.2%  11.8% 
     
Family of g-TFT  62.5%  78.1% 
Excluding signal non-contingent, zero 
RI strategies (ALL-C, ALL-D, 
Random- r ) 

 52.6%  58.5% 

     
Equilibrium RI (RI = 0.25) 13.1% (RI = 0.5) 4.6% 
Stronger RI (RI > 0.25) 29.1% (RI > 0.5) 9.3% 
Weaker RI (positive RI only) (0 < RI < 0.25) 10.4% (0 < RI < 0.5) 44.6% 
Including zero RI strategies (RI < 0.25) 20.4% (RI < 0.5) 64.2% 
     
Mean RI conditional on g-TFT  0.312  0.274 
Median RI conditional on g-TFT  0.250  0.250 
     
Long-term punishment strategies  14.2%  12.8% 
     
Long-memory (lenient) strategies  37.5%  21.0% 
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Appendix A: The Proof of the Proposition 
 

 Selecting is C  instead of D  costs player i  g  in the current round, whereas 

in the next round, she (or he) can gain 1 g   from the opponent’s response with 

probability ( ) (1 ) ( )pr c p r d    instead of (1 ) ( ) ( )p r c pr d   . Since she must be 

incentivized to select both actions C  and D  (belief-free nature), indifference between 

these action choices must be a necessary and sufficient condition: 

   (1 ){ ( ) (1 ) ( )} (1 ){(1 ) ( ) ( )}g g pr c p r d g p r c pr d          , 

or, equivalently, 

   (1 )(2 1){ ( ) ( )}g g p r c r d    , 

implying (1). Since ( ) ( ) 1r c r d  , the inequality ( ) 1w p   must hold. 

Q.E.D. 

 

Appendix B: Derivation of Likelihood 
 

 The likelihood function in SFEM frameworks is derived as follows. The choice 

probability of subject i  employing strategy s  in round r of repeated game k , given 

the history of her past choices and signals obtained from the opponent up to the round, is 

defined as 

(B. 1)    1
( )

1 exp( 1 / )
ikrP s




 
, 

if the observed choice is matched with the predicted choice by strategy s  given the 

history up to the round. Otherwise, the choice is classified as an implementation error, 

and the choice probability is 

(B. 2)    1
( )

1 exp(1 / )
ikrP s





, 

where   captures the probability of the implementation error. 

 The likelihood of subject i  employing strategy s  is 

    ( ) ( )i ikr

k r

P s P s  . 

In the SFEM framework, the likelihood of subject i  over all strategies is a finite mixture 
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of ( )iP s  over the entire strategy set. We denote the frequency of occurrence of strategy 

s  by ( )P s . Then, the log likelihood of the MLE is 

   ln ( ) ( )i

i s

LH P s P s
   
 

  . 

The choice probabilities in (B. 1) and (B. 2) are defined over deterministic strategies. 

Since the list of strategies considered in our SEFM (Table 6) includes stochastic strategies, 

the choice probabilities should be extended to cover stochastic cases. Following 

Fudenberg, Rand, and Dreber (2012), (B. 1) and (B. 2) are extended to cover stochastic 

strategies as follows: 

(B. 3)    
1 1

( ) (1 )
1 exp( 1/ ) 1 exp(1/ )

ikr ikr ikrP s s s
 

   
          

 

     if the observed choice is C, 

(B. 4)    
1 1

( ) (1 )
1 exp( 1/ ) 1 exp(1/ )

ikr ikr ikrP s s s
 

   
          

 

     if the observed choice is D, 

where ikrs  is the probability of playing C in stochastic strategy s  given the history up 

to the round. Note that the new formulations of the choice probabilities (B. 3) and (B. 4) 

are reduced to the previous definition (B. 1) and (B. 2) when ikrs  takes a value of either 

1 or 0 as deterministic choices. 

The standard error of the MLE is computed through a cluster-bootstrap (individual-

level) with 100 resamples, which is also used to perform the hypothesis tests presented in 

Section 8.  
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Online Appendices C-G 

Accuracy and Retaliation 

in Repeated Games with Imperfect Private Monitoring: 

Experiments 

 

Online Appendix C: Screens in Constant Random Termination 

 

 

Figure C.1: Screen when the repeated game continues 
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Figure C.2: Screen when the repeated game is terminated  
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Online Appendix D: Impact of Experience 

 

 Several studies have reported that the frequency of cooperation changes as people 

experience playing repeated games (see discussion in Dal Bó and Fréchette, 2016). 

Cooperation rates may rise with the experience of repeated games when the experimental 

parameters are conducive to cooperation. We document the learning effects observed in 

the data in detail in this appendix.  

 To examine the impact of the experience of repeated games on overall cooperation 

rates, we perform the following reduced-form, linear regression analysis; we regress the 

action choices on the four explanatory variables, RG2, RG3, RG4, and RG5. The dummy 

variable RG2 takes a value of 1 if the choice is made in the second repeated game in each 

treatment. Similarly, the dummy variables RG3, RG4, and RG5 are defined with respect 

to the third, fourth, and fifth repeated games. The dummy variable for the first repeated 

game is omitted for non-singularity. The regression model is a fixed-effect model in which 

the individual heterogeneity in the tendency to adopt cooperative choices is controlled by 

individual fixed effects. The regression coefficients on the dummy variables for repeated 

games capture the additional impacts on cooperation rates in comparison to that in the 

first repeated game. 

 

[TABLE D.1 HERE] 

 

 Table D.1 displays the regression results for over-all cooperation rates. In the high 

accuracy treatment, the coefficients of the dummy variables for repeated games in the 

early stage increase as the experiments proceed. The growing positive values of the 

coefficients indicate that the subjects tend to cooperate more with experience, indicating 

that the welfare of the two players improves with experience. However, the cooperation 

rates stop growing in the final three repeated games; the coefficient of the dummy variable 

RG3, which is 0.119, is not statistically significantly different from both of the two 

coefficients of the dummy variables RG4 and RG5, which are 0.139 (F-test, 0.302p  ) 

and 0.131 ( 0.565p  ), respectively. 
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    A similar pattern of learning is observed in the signal contingent cooperation rates. 

Table D.2 displays the regression results for the signal contingent cooperation rates 

conditional on good signal, and Table D.3. displays them conditional on bad signal. The 

coefficients for dummy variables for repeated games in the early stage become larger as 

the subjects experience games in the high accuracy treatment; however, the enlargement 

stops in the final three repeated games. For the signal contingent cooperation rates on 

good signal, the cooperation rates gain about 7% until the third repeated games; however, 

no additional gain is observed in the final three repeated games; the coefficient of the 

dummy variable RG3, which is 0.070, does not statistically significantly differ from both 

of the two coefficients of RG4 and RG5, which are 0.076 ( 0.586p   ) and 0.079 

( 0.913p  ), respectively. For the bad signal, the cooperation rates gain about 15% until 

the third repeated games; however, the gain has insignificant difference in the final three 

repeated games; the coefficient of RG3, which is 0.149, does not statistically significantly 

differ from both of the two coefficients of RG4 and RG5, which are 0.180 ( 0.473p  ) 

and 0.181 ( 0.450p  ), respectively.  

 

[TABLE D.2 HERE] 

 

[TABLE D.3 HERE] 

 

We also investigate the effect of experience on retaliation intensities. Here, we 

perform a similar, reduced-form regression analysis, regressing the action choices on the 

dummy variable Signal, which takes a value of 1 if the signal is good. The coefficient of 

the dummy variable captures the contrast between the cooperation rate contingent on the 

good and bad signals, that is, the retaliation intensity. To examine learning effects on 

retaliation intensities across repeated games, we add the cross-product terms of Signal 

and the dummy variables for the repeated games, RG2, RG3, RG4, and RG5, in the sets 

of explanatory variables. The coefficients of the cross products terms capture the 

additional impacts on retaliation intensity in comparison to that in the first repeated game. 

Again, the regression model is a fixed-effect model in which individual heterogeneity in 

the tendencies to adopt cooperative choices is controlled by individual fixed effects. 
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[TABLE D.4 HERE] 

 

 Table D.4 displays the regression results. The regression coefficients in the high 

accuracy treatment indicate possible negative learning effect in the final three repeated 

games. The point estimates for the coefficients on the cross-product terms of Signal and 

RG3, RG4, and RG5 are negative (though that for RG3 is insignificant, and that for RG5 

is only marginally significant). However, these values do not statistically significantly 

differ among them; the coefficient on the cross-product terms of Signal and RG3, which 

is -0.044, does not statistically significantly differ from both of the coefficients on the two 

cross-product terms with respect to RG4 and RG5, which are -0.103 ( 0.177p  ) and -

0.075 ( 0.517p  ) respectively.  

    The discussion about the learning effects in the high accuracy treatment 

demonstrated above indicates that, we observe some learning effects in the early stage of 

the experiments, however additional learning is almost none or insignificantly small in 

the final three repeated games.  

The stability of the cooperation rates in the final three repeated games are also 

observed in the low accuracy treatment. Rather, even in the early stage, learning effects 

are generally smaller in size or often not observed in the low accuracy treatment. As 

displayed in Table D.1, the absolute sizes of the regression coefficients in the low 

accuracy treatment tend to be small. The only significant coefficient is the one on the 

dummy variable RG5, which is 0.077. Again, additional learning is almost none or 

insignificantly small in the final three repeated games; the coefficient on the dummy 

variable RG3, which is 0.041, does not statistically significantly differ from both 

coefficients of the dummy variables, RG4 and RG5, which are 0.034 ( 0.822p  ) and 

0.077 ( 0.157p  ) respectively. Qualitatively similar results are observed in the signal 

contingent cooperation rates displayed in Tables D.2 and D.3. Moreover, for the 

retaliation intensities, none of the coefficients on the cross-product terms of Signal and 

RG3, RG4, and RG5 differ from zero statistically. This indicates that there are no 

remarkable learnings for the retaliation intensities in the low accuracy treatment. 
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Studies on repeated games frequently report that cooperation often increases with 

experience when the experimental parameters are favorable for cooperation. Our results 

that positive learning in cooperation rates is observed in the early stages of the 

experiments in the high accuracy treatment are consistent with existing findings in the 

literature, although the size of the learning effects is not as large as observed in them.  
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Table D.1: 
Fixed-Effect Model Regression Results on the Experience Effect on Overall 

Cooperation Rates 
 

 p = 0.9 p = 0.7 
RG2 0.080**(0.032) -0.051 (0.031) 
RG3 0.119*** (0.032) 0.041 (0.032) 
RG4 0.139*** (0.026) 0.034 (0.030) 
RG5 0.131*** (0.027) 0.077**(0.032) 
   
Observations 16,968 16,968 
R2 0.015 0.008 

Notes: Cluster-robust (individual-level) standard errors in parenthesis. * 0.1p  , ** 0.05p  , 

*** 0.01p  . The coefficient of RG3 does not differ significantly from that of RG4 in both the 

treatments (F-test, 0.302p    for the high accuracy treatment and 0.822p    in the low 
accuracy treatment); the coefficient of RG3 does not differ significantly from that of RG5 in both 
treatments ( 0.565p    for the high accuracy treatment and 0.157p    in the low accuracy 
treatment). Furthermore, the coefficient on RG4 does not differ significantly from that of RG5 in 
the high accuracy treatment ( 0.643p   ), and it differs only marginally in the low accuracy 

treatment ( 0.092p  ). 
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Table D.2: 
Fixed-Effect Model Regression Results on the Experience Effect on Cooperation 

Rates Contingent on Good Signals 
 

 p = 0.9 p = 0.7 
RG2 0.051*** (0.018) -0.054* (0.032) 
RG3 0.070*** (0.018) 0.043 (0.030) 
RG4 0.076*** (0.017) 0.048 (0.030) 
RG5 0.069*** (0.018) 0.065**(0.031) 
   
Observations 12,721 8,829 
R2 0.008 0.009 

Notes: Cluster-robust (individual-level) standard errors in parenthesis. * 0.1p  , ** 0.05p  , 

*** 0.01p  . The coefficient of RG3 does not differ significantly from that on RG4 in both 

treatments (F-test, 0.586p    for the high accuracy treatment and 0.839p    in the low 
accuracy treatment); the coefficient of RG3 does not differ significantly from that of RG5 in both 
treatments ( 0.913p    for the high accuracy treatment and 0.326p    in the low accuracy 
treatment). Furthermore, the coefficient of RG4 does not differ significantly from that of RG5 in 
both treatments ( 0.480p    for the high accuracy treatment and 0.493p    in the low 
accuracy treatment).  
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Table D.3: 
Fixed-Effect Model Regression Results on the Experience Effect on Cooperation 

Rates Contingent on Bad Signals 
 

 p = 0.9 p = 0.7 
RG2 0.115** (0.046) -0.049 (0.032) 
RG3 0.149*** (0.052) 0.039 (0.034) 
RG4 0.180*** (0.043) 0.032 (0.032) 
RG5 0.181*** (0.044) 0.071**(0.035) 
   
Observations 3,678 7,579 
R2 0.014 0.006 

Notes: Cluster-robust (individual-level) standard errors in parenthesis. * 0.1p  , ** 0.05p  , 

*** 0.01p  . The coefficient of RG3 does not differ significantly from that on RG4 in both 

treatments (F-test, 0.450p    for the high accuracy treatment and 0.812p    in the low 
accuracy treatment); the coefficient of RG3 does not differ significantly from that of RG5 in both 
treatments ( 0.473p    for the high accuracy treatment and 0.260p    in the low accuracy 
treatment). Furthermore, the coefficient of RG4 does not differ significantly from that of RG5 in 
both treatments ( 0.998p    for the high accuracy treatment and 0.147p    in the low 
accuracy treatment). 
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Table D.4: 
Fixed-Effect Model Regression Results on the Experience Effect on Retaliation 

Intensities 
 

 p = 0.9 p = 0.7 
Signal 0.360*** (0.031) 0.257*** (0.035) 
Signal: RG2 0.007 (0.041) -0.020 (0.035) 
Signal: RG3 -0.044 (0.050) -0.017 (0.030) 
Signal: RG4 -0.103** (0.040) 0.007 (0.032) 
Signal: RG5 -0.075* (0.038) -0.018 (0.033) 
   
RG2 0.054 (0.047) -0.040 (0.033) 
RG3 0.118** (0.056) 0.048 (0.033) 
RG4 0.184*** (0.042) 0.029 (0.031) 
RG5 0.157*** (0.041) 0.078** (0.036) 
   
Observations 16,408 16,408 
R2 0.186 0.093 

Notes: Cluster-robust (individual-level) standard errors in parenthesis. * 0.1p  , ** 0.05p  , 

*** 0.01p  . The coefficient of the cross-product term Signal: RG3 does not differ significantly 

from that of Signal: RG4 in both treatments (F-test, 0.177p   for the high accuracy treatment 

and 0.352p   in the low accuracy treatment); the coefficient on the cross-product term Signal: 

RG3 does not differ significantly from that of Signal: RG5 in both treatments ( 0.517p   for the 

high accuracy treatment and 0.946p    in the low accuracy treatment). Furthermore, the 
coefficient on the cross-product term Signal: RG4 does not differ significantly from that of Signal: 
RG5 in both treatments ( 0.381p   for the high accuracy treatment and 0.330p   in the low 
accuracy treatment). 
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Online Appendix E: The Validity of SFEM with a Large Set of g-TFT 

Strategies 

 

 Our study was the first to include a large set of mixed strategies in the strategy list. 

The simulation exercises provided by Fudenberg, Rand, and Dreber (2012) included 

mainly deterministic strategies with a few g-TFT strategies in the strategy list in order to 

investigate whether the SFEM could distinguish memory-one strategies from long-

memory (lenient) strategies. Similarly, we performed simulation exercises in order to 

investigate the efficacy of our SFEM, where the strategy list included an extensive set of 

g-TFT strategies in our experimental environment. 

In accordance with the main claims of the study, the aims of the simulation exercises 

here were as follows: 

1. To ensure that the SFEM correctly distinguishes long-memory strategies from 

strategies in a class of g-TFT strategies (i.e., memory-one strategies) and is able to 

estimate the fraction of g-TFT strategies correctly 

2. To ensure that the SFEM correctly estimates the mean of retaliation intensities among 

g-TFT players 

In the following simulations, mimicking our experimental environments, we 

generated 112 subjects for each treatment; each subject experienced three interactions, 

which mimicked the final three repeated games used in the SFEM. Each interaction 

included 30 rounds. The partners were randomly altered across the interactions. The 

SFEM strategy list employed in the following simulations is the same as the one 

employed in the main study (Table 5). We repeated the data generation and estimation 

processes 100 times for each simulation, and we reported the means and standard 

deviations of the estimates. 

 

A. High accuracy case 

 

Here, we set up the following three types of players: 

a. G-TFT-0.875-0.5, which had the largest individual share in our SFEM estimates in 

the high accuracy treatment 
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b. TFT, which examined whether the SFEM correctly distinguished g-TFT-0.875-0.5 

from TFT 

c. TF2T, which examined whether the SFEM correctly distinguished the long-memory 

strategy from the strategies in the g-TFT class strategies (i.e., memory-one strategies) 

 

In this simulation, approximately one-third of the total subjects (37 subjects) played 

g-TFT-0.875-0.5, another one-third (37 subjects) played TFT, and the rest (38 subjects) 

played TF2T. The signal accuracy was set to match the higher accuracy of the study (i.e., 

0.9p  ).  

 

[TABLE E.1 HERE] 

 

Table E.1 summarizes the results of the SFEM. Each estimate for TFT and TF2T 

was found to be accurate. The estimate for TFT was 0.3304, which was identical to the 

true value (0.3304 or 37/112). Similarly, the estimate for TF2T was 0.3393, which, again, 

was identical to the true value (0.3393 or 38/112). The SFEM accurately distinguished 

the deterministic strategies from the mixed strategies and distinguished the long-memory 

strategies from the strategies in the class of g-TFT strategies (i.e., memory-one strategies). 

    The estimate for g-TFT-0.875-0.5 had some biases. The estimated value was 

0.2957, which was smaller than the true value by approximately 0.035 (true: 0.3304). 

Instead, similar “nearby” g-TFT strategies (g-TFT-0.85-0.375, g-TFT-0.875-0.625, 

…etc.) had some small values in the estimates (true: 0 for each). However, the maximum 

value among them was, at the most, 0.0152; furthermore, none of them statistically 

significantly differed from zero. 

Since the bias occurred only among “nearby” g-TFT strategies, its effect on the 

estimate regarding the total fraction of g-TFT strategies and on the estimate regarding the 

mean of retaliation intensities should have been, at the most, marginal. Indeed, the total 

fraction of the strategies in a class of g-TFT strategies was estimated accurately: 0.6607 

(true: 0.6607 or 74 out of 112, consisting of g-TFT-0.875-0.5 and TFT). Furthermore, the 

mean of retaliation intensities among g-TFT players was estimated approximately. The 
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estimated value was 0. 6685; this was slightly larger than the true value (0.6670) by only 

0.0015. 

 

 

B. Low accuracy case 

 

Here, we set up the following three types of players: 

a. G-TFT-0.75-0.375, which had the largest individual share in our SFEM estimates in 

the low accuracy treatment 

b. TFT, which examined whether the SFEM correctly distinguished g-TFT-0.75-0.375 

from TFT 

c. TF2T, which examined whether the SFEM correctly distinguished the long-memory 

strategies from the g-TFT class strategies (i.e., memory-one strategies) 

 

In this simulation, approximately one-third of the total subjects (37 subjects) played 

g-TFT-0.75-0.375, another one-third (37 subjects) played TFT, and the rest (38 subjects) 

played TF2T. The signal accuracy was set to the lower accuracy of the study (i.e., 

0.7p  ).  

 

[TABLE E.2 HERE] 

 

Similar successful results were obtained in the low accuracy treatment. Table E.2 

summarizes the results of the SFEM. Again, each estimate for TFT and TF2T was found 

to be accurate. The estimate for TFT was 0.3304, which was identical to the true value 

(0.3304 or 37/112). Similarly, the estimate for TF2T was 0.3393, which, again, was 

identical to the true value (0.3393 or 38/112). The SFEM accurately distinguished the 

deterministic strategies from the mixed strategies and distinguished the long-memory 

strategies from the strategies in the class of g-TFT strategies (i.e., memory-one strategies). 

    The estimate for g-TFT-0.75-0.375 had some biases. The estimate was 0.3032, which 

is smaller than the true value by approximately 0.03 (true: 0.3304). Instead, similar 

“nearby” g-TFT strategies (g-TFT-0.75-0.5, g-TFT-0.75-0.25, g-TFT-0.875-0.375, 



56 
 

…etc.) had some small positive values in the estimates (true: 0 for each). However, the 

maximum value among them was, at the most, 0.0071; none of them statistically 

significantly differed from zero. 

Since the bias occurred only among “nearby” g-TFT strategies, its effect on the 

estimate for the total fraction of g-TFT strategies and on the estimate for the mean of the 

retaliation intensities should have been, at the most, marginal. Indeed, the total fraction 

of the strategies in the class of g-TFT strategies was estimated correctly: 0.6607 (true: 

0.6607 or 74/112, consisting of g-TFT-0. 0.75-0.375 and TFT). Furthermore, the mean of 

retaliation intensities among g-TFT players was estimated approximately; the estimate 

was 0. 0.6686, which was slightly larger than the true value (0.6670) by only 0.0016. 
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Table E.1: 
The Mean of SFEM Estimates for the Simulated Data in the High Accuracy Case 

(p = 0.9) 
 Estimate True Value 

Generous-TFT-0.875-0.75 0.0018 (0.0064) 0 

Generous-TFT-0.875-0.625 0.0150 (0.0258) 0 

Generous-TFT-0.875-0.5 0.2957 (0.0335) 0.3304 (=37/112) 

Generous-TFT-0.875-0.375 0.0152 (0.0242) 0 

TFT 0.3304 (0.0000) 0.3304 (=37/112) 

TF2T 0.3393 (0.0000) 0.3393 (=38/112) 

Other strategies (each) Less than 0.001 0 

Notes: Standard deviations are provided in parenthesis. 
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Table E.2: 
The Mean of SFEM Estimates for the Simulated Data in the High Accuracy Case 

(p = 0.7) 
 Estimate True Value 

Generous-TFT-0.875-0.500 0.0011 (0.0046) 0 

Generous-TFT-0.875-0.375 0.0066 (0.0116) 0 

Generous-TFT-0.875-0.250 0.0016 (0.0042) 0 

Generous-TFT-0.750-0.500 0.0070 (0.0132) 0 

Generous-TFT-0.750-0.375 0.3032 (0.0246) 0.3304 (=37/112) 

Generous-TFT-0.750-0.250 0.0071 (0.0141) 0 

Generous-TFT-0.625-0.250 0.0011 (0.0035) 0 

TFT 0.3304 (0.0000) 0.3304 (=37/112) 

TF2T 0.3393 (0.0000) 0.3393 (=38/112) 

Other strategies (each) Less than 0.001 0 

Notes: Standard deviations are provided in parenthesis. 
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Online Appendix F: Robustness Checks for Our Strategy Estimation 
 

In this part of the appendix, we will discuss the robustness checks for the SFEM 

estimates. In the main text, we used all three repeated games of each treatment in our 

estimation. Here, we demonstrated that the estimation results showed almost no changes, 

even when the final four repeated games were utilized in each treatment (instead of the 

three utilized for the main results) (Tables F.1 and F.2).  

 

[TABLE F.1 HERE] 

 

[TABLE F.2 HERE] 
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Table F.1: 
Aggregated Estimates for the High Accuracy Case (p = 0.9) 

 Final three Final four 

Cooperative strategies 98.8% 100.0% 

Family of g-TFT (including zero RI strategies) 62.5% 65.7% 

Equilibrium RI 13.1% 13.6% 

Stronger RI 29.1% 30.9% 

Weaker RI (including zero RI strategies) 20.4% 21.2% 

Mean RI conditional on g-TFT  

(including zero RI strategies) 

0.312 0.320 

Long-term punishment strategies 14.2% 8.9% 

Long-memory (lenient) strategies 37.5% 34.3% 
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Table F.2: 
Aggregated Estimates for the Low Accuracy Case (p = 0.7) 

 Final three Final four 

Cooperative strategies 88.2% 86.7% 

Family of g-TFT (including zero RI strategies) 78.1% 71.1% 

Equilibrium RI 4.6% 1.2% 

Stronger RI 9.3% 10.0% 

Weaker RI (including zero RI strategies) 64.2% 59.8% 

Mean RI conditional on g-TFT 

(including zero RI strategies) 

0.274 0.285 

Long-term punishment strategies 12.8% 15.7% 

 Long-memory (lenient) strategies 21.0% 28.0% 
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Online Appendix G: 
Experimental Instruction and Computer Screen Images 

 (Translation from Japanese into English) 
 

1. Experimental Instruction 

 

Please make sure all the contents are in your envelope. The envelope should have the 
following items. 

1.  Pen – 1 
2.  Instructions – 1 copy 
3.  Printed computer screen images – 1 copy 
4.  Bank transfer form – 1 sheet 
5.  Scratch paper – 1 sheet 

If you are missing any item, please raise your hand quietly. We will collect the items at the 
end of all the experiments, except for the scratch paper, which you can keep. 

Please look at the instructions (this material). You will be asked to make decisions at a 
computer terminal. You will earn “points” according to your performance in the experiments. The 
points will be converted into monetary rewards at the exchange rate of 0.9 yen per point, which 
will be paid in addition to the participation fee (1,500 yen). The total amount of money you will 
receive from the experiments is 

the number of points earned × 0.9 yen + participation fee of 1,500 yen. 
Any communication with other participants (i.e., conversation or exchange of signals) is not 

allowed during the experiments; if you violate this rule, you may be asked to leave the 
experiments. Furthermore, you are not allowed to leave in the middle of the experiments unless 
an experimenter allows or asks you to do so. Please turn off your cell phones during the 
experiments. 
 
Outline of Experiments 

We will conduct five experiments. The five experiments are independent of each other; the 
records of one experiment are not transferred to the other experiments. The experiments are 
conducted via a computer network. You are asked to make decisions at a computer terminal and 
interact with other participants through the computer network.  

All the participants will be divided into pairs in each experiment. The pairs are selected 
randomly by the computer. 

Each experiment consists of several rounds (i.e., Rounds 1, 2, 3, etc.). Later, we will explain 
the rule that decides the number of rounds conducted in each experiment. In each round, you are 
asked to choose one of two alternatives, which will also be explained below.  

Please raise your hand quietly if you have any questions. 
 
Decision Making 

You will be asked to choose either A or B in each round. Your partner will also be asked to 
choose either A or B. Please look at the table. 
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The table summarizes the points you and your partner earn according to the combination of 

choices made by the two players. The characters in the left column marked in red indicate your 
choice, which is either A or B. The characters in the top row marked in light blue indicate the 
choice of your partner, which is also either A or B. In each cell, the numbers in red on the left side 
indicate the points you earn, and the numbers in light blue on the right side indicate the points 
your partner earns. 
If both you and your partner select A, 

both you and your partner earn 60 points. 
If you select A and your partner selects B, 

you earn 5 points, and your partner earns 70 points. 
If you select B and your partner selects A, 

you earn 70 points, and your partner earns 5 points. 
If both you and your partner select B, 

both you and your partner earn 15 points. 
Please look at the table carefully and ensure that you understand how the points will be 

awarded to you and your partner according to the choices made by the two players. Your earnings 
depend not only on your choice but also on the choice of your partner. Similarly, your partner’s 
earnings depend on your choice as well as her own. 

Please raise your hand quietly if you have any questions.  
  

The five experiments follow identical rules and will be conducted consecutively. 
 
Observable Information 

You are not allowed to observe whether your partner selected A or B directly. However, you 
will receive signal a or signal b, which has information about your partner’s choice. According to 
the following rules, the computer determines stochastically whether signal a or signal b appears 
to you. 

If your partner selects A, you will receive 
signal a with a 90% chance and signal b with a 10% chance. 

If your partner selects B, you will receive 
signal b with a 90% chance and signal a with a 10% chance. 

In the same way, your partner will not know whether you have selected A or B. However, 
your partner will receive signal a or signal b, which has information about your choice. According 
to the following rules, the computer determines stochastically whether signal a or signal b appears 
to your partner. 

If you select A, your partner will receive 
signal a with a 90% chance and signal b with a 10% chance. 

If you select B, your partner will receive 
signal b with a 90% chance and signal a with a 10% chance. 

The signal you receive and the signal your partner receives are decided independently and 
have no correlation. Furthermore, the computer determines the signals independently in each 
round. 

We refer to the stochastic rules for this signal-generating process as signaling with 90% 
accuracy. 



64 
 

Please raise your hand quietly if you have any questions. 
 

Number of Rounds 
The number of rounds in each experiment will be determined randomly. At the end of each 

round, the computer will randomly select a number from 1 to 30 without replacement, so there is 
a 1/30 chance of any number being selected by the computer. The number selected by the 
computer is applied uniformly to all participants.  

The experiment will be terminated when the number 30 is selected by chance. 
The experiment will continue if any number other than 30 is selected. However, you will 

notice only that a number other than 30 is selected, instead of seeing the specific number selected 
by the computer. Then, you will move on to the next round and will be asked to make a decision 
faced with the same partner. 

When Experiment 1 is terminated, you proceed to Experiment 2, and you will be randomly 
paired with a new partner. When Experiment 2 is terminated, you proceed to Experiment 3, and 
again, you will be randomly paired with a new partner. When Experiment 3 is terminated, you 
proceed to Experiment 4, and again, you will be randomly paired with a new partner. When 
Experiment 4 is terminated, you proceed to Experiment 5, and again, you will be randomly paired 
with a new partner. 

Please raise your hand quietly if you have any questions. 
 
Description of Screens and Operations for Computers 

Please look at the booklet with printed computer screen images. 
Please look at Screen 1 and Screen 2. Screen 1 displays the screen that will be presented to 

you during the decision phases. Screen 2 is the screen that will be presented to your partner during 
the decision phases. Please look at the top left portion of each screen, which indicates that the 
current round is Round 4. The left portion of Screen 1 displays the information available to you 
up to the round. The left portion of Screen 2 presented to your partner displays the information 
available to her up to the round. 

You are asked to click with the mouse to select either “A” or “B” in the bottom right portion 
of the screen. Then, the selection will be confirmed by clicking the “OK” button right below the 
alternatives.  

Next, please look at Screen 3 and Screen 4. Screen 3 presents the results to you. Screen 4 
presents the results to your partner. The screens display the situation in which, in Round 4, both 
you and your partner chose A. Screen 3 shows you that, in Round 4, “your partner’s signal 
(accuracy: 90%) is b,” indicating to you that the signal you observe about the partner’s choice is 
“b.” On the other hand, Screen 4 shows your partner that, in Round 4, “your partner’s signal 
(accuracy: 90%) is a,” indicating to your partner that the signal your partner observes about your 
choice is “a.” Recall that your partner will observe signal a with a probability of 90% and will 
observe signal b with a probability of 10% when you choose “A.” 

Then, we move on to the lottery screens. Please turn the page and look at Screen 5 and Screen 
6, which display the lottery. Any number from 1 to 30 will be randomly selected with an identical 
probability of occurrence, which is 1/30. Then, a part of the cells turns green according to the 
number selected. If the number 30 is selected, the cell numbered 30 turns green and the message 
below explains that the current experiment is terminated. 

Otherwise, Screen 5 is shown, in which all the cells numbered 1 to 29 turn green at once (you 
do not know which number is selected specifically), and the message below explains that the 
experiment continues with the same partner. Screen 6 is presented when the number 30 is selected, 
and the cell numbered 30 turns green, indicating that the current experiment is terminated in that 
round. Again, please make sure that the experiment is terminated when the cell numbered 30 turns 
green. 

Please raise your hand quietly if you have any questions. 
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Now, all the processes of the experiments have been completed, and all the points awarded 

to everyone recorded on the computer. 
 
Please answer the questionnaire that will be distributed now. 
 
Take the bank transfer form out of the envelope and fill it out accurately; otherwise, we will 

not be able to process the payment correctly for you.  
Please raise your hand quietly if you have any questions.  
 
Please make sure that you fill out the questionnaire and the bank transfer form correctly. 
Please raise your hand quietly if you have any questions. 
 
Please put all the documents in the envelope. Please leave the pen and ink pad on the desk. 

Make sure you take all your belongings with you when you leave. 
 

Please do not disclose any details regarding the experiments to anyone. Thank you very much 

for your participation. Please follow the instructions of the experimenters to leave the room. 
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2. Computer Screen Images 
 

Screen 1: Your Selection Screen 

 
 

Screen 2: Your Partner’s Selection Screen 
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Screen 3: Your Results Screen 

 
 

Screen 4: The Results Screen of Your Partner 
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Screen 5: Lottery (experiment continues) 
 

 
 

Screen 6: Lottery (experiment is terminated) 
 

 


