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Abstract

The use of seasonally adjusted (official) data may introduce statistical problem, particularly the
use of X-12-ARIMA in the official seasonal adjustment, which adopts univariate ARIMA (au-
toregressive integrated moving average) time series modeling with some refinements. Instead of
using seasonally adjusted data for estimating the structural parameters and relationships among
non-stationary economic time series with seasonality and noise, we propose a new method called
the Separating Information Maximum Likelihood (SIML) estimation. We use an additive de-
composition of components of multivariate time series to handle the measurement errors with
non-stationary trends and seasonality. We will show that the SIML estimation can identify the
non-stationary trend, the seasonality, and the noise components, and recover statistical relation-
ships among the nonstationary trend and seasonality. The SIML estimator is consistent, and it has
asymptotic normality when the sample size is large. Since the SIML estimator has also reasonable
finite sample properties, it would be useful for practice.
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1 Introduction

There is a vast amount of published research on the use of statistical time series

analysis for analyzing macroeconomic time series. One important distinction of

macroeconomic time series from the standard time series analysis in other areas has

been the mixture of non-stationarity and measurement errors, including apparent

seasonality; however, the analysis of seasonality of economic time series has often

been brief. (See Hayashi (2000) for instance.) Although there have been many

attempts to deal with stationarity, non-stationarity and seasonality separately in

macroeconomic time series analysis, there remains some need to incorporate these

different aspects of economic time series in a unifying manner.

For expository purposes, we illustrate two macro time series in Figure 1-1, which

displays the original quarterly data of the real GDP and fixed investment series

published by Japan’s Cabinet Office. We have standardized two time series such

that the data in scale have similar values and we can observe clear common trends,

common seasonality, and noise in two important time series, which are quite typical

in Japanese quarterly macro time series data. An interesting empirical question

here would be to find reasonable estimates of correlations of trends and seasonalities

between two non-stationary macro time series we observe quarterly.

The use of seasonally adjusted data has been a common practice among many

economists in macroeconomics and business practice, however, we must cope with

problems of the official seasonal adjustments method that generates the published

data used for macroeconomic variables. It has been a common practice to use X-12-

ARIMA in many official agencies, including the U.S. Census Bureau and Cabinet

office of the Japanese Government (i.e., they produce the official gross domestic

product (GDP) and other macro time series in Japan), but they use the univariate

seasonal ARIMA (autoregressive integrated moving average) time series modeling

with some refinements, which is called Reg-ARIMA modeling. (See Nerlove et al.

(1995) on economic analysis of seasonality and Findley et al. (1998) on the X-12-

ARIMA program.)
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In this study, instead of using seasonally adjusted (published) data and inves-

tigating the statistical relationships among macro time series, we propose to use

the separating information maximum likelihood (SIML) estimation method, which

is new to macro time series analysis, although it was originally developed as an

estimation method for high frequency econometrics by Kunitomo and Sato (2013),

and there are important differences from their analysis. For instance, to handle

high frequency financial data in the finance SIML method, we use an asymptotic

theory when the observation intervals become smaller with more observations while

the underlying hidden process is a continuous (time) stochastic process, including

the diffusion or jump-diffusion type processes. The more relevant asymptotic theory

for macroeconomic time series should be the one in which the observation intervals

are fixed while the number of observations becomes large, which is standard in dis-

crete time series analysis. We will investigate the macro-SIML method in the latter

asymptotic framework and show that it is useful to identify trends, seasonals, cycles,

and irregular-noise components in the non-stationary errors-in-variables model. The

conditions for the consistency and asymptotic normality of the macro SIML estima-

tor in this study are new because of the relevant asymptotic theory. We will use the

additive decomposition model of components of time series because it gives a simple

way to represent the non-stationary time series with measurement errors. It can

be regarded as an extension of the univariate decomposition of its components by

Kitagawa and Gersch (1984) and Kitagawa (2010) with different perspectives; that

is, their main interests were the statistical filtering of non-stationary state variables

from a discrete time series 1.

There have been many studies on errors-in-variables models that are closely related

to the classical multivariate analysis, including the factor models and simultaneous

equations models. [see Anderson (1984, 2003) and Fuller (1987) for discussions on

the related classical issues.] It has been known that serious identification problems

occur in classical errors-in-variables models when we have independent observations

with homogenous measurement errors, and the estimation problem of unknown pa-

rameters for the underlying hidden variables has some difficulty. In the the standard

approach of time series analysis it is not easy to handle measurement errors with

non-stationary trends and seasonals and instead we shall use the errors-in-variables

representation of multivariate time series. In this study we will show that in the

mixture of non-stationary and stationary components, including seasonal factors,

1They have developed the computer program DECOMP, which has been available at Institute
of Statistical Mathematics (ISM).
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we can identify the unknown parameters generating the hidden time series com-

ponents. The typical examples are the variance-covariance matrices of the hidden

trend variables, and the variance-covariance matrix of hidden seasonal components

and noise components. We will show that SIML estimation can estimate the trend,

the seasonality and noise components from the observed time series, and recover the

structural relationships between the non-stationary trend and seasonality. We also

show that SIML estimation provides consistency and asymptotic normality, when

the sample size is large in the standard asymptotic theory. Based on a set of sim-

ulations, we find that the SIML estimator has reasonable finite sample properties

and thus it would be useful for practice.

A motivation of our study is the fact that it is not a trivial task to handle the

exact likelihood function and calculate the exact maximum likelihood (ML) method

for estimating structural relationships among trends from non-stationary time se-

ries data when the observed time series contain seasonality, noise, and measurement

errors in the non-stationary errors-in-variables models (see Section 3 for an illustra-

tion). This aspect is quite important for the analysis of multivariate macroeconomic

time series because modeling the seasonality and noise could lead to possible mis-

specifications. In this study we regard seasonality and noise as measurement errors.

Instead of calculating the Gaussian likelihood function, we try to separate the in-

formation of the signal part and the measurement errors part from the likelihood

function, and then use each separately. This procedure approximates the maxi-

mization of the likelihood function and makes the estimation procedure applicable

to multivariate non-stationary time series data in a straight-forward manner. We

denote our estimation method as the separating information maximum likelihood

(SIML) estimator because it extends the standard ML estimation method. The

main merit of SIML estimation is its simplicity and its use in practical applications

for multivariate non-stationary economic time series.

Earlier and related literature in econometrics are Engle and Granger (1987) and

Johansen (1995), which dealt with multivariate non-stationary and stationary time

series and developed the notion of co-integration, but importantly without mea-

surement errors. The problem of the present study is related to their work, but

it has different aspects due to the fact that the main focus of our analysis would

be the non-stationary trend, seasonality and stationary measurement errors in the

non-stationary errors-in-variable model. The existing literature on non-stationary

(econometric) time series analysis may have a problem of handling measurement

errors and stochastic seasonality of economic time series data.
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In Section 2 we will present a general formulation of the problem and give simple

examples to illustrate the problem in this study. Then in Section 3, we will develop

the non-stationary multivariate time series model with a common factor case and in

Section 4 we will develop the macro SIML estimation method. Section 5 discusses

our method to analyze the seasonal components. In Section 6, we will discuss some

simulation results and then present some concluding remarks in Section 7. The

proofs will be given in Appendix and the technical methods of proofs in this study

are extensions of the results reported in Kunitomo and Sato (2013).

2 The general problem and some examples

2.1 The Decomposion Model

Let yij be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =

1, · · · , p. We set yi = (y1i, · · · , ypi)
′
be a p× 1 vector and Yn = (y

′
i) (= (yij)) be an

n×p matrix of observations and we denote y0 as the initial p×1 vector. We consider

the situation when the underlying non-stationary trends xi (= (xji)) (i = 1, · · · , n)
are not necessarily the same as the observed time series and let s

′
i = (s1i, · · · , spi)

and v
′
i = (v1i, · · · , vpi) be the vectors of the seasonal components, and the stationary

components, respectively, which are independent of xi. Then we use the additive

decomposition form

(2.1) yi = xi + si + vi (i = 1, · · · , n),

where a sequence of non-stationary trend components xi (i = 1, · · · , n) satisfies

(2.2) ∆xi = (1− L)xi = w
(x)
i

with Lxi = xi−1, ∆ = 1 − L, E(w(x)
i ) = 0, E(w(x)

i w
(x)′

i ) = Σx, and a sequence of

seasonal components si (i = 1, · · · , n) satisfies

(2.3) (1 + L+ · · ·+ Ls−1)si = w
(s)
i

with Lssi = si−s, E(w(s)
i ) = 0, E(w(s)

i w
(s)′

i ) = Σs, and a sequence of stationary

components satisfyies vi (i = 1, · · · , n) with E(viv
′
i) = Σv and

(2.4) vi =
∞∑

j=−∞

Cjei−j ,
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with absolutely summable coefficients Cj and a sequence of i.i.d. random vectors

with E(ei) = 0, E(eie
′
i) = Σe.

We assume that w
(x)
i ,w

(s)
i and ei are the sequence of i.i.d. random vectors with Σe

being positive-semi-definite, and the random vectors w
(x)
i ,w

(s)
i and ei are mutually

independent. When vi = ei, we can interpret that it is a sequence of independent

measurement errors. The present additive decomposition is similar to the one given

by Kitagawa and Gersch (1984) and Kitagawa (2010).

The main purpose of this study is to estimate structural parameters and struc-

tural relationships among the hidden random variables; the trend components and

seasonal components in the the non-stationary errors-in-variables models. Let β be

a p× 1 (non-zero) vector and we want to estimate the statistical relationship as

(2.5) β
′
yi = Op(1) (i = 1, · · · , n),

when we have the observations of p × 1 vectors yi (i = 1, · · · , n). More generally,

let B
′
be a rx × p (1 ≤ rx ≤ p) non-zero matrix and we want to estimate a set of

statistical relationships

(2.6) B
′
yi = Op(1) (i = 1, · · · , n)

when we have the observations of p×1 vectors yi (i = 1, · · · , n). Also some structural

relations among seasonal components can be written as

(2.7) B
′

ssi = 0 (i = 1, · · · , n) ,

where B
′
s is a non-zero rs× p matrix (1 ≤ rs ≤ p) and they imply that the observed

multivariate time series have common seasonality.

2.2 Some examples

We give simple examples when p = 2 for illustrating the problem of non-stationary

errors-in-variables models, which have different representations.

Example 1 : Assume that for the sequence of observable random vectors yi =

(y1i, y2i)
′
, the random variables x1i = µi and x2i = −β2µi satisfy µi = µi−1+w

(x)
1i (i =

1, · · · , n) and w
(x)
1i are i.i.d. random variables with E(w(x)

1i ) = 0 and E(w(x)2
1i ) = σ2

µ,

w
(x)
i = (w

(x)
1i , w

(x)
2i )

′
= (1,−β2)

′
∆µi. We take the case when si = 0 and vi is a

sequence of i.i.d. random vectors.
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Then we can write

(2.8) yi =

(
1

−β2

)
µi + vi ,

where vi is a sequence of 2×1 noise vectors and we will denote π = (1,−β2)
′
. Since

µi follows the random walk model, the invariance principle (or CLT) says that as

n → ∞, (1/n2)
∑n

i=1 µ
2
i

w−→ σ2
µ

∫ 1

0
B2

sds and Bs is the standard Brownian Motion

on [0, 1]. Let also zi = (z1i, z2i)
′
and Ωz = E [ziz

′
i], where z1i = w

(x)
1i + v1i and

z2i = −β2w
(x)
1i + v2i. Then we have the representation

(2.9) yi = yi−1 + zi −Θzi−1 ,

where zi−1 = Ω1/2
z Σ−1/2

v vi−1, Θ = Σ1/2
v Ω−1/2

z and Ωz = (1,−β2)
′
(1,−β2)σ

2
x + Σv.

We have two forms of the stochastic process such that (2.8) is the errors-in-variables

representation while (2.9) is the VARMA representation. The former is a convenient

form with trends and measurement errors and it may be difficult to recover (2.8)

from the second form of (2.9), which may be popular in econometrics. If we multiply

the vector β
′
= (β2, 1) to (2.8) or (2.9) from the left, we have the statistical relation

(2.10) β
′
yi = ui (= β

′
vi) ,

which is a structural equation and ui is a sequence of i.i.d. random variables with

E(ui) = 0, E(u2
i ) = β

′
Σvβ.

Example 2 : We take the case when xi = µi, and µi = µi−1 +w
(x)
i , which is often

called spurious regression. We also take the case when si = 0 and vi is a sequence

of i.i.d. vectors. It can be written as

(2.11) yi =

(
1 0

0 1

)
µi + vi

and the dimension of random walk is 2. Then β
′
yi = β

′
µi + ui and ui = β

′
vi for

any β ̸= 0. In this case the non-stationary term of β
′
µi is the trend term, which

follows an I(1) process.

Example 3 : Assume that the random vectors si = (s1i, s2i)
′
with s1i = ν

(s)
i =

β
(s)
2 µ

(s)
i and s2i = µ

(s)
i satisfy µ

(s)
i = µ

(s)
i−s + w

(s)
i (s ≥ 1 ; i = 1, · · · , n) and w

(s)
i are

i.i.d. random variables with E(w(s)
i ) = 0 and E(w(s)2

i ) = σ2
s . We take the case when

xi = 0 and vi is a sequence of i.i.d. vectors. Then we can write

(2.12) yi =

(
β
(s)
2

1

)
µ
(s)
i + vi .
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If we multiply the vector β
′

s = (1,−β
(s)
2 ) to (2.11) from the left, we have the relation

among seasonal components as

(2.13) β
′

syi = ui (= β
′

svi)

and yi has the common seasonal component.

Example 4 : We consider the situation when xi = µi, µi = µi−1 + w
(x)
i with

Σx = σ2
xI2 (which is proportional to the identity) as the non-stationary trends and

si = (s1i, s2i)
′
with s1i = ν

(s)
i = β

(s)
2 µ

(s)
i , s2i = µ

(s)
i , µ

(s)
i = µ

(s)
i−s + w

(s)
i (w

(s)
i are

i.i.d. random variables) and Σs ≥ 0 (non-negative definite) as the non-stationary

seasonals. In this case the non-stationary trends do not have any common trend,

but there is a common non-stationary seasonal. The standard regression of one non-

stationary variable on another non-stationary variable may not give a meaningful

information on the underlying relationships among trends and seasonals.

3 The non-stationary common factor case with-

out seasonality

We first consider the non-stationary time series without seasonality because the

presence of seasonality may make some complication into our analysis. We shall

introduce our main idea for this case, and then extend it to the non-stationary time

series with stochastic seasonality.

Let p ≥ 2 and si = 0 and assume that vi is a sequence of i.i.d. measurement error

vectors in this section. We consider the multivariate time series model having the

representation

(3.1) yi = xi + vi = Πµi + vi ,

where w
(x)
i = ∆xi, E(w(x)

i ) = 0, and E(w(x)
i w

(x)′

i ) = Σx. We assume that the rank

of non-zero p× qx matrix Π is qx (1 ≤ qx ≤ p) and µi are qx × 1 vectors. We denote

E(µi) = 0 and E [(∆µi)(∆µ
′
i)] = Σµ, which is a qx × qx non-singular matrix. Since

the rank of Π is qx, there exists a non-zero rx × p (non-zero) matrix B
′
such that

B
′
Π = O and B

′
yi = ui (= B

′
vi), which are the set of rx structural equations

when 0 < rx = p − qx < p. They are often called the co-integrated relations in the

non-stationary time series analysis.
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We consider the situation when ∆xi and vi (i = 1, · · · , n) are mutually inde-

pendent and each of the component vectors are independently, identically, and nor-

mally distributed as Np(0,Σx) and Np(0,Σv), respectively. We use an n× p matrix

Yn = (y
′
i) and consider the distribution of np × 1 random vector (y

′
1, · · · ,y

′
n)

′
.

Given the initial condition y0, we have

(3.2) vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,

where 1
′
n = (1, · · · , 1) and

(3.3) Cn =


1 0 · · · 0 0

1 1 0 · · · 0

1 1 1 · · · 0

1 · · · 1 1 0

1 · · · 1 1 1


n×n

.

Then, given the initial condition y0, the conditional maximum likelihood (ML) es-

timator can be defined as the solution of maximizing the conditional log-likelihood

function 2 except a constant as

L∗
n = log |In ⊗Σv +CnC

′

n ⊗Σx|−1/2

−1

2
[vec(Yn − Ȳ0)

′
]
′
[In ⊗Σv +CnC

′

n ⊗Σx]
−1[vec(Yn − Ȳ0)

′
] ,

where

(3.4) Ȳ0 = 1n · y
′

0 .

We use the transformation K∗
n that from Yn to Zn (= (z

′

k)) by

(3.5) Zn = K∗
n

(
Yn − Ȳ0

)
, K∗

n = PnC
−1
n ,

where

(3.6) C−1
n =


1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
0 0 −1 1 0

0 0 0 −1 1


n×n

,

2It may be possible to use the unconditional likelihood function with an assumption on the
initial condition, which makes some complication but may have a better finite sample property.
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and

(3.7) Pn = (p
(n)
jk ) , p

(n)
jk =

√
2

n+ 1
2

cos

[
2π

2n+ 1
(k − 1

2
)(j − 1

2
)

]
.

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n and Dn is a diagonal

matrix with the k-th element

dk = 2[1− cos(π(
2k − 1

2n+ 1
))] (k = 1, · · · , n) .

Then the conditional log-likelihood function given the initial condition is propor-

tional to

(3.8) L(SI)
n =

n∑
k=1

log |a∗knΣv +Σx|−1/2 − 1

2

n∑
k=1

z
′

k[a
∗
knΣv +Σx]

−1zk ,

where

(3.9) a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .

We have used the transformation K∗
n to the non-stationary time series yi (i =

1, · · · , n) to the sequence of independent random vectors zk (k = 1, · · · , n), which
follows Np(0,Σx + a∗knΣv), and the coefficients a∗kn is a dense sample of 4 sin2(x) in

(0, π/2). 3

Since we are dealing with an errors-in-variables model, there is an issue whether

we can identify the structural equation of our interest. When xi are i.i.d. random

vectors, for instance, the coefficient parameters are not identified when we have the

general variance-covariances for hidden variables and measurement errors without

some further restrictions. In the classical homogeneous case, where the observed

random vectors {yi} are independent, there is no way to identify the covariance

matrix of the hidden variables for instance. (See Anderson (1984) for the details of

the classical errors-in-variables models.)

For the present case, we consider the conditional likelihood function when p ≥ 2

and qx = 1. We take a p× 1(non-zero) vector b and apply the matrix formulae that

for a p× p positive definite A

|A+ bb
′| = |A|[1 + b

′
A−1b]

3We have used the notation K∗
n and a∗kn, which are different from K and akn in Kunitomo and

Sato (2013) and Kn =
√
nKn , akn = na∗kn.
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and

[A+ bb
′
]−1 = A−1 −A−1b[1 + b

′
A−1b]−1b

′
A−1

for A = a∗knΣv (k = 1, · · · , n), Σx = bb
′
, b = σµπ = π∗, (π is the same as Π

except a vector) σ2
µ = E [(∆µi)

2], and b∗ = Σ−1
v b.

Then L
(SI)
n is proportional to (-1/2) times

L1n =
n∑

k=1

[
log |a∗knΣv|+ log(1 + a∗−1

kn π∗′Σ−1
v π∗) + a∗−1

kn z
′

kΣ
−1
v zk −

a∗−1
kn (z

′

kΣ
−1
v π∗)2

a∗kn + π∗′Σ−1
v π∗

]
=

n∑
k=1

log |a∗knΣv|+
n∑

k=1

a∗−1
kn z

′

kΣ
−1
v zk +

n∑
k=1

[
log(1 + a∗−1

kn c)− a∗−1
kn (z

′

kb∗)
2

a∗kn + c

]
,

where we take c = π∗′Σ−1
v π∗ as a parametrization.

Then it may be a natural to consider the maximum likelihood (ML) estimation for

the present errors-in-variables model. One of interesting aspects of the present prob-

lem is the fact that it is not a trivial task to maximize the (conditional) likelihood

function. The detailed investigation of this problem requires many discussions and

it will be given by Kunitomo, Awaya and Kurisu (2017) in a systematic way and

here we give an illustration of Example 1 in Section 2.2. We set the true parameter

values in Example 1 as σ2
µ = 0.4, β2 = 1.0 and

Σv =

(
0.45 0.23

0.23 0.4

)
, Σx = σ2

µππ
′
, π =

(
1

−β2

)
.

Then we generate a set of simulated observations as a typical realization and we have

drawn the Gaussian log-likelihood function with respect to β2 in Figure 3.1 when the

number of replications is 1, 000, given the true values for other parameters. We have

found that the Gaussian log-likelihood function could have some peculiar form in

some cases as illustrated by Figure 3.1. This may be one of important consequences

in the non-stationary errors-in-variables models.

One may think that as an estimator of Σx, we could use

(3.10) Sn =
1

n

n∑
k=1

zkz
′

k .

Because

(3.11) E [Sn] = Σx + (
1

n

n∑
k=1

a∗kn)Σv ,
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then Sn is not a consistent estimator of Σx, and it is straight-forward to show that

(1/n)
∑n

k=1 a
∗
kn → 2 as n → ∞.

It is straight-forward to extend the above likelihood analysis to cases for more

general qx (1 ≤ qx ≤ p) and we have the corresponding results. It may not be

obvious to find a general way to construct the consistent estimator of Σx and Σv as

well as the coefficients in the non-stationary errors-in-variable model.

4 Macro SIML estimation

Although we have considered the likelihood function in the errors-in-variables

models under Gaussianity, we need a simple robust procedure, such that the as-

sumptions of Gaussianity and the specifications of components are not crucial for

the resulting estimation results.

We notice that a∗kn → 0 as n → ∞ for a fixed k. When k is small, a∗kn is small

and we can expect that k = kn depending n is still small when n is large. How-

ever, (1/mn)
∑mn

k=1 a
∗
kn is not small if mn is near to n, which suggests the condition

mn/n → 0 as n → ∞. The separating information maximum likelihood (SIML)

estimator of Σx = (σ
(x)
gh ) can be defined by

(4.1) Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k .

It is because

(4.2) E [Σ̂x,SIML] = Σx + [
1

mn

mn∑
k=1

a∗kn]Σv

and the second term is o(1) when mn/n → 0.

This estimator of the variance-covariance chooses the information in the frequency

domain, which corresponds to the trend part from the time series observations.

By the similar reason, we expect that it is possible to extract the information of

seasonality, which we shall discussed in Section 5. For Σ̂x, the number of terms mn

should be dependent on n. Then we need the order requirement that mn = O(nα)

and 0 < α < 1.

As the same reasoning as (4.2), we can utilize the conditions

(4.3) E [zkz
′

k] = Σx + o(1) for k = 1, · · · ,mn
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and

(4.4) E [a∗−1
kn zkz

′

k] = Σv +
1

4
Σx + o(1) for k = n+ 1−mn, · · · , n .

Then it is possible to construct consistent estimators of Σx and Σv by utilizing these

relations.

Asymptotic properties of SIML

For the estimation of the variance-covariance matrix Σx = (σ
(x)
gh ), we have the next

result and the proof will be given in Appendix A.

Theorem 4.1 : We assume (2.1)-(2.4) with si = 0 and xi = Πµi. The rank of

non-zero p× q matrix Π is qx (1 ≤ qx ≤ p) and µi are qx× 1 vectors with E(µi) = 0

and E [(∆µi)(∆µ
′
i)] = Σµ, which is a qx × qx non-singular matrix. We also assume

that w
(x)
i = (w

(x)
ji ) ei = (eji) are a sequence of independent random variables with

E [w(x)4
ig ] < ∞ and E [e4ig] < ∞ (i, j = 1, · · · , n; g, h = 1, · · · , p). We further assume

that there exists ρ such that 0 ≤ ρ < 1 and ∥Cj∥ = O(ρj) in (2.4).

Then (i) For mn = [nα] and 0 < α < 1, as n −→ ∞

(4.5) Σ̂x −Σx
p−→ O .

(ii) For mn = [nα] and 0 < α < 0.8, as n −→ ∞

(4.6)
√
mn

[
σ̂
(x)
gh − σ

(x)
gh

]
L−→ N

(
0, σ(x)

gg σ
(x)
hh +

[
σ
(x)
gh

]2)
.

The covariance of the limiting distributions of
√
mn[σ̂

(x)
gh −σ

(x)
gh ] and

√
mn[σ̂

(x)
kl −σ

(x)
kl ]

is given by σ
(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

For estimating the variance-covariance matrix Σx = (σ
(x)
gh ),the number of terms

mn should be dependent on n because we need the resulting desirable asymptotic

properties. Then we need the order requirement that mn = O(nα) (0 < α < 0.8).

Because the properties of the SIML estimation method depend on the choice of mn,

which is dependent on n, we have investigated the asymptotic effects as well as the

small sample effects with several choices of mn. There is a trade-off between the

bias and the asymptotic variance. For the macro-SIML, we can obtain an optimal

choice of mn.

Theorem 4.2 : In the setting of Theorem 4.1, an optimal choice of mn = [nα] (0 <

14



α < 1) with respect to the asymptotic mean squared error when n is large is given

by α∗ = 0.8.

It may be natural to use the sample quantities

(4.7) Σ̂x = (
1

mn

mn∑
k=1

zikzjk)

in order to make statistical inference on Σx. For instance, the estimation of the

Pearson’s correlation coefficients among the trend variables is a typical case, which

is given by

(4.8) ρ̂ij =

∑mn

k=1 zikzjk√∑mn

k=1 z
2
ik

√∑mn

k=1 z
2
jk

.

Furthermore, we consider the estimation of the structural relationships in the non-

stationary time series process satisfying (2.5). Here we notice that the present

statistical problem could be regarded as the estimation of structural relationships

with the covariance matrix Σx(θ) with θ being the vector of parameters. In stan-

dard statistical multivariate analysis, Anderson (1984, 2004) has discussed statistical

models of estimating structural relationships among a set of variables based on n

independent observations.

We consider the estimation of the parameter vector β in the structural equation

(4.9) β
′
yi = ui ,

where ui is defined by ui = β
′
vi) and vi is given by (2.4). It is a simple case when

p ≥ 2 and qx = 1. It may be natural to consider the characteristic equation

(4.10)
[
Σ̂x − λΣv

]
β̂ = 0 .

where Σ̂x is given by (4.7) and λ is the (scalar) characteristic root. Here we need to

use a consistent estimator Σ̂v for Σv. When we take the smallest eigenvalue λ1 in

(4.10) and Σ̂v,SIML in (4.7), we have the β̂SIML, which is called the SIML estimator

of β.

Theorem 4.3 : In the setting Theorem 4.1 with its assumptions, we further assume
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qx = p − 1. Let β̂ be the characteristic vector with the corresponding minimum

characteristic root of (4.10), which is the SIML estimator of β. We further assume

that we have a consistent estimator Σ̂v = Σv +Op(m
−1/2
n ).

Then for mn = [nα] and 0 < α < 1, as n −→ ∞

(4.11) β̂ − β
p−→ 0 .

It is possible to derive the limiting distribution of β̂2, but we need lenthy argu-

ments and we have omitted them. Under a set of regularity conditions, we also find

that the smallest eigenvalue λ1 of (4.10),

(4.12) λ1 −→ 0 (in probability)

as n → ∞ because the rank of Σx is p− 1.

Then we define the SILS (Separating Information Least Squares) method by solving

(4.13) Σ̂xβ̂SILS = 0 .

When p = 2, qx = 1, β = (1,−β2)
′
, β̂∗,SIML = (1,−β̂2)

′
and π = (β2, 1)

′
, then the

SILS estimation becomes

(4.14) β̂2 =

∑mn

k=1 z1kz2k∑mn

k=1 z
2
2k

,

which is the regression coefficient of the first transformed variable on the second

transformed variable in zk (= (z1k, z2k)
′
) (k = 1, · · · ,mn).

To construct a consistent estimator of Σv, one might use (3.10). However, we

notice the fact that

(4.15) Sn
p−→ Σx + 2Σv .

Then we can construct a consistent estimator of Σv by using (4.1), (4.2), and the

fact Σ̂SIML,x
p−→ Σx .

Although we have developed the SIML estimation of a structural relationship in

(4.9) when qx = 1, it is straight-forward to extend the SIML procedure when we

have several structural relationships among trend variables at the same time. The

16



SIML estimation can be defined by the smaller qx (≤ p) roots and the corresponding

qx (≤ p) vectors of the characteristic equation. It may correspond to the standard

situation in the statistical multivariate analysis except the fact that the classical

multivariate analysis was based on the case when the observations are realizations

of independent random variables without seasonality as well as non-stationarity in

time series.

5 Discussions on Seasonality

We consider the estimation problem of seasonal factors and consider the general

case when we have yi = xi + si + vi (i = 1, · · · , n), where xi is a sequence of

trend components, si is a sequence of seasonal components and vi is a sequence of

i.i.d. measurement error components. We transform the observed data using the

difference operator ∆ = 1 − L (Lyi = yi−1) and K∗
n in (3.5). Then we can utilize

the transformation

(5.1) B(3)
n = (b

(3)
jk ) = PnC

−2
n C(s)

n ,

where C
(s)
n = CN ⊗ Is,

(5.2) C−1
N =


1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
0 0 −1 1 0

0 0 0 −1 1


N×N

,

and we have assumed that N, s (≥ 2) and n = Ns are positive integers.

Then Lemma A-3 in Appendix gives

(5.3)
n∑

j=1

b
(3)
kj b

(3)

k′ ,j
= 4δ(k, k

′
)
sin4

[
π
2
2k−1
2n+1

]
sin2

[
π
2
2k−1
2n+1

s
] +O(

1

n
) .

By ignoring the correlations of O(n−1), the criterion function in the general case,

which extends the conditional log-likelihood function in Section 3, can be defined as

(5.4) L(SI)
n =

n∑
k=1

log |a∗knΣv+a
(s)
knΣs+Σx|−1/2− 1

2

n∑
k=1

z
′

k[a
∗
knΣv+a

(s)
knΣs+Σx]

−1zk ,
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where a∗kn is given by (3.22) and

(5.5) a
(s)
kn = 4

sin4
[
π
2

(
2k−1
2n+1

)]
sin2

[
π
2

(
2k−1
2n+1

s
)] (k = 1, · · · , n) .

For the estimation of the trend variance-covariance matrix we have the next result,

which is a direct extension of Theorem 4.1.

Theorem 5.1 : In the setting of (2.1) with N, s, n (= Ns) (positive integers),

we assume the moment conditions on the seasonal components as E [w(s)4
ig ] < ∞ in

addition to the conditions of Theorem 4.1.

Let Σ̂x be given by (4.1).

Then (i) For mn = [nα] and 0 < α < 1, as n −→ ∞

(5.6) Σ̂x −Σx
p−→ O .

(ii) For mn = [nα] and 0 < α < 0.8, as n −→ ∞

(5.7)
√
mn

[
σ̂
(x)
gh − σ

(x)
gh

]
L−→ N

(
0, σ(x)

gg σ
(x)
hh +

[
σ
(x)
gh

]2)
.

The covariance of the limiting distributions of
√
mn[σ̂

(x)
gh −σ

(x)
gh ] and

√
mn[σ̂

(x)
kl −σ

(x)
kl ]

is given by σ
(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

For the estimation of the seasonal variance-covariance matrix Σs = (σ
(s)
gh ) and Σ̂s =

(σ̂
(s)
gh ), we use

(5.8) Σ̂s,SIML =
1

mn

∑
k∈I(s)n

a
(s)−1
kn zkz

′

k ,

where s is the seasonal integer, [x] is the largest integer being equal to or less than

x and I
(s)
n is the set of integers such that I

(s)
1n = {[2n/s] + 1, · · · , [2n/s] +mn]} with

mn = [nα] (0 < α < 1).

Alternatively, I
(s)
1n can be replaced by a symmetric region

I
(s)
2n = {[2n/s]− [mn/2], · · · , [2n/s], · · · , [2n/s] + [mn/2]]}.
In this formulation [2n/s] corresponds to the seasonal frequency in the frequency

domain of the observed time series. For the quarterly and monthly data, we take

s = 4 and s = 12, respectively.

When we have the trend, seasonal, and stationary components, we have the relation

(5.9) E [zkz
′

k] = Σx + a
(s)
knΣs + a∗knΣv .
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Hence we have

(5.10) E [a(s)−1
kn ziz

′

i] = Σs + a
(s)−1
kn Σx +

a∗kn

a
(s)
kn

Σv .

Therefore, we have the next result.

Theorem 5.2 : In the setting of (2.1) we assume the moment conditions on the

seasonal components as E [w(s)4
ig ] < ∞ in addition to the conditions of Theorem 4.1.

Let Σ̂s be given by (5.8) with I
(s)
1n or I

(s)
2n .

Then (i) for mn = [nα] and 0 < α < 1, as n −→ ∞

(5.11) Σ̂s −Σs
p−→ O .

(ii) For mn = [nα] and 0 < α < 0.8, as n −→ ∞

(5.12)
√
mn

[
σ̂
(s)
gh − σ

(s)
gh

]
L−→ N

(
0, σ(s)

gg σ
(s)
hh +

[
σ
(s)
gh

]2)
.

The covariance of the limiting distributions of
√
mn[σ̂

(s)
gh −σ

(s)
gh ] and

√
mn[σ̂

(s)
kl −σ

(s)
kl ]

is given by σ
(s)
gk σ

(s)
hl + σ

(s)
gl σ

(s)
hk (g, h, k, l = 1, · · · , p).

Then it is possible to estimate the structural relationships of seasonal factors as we

have discussed in Section 4. Also it is possible to construct a consistent estimator

of Σv by utilizing the relation

(5.13) E [( 1
m
)
∑

k∈I(s)
n/2

a∗−1
kn ziz

′

i] = Σv + [
∑

k∈I(s)
n/2

1

a∗kn
]Σx + [

∑
k∈I(s)

n/2

a
(s)
kn

a∗kn
]Σs .

Alternatively, it has been a common practice to use the seasonal difference of

original time series since Box and Jenkins (1970) if we observe clear seasonal fluc-

tuations. When we transform the observed data by using the seasonal difference

operator ∆s = 1− Ls (Lsyi = yi−s) and Pn, we have

(5.14) ∆syi = (1 + L+ · · ·+ Ls−1)∆xi + (1− Ls)si + (1− Ls)vi .

Then there can be alternative possibilities of transformation of Yn; however, we

may use Z
(s)
n (= (z

(s)′

k )) by

(5.15) Z(s)
n = PnC

(s)−1
n

(
Yn − Ȳ0

)
,
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where C
(s)−1
n = C−1

N ⊗ Is and we have assumed that N, s and n = Ns are positive

integers.

When we use the transformation matrix

(5.16) B(1)
n = (b

(1)
jk ) = PnC

(s)−1
n ,

Lemma A-1 in Appendix gives

(5.17)
n∑

j=1

b
(1)
kj b

(1)

k′ ,j
= δ(k, k

′
)4 sin2

[
π

2

2k − 1

2n+ 1
s

]
+O(

1

n
) .

Then for the estimation of the seasonal covariance matrix Σs = (σ
(s)
gh ) and Σ̂s =

(σ̂
(s)
gh ), we may use

(5.18) Σ̂s.BJ =
1

mn

∑
k∈I(s)n

z
(s)
k z

(s)′

k ,

where s is the seasonal integer, [x] is the largest integer being equal to or less than

x and I
(s)
n is the set of integers such that I

(s)
n = {[2n/s] + 1, · · · , [2n/s] +mn]} with

mn = [nα] (0 < α < 1).

Then it is possible to obtain the similar results and

(5.19) Σ̂s.BJ −Σs
p−→ O .

When we use (4.25) for the seasonally transformed data ∆syi (i = 1, · · · , n) in

Theorem 5.2, however, its probability limit is given by

(5.20) Σ̂x
p−→ sΣx +Σs

because the transformed trend component is given by

(5.21) ∆sxi = (1 + L+ · · ·+ Ls−1)w
(x)
i .

The bias can be significant when s > 1.

6 Simulations and an empirical example

In order to examine the finite sample properties of the procedure we have discussed

in the previous sections, we have done several simulations. The data length is 80
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in the basic case because our setting may be a reasonable approximation to many

macroeconomic time series. (For the present GDP in Japan the various estimates

of components are calculated from 1994 by the Cabinet office.) The number of

simulations is 3,000, α = 0.6, and mn = [nα] in each case. We have set three cases

with the non-stationary trend and seasonality, whose typical simulation paths are

given as Figures 6-1 to 6.3. We have done a number of simulations including the

traditional linear seasonal models, and we report some results which may provide a

reasonable description of economic quarterly data (s = 4). Since we deal with non-

stationary seasonality, we need to control the parameter values carefully including

the initial conditions. Figure 6-1 does not have any seasonality while Figures 6-

2 and 6-3 have non-linear seasonality and represent rather extreme cases in our

simulations.

In these simulations we first generated the initial uniform random variables

sj,−3, · · · , sj,0, the sequence of i.i.d. random variable svj,i for j = 1, 2; i = 0, · · · , n.
Then, we set si = (s1i, s2i)

′
such that swj,i = swj,i−1 + svj,i, sj,i = s

(0)
j,i × swj,i and

s
(0)
j,i = s

(0)
j,i−4 (n ≥ i ≥ 4). We have summarized the four simulation results in Tables

6.1-6.4. In our tables cor = 0.9 means the true correlation coefficient among trend

components and cor is the SIML estimate, where vol-1 is the correlation estimate

based on the first differenced data and vol-4 is the correlation estimate based on the

seasonal differenced data with s = 4.

When we have the basic model with trend and noise components and without the

seasonal and cycle components, the optimal choice of mn = [nα] in an asymptotic

sense would be α = 0.8; however, it seems that the choice of α = 0.6 would be

appropriate to obtain robust results when we have finite samples with seasonality

as well as non-stationary trends when n = 80. We have a tentative impression that

n = 80 is a situation of small sample and we need a further investigation on the

effects of small sample size.

Also we have investigated the estimation of the correlation coefficient of the

seasonal components and given Table 6-4 when the seasonals were generated by

si = (s1i, s2i)
′
andw

(s)
i = (w

(s)
1i , w

(s)
2i )

′
such that sji = −sj,i−1−sj,i−2−sj,i−3+w

(s)
ji (i =

1, · · · , n; j = 1, 2) given the initial random variables, and we also have trend com-

ponents and noise components (Simulation 4). The number of data was 400 and we

took α = 0.4 and we have given a typical sample path as Figure 6-4.

We have found that, even with the extreme cases given in our figures, the macro

SIML method gives reasonable estimates, whereas in more standard cases we have

more favorable results using the SIML estimation.
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Table 6-1 : Simulation-1

(n = 80, α = 0.6, nsim=3,000)

cor= 0.9 corr vol-4 vol-1

mean 0.852 0.733 0.491

SD 0.088 0.076 0.095

cor= 0.0 corr vol-4 vol-1

mean 0.007 0.003 0.001

SD 0.278 0.168 0.119

Table 6-2 : Simulation-2

(n = 80, α = 0.6, nsim=3,000)

cor= 0.9 corr vol-4 vol-1

mean 0.805 0.663 0.133

SD 0.118 0.088 0.295

cor= 0.0 corr vol-4 vol-1

mean -0.007 2.59E-03 0.005

SD 0.278 1.62E-01 0.287

Table 6-3 : Simulation-3

(n = 80, α = 0.6, nsim=3,000)

cor= 0.9 corr vol-4 vol-1

mean 0.672 0.344 0.034

SD 0.196 0.185 0.191

cor= 0.0 corr vol-4 vol-1

mean 0.002 0.002 0.002

SD 0.284 0.149 0.184

Table 6-4 : Simulation-4

(n = 400, α = 0.40, nsim=1,000)

cor= 0.8 corr vol-4 vol-1

mean 0.7475 0.3358 0.7084

SD 0.1463 0.0699 0.2405
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Finally, we report an empirical estimate of Japanese (real) GDP and fixed in-

vestment represented in Figure 1-1 as a typical example. We have used quarterly

data which were taken from the official estimates from the Japanese Cabinet Office.

When we take the first differences and the estimate of the correlation coefficient of

the GDP-trend and investment-trend is 0.726176 while we take the seasonal differ-

ence and the estimate of the correlation coefficient of the GDP-trend and investment-

trend is -0.12159. On the other hand, the SIML estimate of the correlation coefficient

of the GDP-trend and investment-trend is 0.614224 (0.069623) while the SIML es-

timate of the correlation coefficient of the GDP-seasonal and investment-seasonal is

0.169324 (0.108598). We have used the symmetric region I∗2n(s) and the parenthesis

is the estimate of standard deviation calculated by the standard asymptotic for-

mula in statistical multivariate analysis (1− ρ̂2)/
√
[mn]. These estimates give some

information on the statistical relationship between quarterly GDP and quarterly

fixed-investment in Japan.

7 Concluding Remarks

In this study, we propose a new statistical method for estimating the statistical

relationships in the non-stationary time series with trends, seasonality and noises.

Instead of using seasonally adjusted data published by the official statistics agen-

cies, we are proposing to use the separating information maximum likelihood (SIML)

estimation, which can be regarded as a modification of the classical maximum like-

lihood (ML) method in some sense. We have pointed out that in the the standard

approach of time series econometrics it is not easy to handle the measurement errors

with non-stationary trends and seasonality as illustrated in Section 2.2 and instead

we have used the additive decomposition of components. We have shown that the

SIML estimator has reasonable asymptotic properties; that is, it is consistent and

it has asymptotic normality when the sample size is large under reasonable condi-

tions. The SIML estimator has reasonable finite sample properties and asymptotic

robustness properties. We have also suggested a number of possible applications in

macroeconomic non-stationary time series since many important macro time series

exhibit clear trends and seasonality.

There are several possible extensions and related topics. First, it is interesting

to incorporate the non-stationary components and stationary components in the

multivariate time series decompositions. There has not been any computer program,

which is free and public in this case, as DECOMP at ISM. Second, it may be straight-
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forward to extend the cases when we have double unit roots in the trend variables.

Third, as we indicated in Section 3, there is an interesting question on the merits

and demerits of the ML method and the SIML method. Some results on this issue

will be also reported in Kunitomo, Awaya, and Kurisu (2017) in details.

Finally, there is an important problem to determine the number of non-stationary

trends and seasonal factors qx. If we denote the numbers of seasonal components

and stationary components as qs and qc, respectively, we also have the same prob-

lem. An obvious way is to use an information criterion as AIC under the Gaussian

assumptions and the ML estimation (Akaike (1973)). Since there may be some

doubts on the validity of the Gaussian assumptions and the ML estimation in prac-

tice as we have discussed in the previous sections, this problem is currently under

investigation.
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APPENDIX : Mathematical Derivations

In this Appendix, we give some details of the proofs in Sections 4 and 5. Some

of the proofs are are based on the extensions of the results by Kunitomo and Sato

(2013) and thus there are similar features. However, there are important differences

to which we shall mention explicitly at several places including several new lemmas.

Proof of Theorem 4.1 :

(Step 1) : Let z
(x)
k = (z

(x)
kj ) and Z

(v)
k = (z

(v)
kj ) (k = 1, · · · , n) be the k-th row vector

elements of n× p matrices

(A.1) Z(x)
n = K∗

n(Xn − Ȳ0) , Z
(v)
n = K∗

nVn , K∗
n = PnC

−1
n ,

respectively, where we denote Xn = (x
′

k) = (xkg), Vn = (v
′

k) = (vkg), Zn = (z
′

k) (=

(zkg)) are n × p matrices with zkg = z
(x)
kg + z

(v)
kg . We write zkg, z

(x)
kg , z

(v)
kg as the g−th

component of zk, z
(x)
k , z

(v)
k (k = 1, · · · , n; g = 1, · · · , p).

We use the decomposition of z
(f)
kg (f = x, v) for investigating the asymptotic dis-

tribution of
√
mn[Σ̂x − Σx] = (

√
mn(σ̂

(x)
gh − σ

(x)
gh )gh) for g, h = 1, · · · , p. We use the

decomposition

√
mn

[
Σ̂x − Σx

]
(A.2)

=
√
mn

[
1

mn

mn∑
k=1

zkz
′

k − Σx

]

=
√
mn

[
1

mn

mn∑
k=1

z
(x)
k z

(x)′

k − Σx

]
+

1
√
mn

mn∑
k=1

E [z(v)k z
(v)′

k ]

+
1

√
mn

mn∑
k=1

[
z
(v)
k z

(v)′

k − E [z(v)k z
(v)′

k ]
]
+

1
√
mn

mn∑
k=1

[
z
(x)
k z

(v)′

k + z
(v)
k z

(x)′

k

]
.

Then we will investigate the conditions that three terms except the first one of (A.2)

are op(1). When these conditions are satisfied, we could estimate the variance and

covariance of the underlying processes consistently as if there were no noise terms

because other terms can be ignored asymptotically as n → ∞.

Let bk = (bkj) = e
′

kPnC
−1
n = (bkj) and e

′

k = (0, · · · , 1, 0, · · · ) be an n×1 vector. (We

note that bkj = b
(1)
kj with s = 1 in Lemma A-1 below.) We write z

(v)
kg =

∑n
j=1 bkjvjg

for the noise part and use the relation

(A.3) (PnC
−1
n C

′−1
n P

′

n)k,k′ = δ(k, k
′
)4 sin2[

π

2n+ 1
(k − 1

2
)]
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and
∑n

j=1 bkjbk′j = δ(k, k
′
)a∗kn. We have

Σv = (
∞∑

j=−∞

Cj)Σe(
∞∑

j=−∞

C
′

j) ,

under the assumption that ∥Cj| = O(ρj) (0 ≤ ρ < 1) and then we can find K1 (a

constant) such that

(A.4) E [(z(v)kg )]
2 = E [

n∑
i=1

bkivig

n∑
j=1

bkjvjg] ≤ K1 × a∗kn .

It is because

E [(z(v)kg )]
2 =

n∑
i,j=1

bkibkjσ
(v)
gg (i− j) ,

where σ
(v)
gg (i− j) is the (i− j)−th auto-covariance of vig and vjg. We denote bki = 0

for i < 0 and i > n and then

E [(z(v)kg )]
2 =

n−1∑
l=−(n−1)

(
n∑

j=1

bkjbk,j+lσ
(v)
gg (l) ≤ [

n∑
j=1

b2kj]]
∞∑

l=−∞

|σ(v)
gg (l)| .

Because ∥Cj∥ = O(ρj),
∑∞

l=−∞ |σ(v)
gg (l)| is bounded. Also from (3.9) it is straight-

forward to find that

1

mn

mn∑
k=1

a∗kn =
1

mn

2
mn∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
= O(

m2
n

n2
) ,

by using the relation

m∑
k=1

2 cos(π
2k − 1

2n+ 1
) =

m∑
k=1

[ei
2π

2n+1
(k− 1

2
) + e−i 2π

2n+1
(k− 1

2
)] =

sin( 2π
2n+1

m)

sin( π
2n+1

)

and then the second term of (A.2) becomes

(A.5)
1

√
mn

mn∑
k=1

E [z(v)kg ]
2 ≤ K1

1
√
mn

mn∑
k=1

a∗kn = O(
m

5/2
n

n2
) ,

which is o(1) if we set α such that 0 < α < 0.8.

(The arguments here are similar to the derivations in Kunitomo and Sato (2008,

2013), but there is a major difference on the conditions because there is no
√
n
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factor in Pn and we use a∗kn while they have used akn = na∗kn.)

For the fourth term of (A.2),

E

[
1

√
mn

mn∑
j=1

z
(x)
kg z

(v)
kg

]2
=

1

mn

mn∑
k,k′=1

E
[
z
(x)
kg z

(x)

k
′
,g
z
(v)
kg z

(v)

k
′
,g

]
= O(

m2
n

n2
) .

In the above evaluation we have used the evaluation that if we set sjk = cos[ 2π
2n+1

(j−
1
2
)(k − 1

2
)] (j, k = 1, 2, · · · , n), then we have the relation

|
n∑

j=1

sjksj,k′ | ≤ [
n∑

j=1

s2jk] =
n

2
+

1

4
for any k ≥ 1 .

(See Lemma 3 of Kunitomo and Sato (2013) for instance.) For the third term of

(A.2), we need to consider the variance of

(z
(v)
kg )

2 − E [(z(v)kg )
2] =

n∑
j,j

′
=1

bkjbk,j′
[
vjgvj′ ,g − E(vjgvj′ ,g)

]
.

Then by using the assumption we made, after lengthy evaluations we can find a

positive constant K2 such that

E

[
1

√
mn

mn∑
k=1

((z
(v)
kg )

2 − E [(z(v)kg )
2])

]2

=
1

mn

mn∑
k1,k2=1

E

[
n∑

j1,j2,j3,j4=1

bk1,j1bk1,j2(vj1,gvj2,g − E(vj1,gvj2,g))

×bk2,j3bk2,j4(vj3,gvj4,g − E(vj3,gvj4,g))]

≤ K2
1

mn

[
mn∑
k=1

a∗kn]
2

= O(
1

mn

× (
m3

n

n2
)2) ,

which is O(m5
n/n

4). Here we just give an illustration of our derivations when p = 1.
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We need to evaluate

1

m

m∑
k1,k2=1

∑
j1,j2,j3,j4

bk1,j1bk1,j2bk2,j3bk2,j4E{[vj1,gvj2,g − E(vj1,gvj2,g)][vj3,gvj4,g − E(vj3,gvj4,g)]}

=
1

m

m∑
k1,k2=1

∑
j1,j2,j3,j4

bk1,j1bk1,j2bk2,j3bk2,j4

×
∞∑

l1,l2,l3,l4=−∞

cl1cl2cl3cl4E{[ej1−l1ej2−l2 − E(ej1−l1ej2−l2)][ej3−l3ej4−l4 − E(ej3−l3ej4−l4)]} .

Then we need to evaluate the corresponding terms for four cases when (i) j1 −
l1 = j2 − l2 = j3 − l3 = j4 − l4, (ii) j1 − l1 = j2 − l2 ̸= j3 − l3 = j4 − l4, (iii)

j1 − l1 = j3 − l3 ̸= j2 − l2 = j4 − l4, (iv) j1 − l1 = j4 − l4 ̸= j2 − l2 = j4 − l4. For an

instance, in Case (i) the corresponding terms are less than

K21(
1

m
)

m∑
k1,k2=1

[
n∑

j1=1

b2k1,j1 ]
1/2[

n∑
j2=1

b2k1,j2 ]
1/2[

n∑
j3=1

b2k2,j3 ]
1/2[

n∑
j4=1

b2k2,j4 ]
1/2

×
∑
h

[
n∑

j1=1

c2j1−h]
1/2[

n∑
j2=1

c2j2−h]
1/2[

n∑
j3=1

c2j3−h]
1/2[

n∑
j4=1

c2j4−h]
1/2 ,

where K21 is a positive constant. Because of the assumption ∥Cj∥ = O(ρj) with

0 ≤ ρ < 1 the last sum converges to a positive constant.

Hence the third term of (A.2) is negligible if we set α such that 0 < α < 0.8.

(Step 2) The second step is to give the asymptotic variance of the first term of

(A.62), that is,

(A.6)
√
mn

[
1

mn

mn∑
k=1

z
(x)
k z

(x)′

k −Σx

]

because it is of the order Op(1). We can write

1

mn

mn∑
k=1

z
(x)
k z

(x)′

k

=
1

mn

(
2

n+ 1
2

)
mn∑
k=1

[
n∑

i=1

ri cos[π(
2k − 1

2n+ 1
)(i− 1

2
)]

n∑
j=1

r
′

j cos[π(
2k − 1

2n+ 1
)(j − 1

2
)]]

=
n∑

i=1

c∗iirir
′

i +
∑
i̸=j

c∗ijrirj ,
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where ri = xi − xi−1 and

c∗ii = (
2

2n+ 1
)

[
1 +

1

m

sin 2πm( i−1/2
2n+1

)

sin(π i−1/2
2n+1

)

]
,

c∗ij =
1

2m
(

2

2n+ 1
)

[
sin 2πm( i+j−1

2n+1
)

sin(π i+j−1
2n+1

)
+

sin 2πm( j−i
2n+1

)

sin(π j−i
2n+1

)

]
(i ̸= j) .

(We have used the notations c∗ii and c∗ij here instead of cii and cij in Kunitomo and

Sato (2013), where cii = nc∗ii and cij = nc∗ij for i, j = 1, · · · , n.) Then it is possble

to show that

(A.7)

√
mn

n

n∑
i=1

[
rir

′

i −Σx + (nc∗ii − 1)rir
′

i

]
= op(1) .

Then we re-write (A.7) as

(A.8)

√
mn

n

n∑
i=1

[
nc∗ii rir

′

i −Σx

]
+

√
mn

n

n∑
i̸=j

[
nc∗ij rir

′

j

]
.

After some albegra, we can evaluate the asymptotic variance of its second term. The

variance of the limiting distribution of the (g,g)-the element of (A.8) is the limit of

(A.9) Vn(g, g) = 2
n∑

i,j=1

mn

n2
[nc∗ij]

2[σ(x)
gg ]

2 .

For i, j = 1, · · · , n, we use the relation

c∗ij =
2

mn(n+ 1
2
)

m∑
k=1

cos

[
2π

2n+ 1
(i− 1

2
)(k − 1

2
)

]
cos

[
2π

2n+ 1
(j − 1

2
)(k − 1

2
)

]
and as the result of lengthy but straightforward evaluations of trigonometric rela-

tions, we find that

(A.10)
n∑

i,j=1

[nc∗ij]
2 =

4

mn

[
n

2
+

1

4

]2
.

Then as n → ∞

(A.11) Vn(g, g) −→ V (g, g) = 2
[
σ(x)
gg

]2
.
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(Step 3) Finally, we need to give the proof of the asymptotic normality. Define

the sequence of σ−fields Fn,i generated by the set of random variables {xj,vj; 1 ≤
j ≤ i ≤ n}, for (g, g)−the element we shall use a sequence of random variables

(A.12) Un(g, g) =
n∑

j=2

[2

j−1∑
i=1

√
mnc

∗
ijrgi]rgj ,

which is a discrete martingale and then we can apply the martingale central limit

theorem. (In the present case the conditional variances rgj (j = 1, · · · , n) are

constant while they can be stochastic in Kunitomo and Sato (2013), and it is a

considerable simplification.) Since the trend differences rgi = xgi − xg,i−1 (g =

1, · · · , p; i = 1, · · · , n) are also (discrete) martingales, we set

Xnj(g, g) = (2
∑j−1

i=1

√
mnc

∗
ijrgi)rgj (j = 2, · · · , n)

and V ∗
gg.n(g, g) =

∑n
j=2 E [X2

nj|Fn,j−1].

Then in order to prove

(A.13) Un(g, g) =
n∑

i=1

Xni(g, g)
L−→ N(0, V (g, g))

we need to show the conditions (i)
∑n

i=1 E [Xni(g, g)
2|Fn,i−1]

p−→ V (g, g) and (ii)∑n
i=1 E [Xni(g, g)

2I(|Xni(g, g)| > ϵ)|Fn,i−1]
p−→ 0 (for any ϵ > 0).

In the present situation, it is straightforward to show that these conditions are

satisfied. (They have been given essentially in the proof of Theorem 3 in Kunitomo

and Sato (2013) with detailed algebra.)

For the covariance of the trend term σ
(x)
sf (s, f = 1, · · · , p), the arguments are quite

similar, which are omitted here. By applying the martingale CLT, we obtain the

corresponding result.

(Q.E.D.)

Proof of Theorem 4.2 : By the proof of Theorem 4.1, we have found that the

main order of the bias of the SIML estimator is m−1
n

∑mn

k=1 akn = O(n2α−2). Since

the normalization of the SIML estimator is in the form of
√
mn[σ̂

(x)
gg −σ

(x)
gg ] = Op(1),

its variance is of the order O(n−α). Hence when n is large we can approximate the

mean squared error of σ̂
(x)
gg (g = 1, · · · , p) as

(A.14) gn(α) = c1g
1

nα
+ c2gn

4α−4 ,

where c1g and c2g are some constants. The first term and the second term correspond

to the order of the variance and the squared bias, respectively. By minimizing gn(α)
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with respect to α, we obtain an optimal choice of mn.

(Q.E.D.)

Proof of Theorem 4.3 : We consider the sample characteristic equation

(A.15)
[
Σ̂x − λ1Σv

]
β̂ = 0 ,

when λ1 is the smallest root of the corresponding characteristic equation. By The-

orem 4.1 we have

(A.16) Σ̂x
p−→ Σx

and we use

(A.17) β
′
[
Σ̂x − λ1Σv

]
β̂ = 0 .

Then we find λ1
p→ 0 because λ1 is the minimum root of the characteristic equation

and the rank of Σx is less than p. Since Σv is a nonsingular matrix, we have the

consistency of the SIML estimator.

(Q.E.D.)

For the proofs of Theorem 5.1 and Theorem 5.2, we give some preliminary lemmas,

which are keys in our arguments.

Lemma A-1 : Let

(A.18) B(1)
n = (b

(1)
jk ) = PnC

(s)−1
n

in (5.17). Then we have

(A.19)
n∑

j=1

b
(1)
kj b

(1)

k′ ,j
= δ(k, k

′
)4 sin2

[
π

2

2k − 1

2n+ 1
s

]
+O(

1

n
) .

Lemma A-2 : Let

(A.20) B(2)
n = (b

(2)
jk ) = PnC

(s)−1
n Cn .

Then we have

(A.21)
n−s∑
j=1

b
(2)
kj b

(2)

k′ ,j
= δ(k, k

′
)
sin2

[
π
2
2k−1
2n+1

s
]

sin2
[
π
2
2k−1
2n+1

] +O(
1

n
) .
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Lemma A-3 : Let n = Ns,N and s be positive integers and

(A.22) B(3)
n = (b

(3)
jk ) = PnC

−2
n C(s)

n .

Then we have

(A.23)
n−s∑
j=1

b
(3)
kj b

(3)

k′ ,j
= δ(k, k

′
)4

sin4
[
π
2
2k−1
2n+1

]
sin2

[
π
2
2k−1
2n+1

s
] +O(

1

n
) .

Proof of Lemma A-1 : The proof is the result of lengthy, but straightforward

calculations of the trigonometric functions. We set

(A.24) b
(1)
kj = pkj − pk,j+s (1 ≤ j ≤ n− s) ,

which can be written as

b
(1)
kj =

1√
2n+ 1

{[1− ei
2π

2n+1
(k− 1

2
)s]ei

2π
2n+1

(k− 1
2
)(j− 1

2
)(A.25)

+[1− e−i 2π
2n+1

(k− 1
2
)s]e−i 2π

2n+1
(k− 1

2
)(j− 1

2
)} .

Then we evaluate each terms of

n−s∑
j=1

b
(1)
kj b

(1)

k
′
j

=
1

2n+ 1

n−s∑
j=1

{[A1j(k) + A2j(k)][A1j(k
′
) + A2j(k

′
)]}

=
1

2n+ 1

n−s∑
j=1

{A1j(k)A1j(k
′
) + A2j(k)A2j(k

′
)(A.26)

+A1j(k)A2j(k
′
) + A2j(k)A2j(k

′
)} ,

where we denote

A1j(k) = (1− eiθ
s
k)eiθk,j , A2j(k) = (1− e−iθsk)e−iθk,j ,

and

θsk =
2π

2n+ 1
(k − 1

2
)s, θk,j =

2π

2n+ 1
(k − 1

2
)(j − 1

2
) .

There are four terms in the summation of (A.26). For instance, the first term of

(A.26) is given by

n−s∑
j=1

A1j(k)A1j(k
′
) = (1− eiθ

s
k)(1− e

iθs
k
′ )
1− ei

2π
2n+1

(k+k
′−1)(n−s+1)

1− ei
2π

2n+1
(k+k′−1)

×ei
2π

2n+1
(k+k

′−1) 1
2
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and the third term of (A.26) is

n−s∑
j=1

A1j(k)A2j(k
′
) = (1− eiθ

s
k)(1− e

−iθs
k
′ )
1− ei

2π
2n+1

(k−k
′
)(n−s+1)

1− ei
2π

2n+1
(k−k

′
)

×ei
2π

2n+1
(k+k

′−1) 1
2

when k ̸= k
′
. When k = k

′
, the third term of (A.26) becomes

n−s∑
j=1

A1j(k)A2j(k
′
) = (n− s)(1− eiθ

s
k)(1− e−iθsk)(A.27)

= (n− s)(−1)[e−iθsk/2 − eiθ
s
k/2]2

= 4(n− s) sin2[
θsk
2
] .

Then by using similar calculations of the second and fourth terms and by summa-

rizing four terms of (A.86), we have the desired result.

(Q.E.D.)

Proof of Lemma A-2 : The derivation of Lemma A-2 is similar to that of Lemma

A-1. For k = 1, · · · , n; j = 1, · · · , n− s+ 1, we set

(A.28) b
(2)
kj = pkj + · · ·+ pk,j+s−1 ,

which can be written as

b
(2)
kj =

1√
2n+ 1

{1− ei
2π

2n+1
(k− 1

2
)s

1− ei
2π

2n+1
(k− 1

2
)
ei

2π
2n+1

(k− 1
2
)(j− 1

2
)(A.29)

+
1− e−i 2π

2n+1
(k− 1

2
)s

1− e−i 2π
2n+1

(k− 1
2
)
e−i 2π

2n+1
(k− 1

2
)(j− 1

2
)} .

Then the rest of derivation is similar to that of Lemma A-1.

(Q.E.D.)

Proof of Lemma A-3 : The derivation of Lemma A-3 is similar to those of

Lemmas A-1 and A-2. For k = 1, · · · , n; j = 1, · · · , n− s− 1, we set

b
(3)
kj = −[(pkj − pk,j+1)− (pk,j+1 − pk,j+2)] + · · ·

+[(pk,(N−1)s − pk,(N−1)s+1)− (pk,(N−1)s+1 − pk,(N−1)s+2)],(A.30)
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which can be written as

b
(3)
kj =

−1√
2n+ 1

{(1− ei
2π

2n+1
(k− 1

2
))2

1− ei
2π

2n+1
(k− 1

2
)s

ei
2π

2n+1
(k− 1

2
)(j− 1

2
)(A.31)

+
(1− e−i 2π

2n+1
(k− 1

2
))2

1− e−i 2π
2n+1

(k− 1
2
)s

e−i 2π
2n+1

(k− 1
2
)(j− 1

2
)} .

Then the rest of derivation is similar to those of Lemmas A-1 and A-2.

(Q.E.D.)

Proof of Theorem 5.1 : The proof of Theorem 5.1 is similar to that of Theorem

4.1 except the fact that we have used a different transformation of seasonal effects.

Let n = sN and N is an integer. (In the general case when n = sN + j (1 ≤ j < s)

we need some arguments, but the effects of additional terms n = sN + j (1 ≤ j < s)

are small.)

We set z
(x)
k = (z

(x)
kg ),z

(v)
k = (z

(v)
kg ) and z

(s)
k = (z

(g)
kg ), (k = 1, · · · , n; g = 1, · · · , p) be

the k-th vector elements of n× p matrix such that

Z(x)
n = K∗

n(Xn − Ȳ0) , Z
(v)
n = K∗

nVn , Z(s)
n = K∗

nSn , K∗
n = PnC

−1 ,

where Sn = (s
′
i) = (sig), Vn = (v

′
i) (= (vig)) and Zn = (z

′

k) (= (zkg)) are n × p

matrices with zkg = z
(x)
kg + z

(v)
kg + z

(s)
kg . Then we can write

Z(s)
n = B(3)

n [C(s)−1
n CnSn]

and we use the fact that (1 − L)−1(1 − Ls)si = w
(s)
i and w

(s)
i are the sequence of

i.i.d. random variables for i = s, s + 1, · · · , n in (2.3), where we have set B
(3)
n in

(A.23).

We denote z
(x)
k = z

(x)
kg , z

(s)
k = z

(s)
kg , and z

(v)
k = z

(v)
kg . Then we have several additional

terms in the decomposition of zk (k = 1, · · · ,mn) as

1
√
mn

mn∑
k=1

E(z(s)k z
(s)′

k ),
1

√
mn

mn∑
k=1

[
z
(s)
k z

(s)′

k − E(z(s)k z
(s)′

k )
]
,

and
1

√
mn

mn∑
k=1

(z
(x)
k z

(s)′

k + z
(s)
k z

(x)′

k ),
1

√
mn

mn∑
k=1

(z
(v)
k z

(s)′

k + z
(s)
k z

(v)′

k ) .

We need to show that these terms are stochastically negligible. The resulting evalua-

tions are rather straightforward, but quite tedious. We illustrate a typical argument
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such that for any (non-zero) constant p× 1 vector a and b we have

E

[
1

√
mn

mn∑
k=1

a
′
z
(x)
k z

(s)′

k b

]2
≤ 1

mn

E

[
(
mn∑
k=1

a
′
z
(x)
k )2(

mn∑
k=1

z
(s)′

k b)2

]

≤ 1

mn

E

[
(
mn∑
k=1

a
′
z
(x)
k )2

]
E

[
(
mn∑
k=1

z
(s)′

k b)2

]

because of the independence assumption of z
(x)
k and z

(s)
k (k = 1, · · · ,mn). Then

by using Lemma A-3 it is possible to see the fact that this term and other extra

terms due to the seasonality are of the smaller order op(1) than constants. Since

the evaluation of each terms are quite similar to the proof of Theorem 4.1, we omit

some details.

(Q.E.D.)

Proof of Theorem 5.2 : The proof of Theorem 5.2 is similar to those of Theorem

4.1 and Theorem 5.1. Let n = sN and N is an integer. (In the general case when

n = sN + j (1 ≤ j < s) we need some arguments, but the effects of additional terms

n = sN + j (1 ≤ j < s) are small.)

Let z
(x)
k = (z

(x)
kg ), Z

(v)
k = (z

(v)
kg ) and z

(s)
k = (z

(s)
kg ) (k = 1, · · · , n; g = 1, · · · , p) be the

k-th vector elements of n× p matrices such that

Z(x)
n = K∗

n(Xn − Ȳ0) , Z
(v)
n = K∗

nVn ,Z(s)
n = K∗

nSn ,

respectively, and Xn = (x
′

k) = (xkg), Vn = (v
′

k) = (vkg), Sn = (s
′

k) (= (skg))

Zn = (z
′

k) (= (zkg)) are n×p matrices with zkg = z
(x)
kg +z

(v)
kg +z

(s)
kg . (We have written

zkg as the g−th component of zk.) Then we can write

Z(x)
n = B(3)−1

n (Xn − Ȳn) , Z
(v)
n = B(3)−1

n B(1)Vn .
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Next, we extend the decomposition in the present case as

√
mn

[
Σ̂s − Σs

]
=

√
mn

 1

mn

∑
k∈In(s)

zkz
′

k − Σs


=

√
mn

 1

mn

∑
k∈In(s)

z
(s)
k z

(s)′

k − Σs


+

1
√
mn

 ∑
k∈In(s)

E(z(x)k z
(x)′

k ) +
∑

k∈In(s)

E(z(v)k z
(v)′

k )


+

1
√
mn

∑
k∈In(s)

[
[z

(x)
k z

(x)′

k − E(z(x)k z
(x)′

k )] + [z
(v)
k z

(v)′

k − E(z(v)k z
(v)′

k ])
]

+
1

√
mn

∑
k∈In(s)

(
z
(s)
k z

(x)′

k + z
(x)
k z

(s)′

k

)
+

1
√
mn

∑
k∈In(s)

(
z
(s)
k z

(v)′

k + z
(v)
k z

(s)′

k

)
+

1
√
mn

∑
k∈In(s)

(
z
(x)
k z

(v)′

k + z
(v)
k z

(x)′

k

)
.

In order to evaluate many terms, we use the relations of Lemmas A-1, A-2 and A-3.

For instance, we can find a positive constant K3 such that

(A.32) E [(z(v)ks )]
2 ≤ K3 × a

(s)
kn ,

where

a
(s)
kn = 4 sin2[

π

2n+ 1
(k − 1

2
)s] .

Also we find that

1

mn

∑
k∈In(s)

a
(s)
kn =

1

mn

2
∑

k∈In(s)

[
1− cos(π

2k − 1

2n+ 1
)s

]
= O(

m2
n

n2
)

and then the second term of the decomposition becomes

(A.33)
1

√
mn

∑
k∈In(s)

E [z(v)ks ]
2 ≤ K4

1
√
mn

∑
k∈In(s)

a
(s)
kn = O(

m
5/2
n

n2
) ,

K4 is a positive constant. This term is o(1) if 0 < α < 0.8. The remaining arguments
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of the proof are quite similar to that of Theorem 4.1 and

E

[
1

√
mn

mn∑
j=1

((z
(2)
kg )

2 − E [(z(2)kg )
2])

]2
≤ K5

1

mn

[
mn∑
k=1

akn]
2

= O(
1

mn

× (
m3

n

n2
)2) ,

where K5 is a positive constant. Since the rest of arguments are quite similar to the

proofs of Theorem 4.1 and Theorem 5.1, we omit some details.

(Q.E.D.)
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Japan, 1994Q1−2014Q4
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Fig.1−1:Real GDP and Investment(red line)
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Fig.6−1:Trend+Noise
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Fig.6−2:Trend+Seasonal+Noise
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Fig.6−3:Trend+Seasonal(irregular case)+Noise
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Fig.6−4:Trend+Seasonal+Noise(small)
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