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Abstract

We give a general construction of debiased/locally robust/orthogonal (LR) moment

functions for GMM, where the derivative with respect to first step nonparametric estima-

tion is zero and equivalently first step estimation has no effect on the influence function.

This construction consists of adding an estimator of the influence function adjustment term

for first step nonparametric estimation to identifying or original moment conditions. We

also give numerical methods for estimating LR moment functions that do not require an

explicit formula for the adjustment term.

LR moment conditions are important when the first step is machine learning. We derive

LR moment conditions for dynamic discrete choice based on first step machine learning

estimators of conditional choice probabilities.

We provide simple and general asymptotic theory for LR estimators based on sample

splitting. This theory uses the additive decomposition of LR moment conditions into an

identifying condition and a first step influence adjustment. Our conditions require only

mean square consistency and a few (generally either one or two) readily interpretable rate

conditions.

LR moment functions have the advantage of being less sensitive to first step estimation

and so less biased. Some LR moment functions are also doubly robust meaning they hold

if one first step is incorrect. We give novel classes of doubly robust moment functions and

characterize double robustness. For doubly robust estimators our asymptotic theory only

requires one rate condition.

Keywords: Local robustness, orthogonal moments, double robustness, semiparametric

estimation, bias, GMM.

JEL classification: C13; C14; C21; D24
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1 Introduction

There are many economic parameters that depend on nonparametric or large dimensional first

steps. Examples include dynamic discrete choice, games, average consumer surplus, and treat-

ment effects. This paper shows how to construct moment functions for GMM estimators that are

debiased/locally robust/orthogonal (LR), where moment conditions have a zero derivative with

respect to the first step. We show that LR moment functions can be constructed by adding the

influence function adjustment for first step estimation to the original moment functions. This

construction can also be interpreted as a decomposition of LR moment functions into identifying

moment functions and a first step influence function term. We use this decomposition to give

simple and general conditions for root-n consistency and asymptotic normality, with different

properties being assuming for the identifying and influence function terms. The conditions are

easily interpretable mean square consistency and second order remainder conditions based on

estimated moments that use cross-fitting (sample splitting). We also give numerical estimators

of the influence function adjustment.

LR moment functions have several advantages. Debiased/LR/orthogonal moment conditions

are important for root-n consistency when machine learning is used as a first step, as shown

by Belloni, Chernozhukov, and Hansen (2014). LR moment functions can be used to construct

debiased/double machine learning (DML) estimators by plugging in machine learning first step

estimators, as in Chernozhukov et al. (2017, 2018).

We illustrate by deriving LR moment functions for dynamic discrete choice estimation based

on conditional choice probabilities. We give a DML estimator for dynamic discrete choice that

uses first step machine learning of conditional choice probabilities. We find that it performs well

in a Monte Carlo example. Such structural models provide a potentially important application

of DML, because of potentially high dimensional state spaces. Adding the first step influence

adjustment term provides a general way of constructing LR moment conditions for structural

models so that machine learning can be used for first step estimation of conditional choice

probabilities, state transition distributions, and other unknown functions on which structural

estimators depend.

LR moment conditions also have the advantage of being relatively insensitive to small vari-

ation away from the first step true function. This robustness property is appealing in many

settings where it may be difficult to get the first step completely correct. Many interesting and

useful LR moment functions have an additional property that they are doubly robust (DR),

meaning moment conditions hold when one first step is not correct. We give novel classes of

DR moment conditions, including for average linear functionals of conditional expectations and

probability densities. The construction of adding the first step influence function adjustment to

an identifying moment function is useful in obtaining these moment conditions. We also give

necessary and sufficient conditions for a large class of moment functions to be DR. We find
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DR moments have simpler and more general conditions for asymptotic normality, which helps

motivate our consideration of DR moment functions as special cases of LR ones.

The reduced sensitivity to first step estimation of LR moments leads to substantial im-

provements in finite sample properties in many cases relative to just using the original moment

conditions. For dynamic discrete choice we find large bias reductions, moderate variance in-

creases and even reductions in some cases, and coverage probabilities substantially closer to

nominal. For machine learning estimators of the partially linear model, Chernozhukov et al.

(2017, 2018) found bias reductions so large that the LR estimator is root-n consistent but the

estimator based on the original moment condition is not. Substantial improvements were also

found for density weighted averages by Newey, Hsieh, and Robins (2004, NHR). The twicing

kernel estimators in NHR are numerically equal to LR estimators based on an original kernel,

as shown in Newey, Hsieh, Robins (1998), and the twicing kernel estimators were shown to have

smaller mean square error in large samples. Also, a Monte Carlo example in NHR finds that

the mean square error (MSE) of the LR estimator has a smaller minimum and is flatter as a

function of bandwidth than the MSE of Powell, Stock, and Stoker’s (1989) density weighted

average derivative estimator. We expect similar finite sample improvements from LR moments

will be present in other cases.

LR moment conditions have appeared in earlier work. They are semiparametric versions of

Neyman (1959) C-alpha test scores for parametric models. Hasminskii and Ibragimov (1978)

suggested LR estimation of functionals of a density and argued for their advantages over plug-

in estimators. Pfanzagl and Wefelmeyer (1981) considered their use for improving asymptotic

efficiency of functionals of distribution estimators. Bickel and Ritov (1988) gave a LR estimator

of the integrated squared density that attains root-n consistency under minimal conditions. The

Robinson (1988) semiparametric regression and Ichimura (1993) index regression estimators

are LR. Newey (1990) showed that LR moment conditions can be obtained as residuals from

projections on the tangent set in a semiparametric model. Newey (1994a) showed that derivatives

of an objective function where the first step has been "concentrated out" are LR, including the

efficient score of a semiparametric model. NHR (1998, 2004) gave estimators of averages that are

linear in density derivative functionals with similarly fast remainder rates to Bickel and Ritov

(1988). Doubly robust moment functions have been constructed by Robins, Rotnitzky, and Zhao

(1994, 1995), Robins and Rotnitzky (1995), Scharfstein, Rotnitzky, and Robins (1999), Robins,

Rotnitzky, and van der Laan (2000), Robins and Rotnitzky (2001), Graham (??), and Firpo

and Rothe (2017). They are widely used for estimating treatment effects, e.g. Bang and Robins

(2005). Van der Laan and Rubin (2006) developed targeted maximum likelihood to obtain a

LR estimating equation based on the efficient influence function of a semiparametric model.

Robins et. al. (2008, 2017) showed that efficient influence functions are LR, characterized

some doubly robust moment conditions, and developed higher order influence functions that
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can reduce bias. Belloni, Chernozhukov, and Wei (2013), Belloni, Chernozhukov, and Hansen

(2014), Kandasamy et al. (2015), and Belloni, Chernozhukov, Fernandez-Val, and Hansen (2016)

derived LR moments in several specific settings.

A main contribution of this paper is the construction of LR moment conditions from any

moment condition and first step estimator that can result in a root-n consistent estimator of

the parameter of interest. This construction is based on the limit of the first step when a data

observation has a general distribution that allows for misspecification, similarly to Newey (1994).

LR moment functions are constructed by adding to identifying moment functions the influence

function of the true expectation of the identifying moment functions evaluated at the first step

limit, i.e. by adding the influence function term that accounts for first step estimation. The

addition of the influence adjustment "partials out" the first order effect of the first step on the

moments. This construction of LR moments extends those cited above for first step density

and distribution estimators to any first step, included nonparametric regression or instrumental

variable estimators. Also, this construction is estimator based rather than model based as in

van der Laan and Rubin (2006) and Robins et al. (2008, 2017). The construction depends only

on the moment functions and the first step rather than a semiparametric model. Also, we use

the fundamental Gateaux derivative definition of the influence function to show LR rather than

an embedding in a regular semiparametric model.

The focus on the functional that is the true expected moments evaluated at the first step

limit is the key to this construction. This focus should prove useful for constructing LR moments

in many setting, including those where it has already been used to find the asymptotic variance

of semiparametric estimators, such as Newey (1994a), Pakes and Olley (1995), Hahn (1998), Ai

and Chen (2003), Hirano, Imbens, and Ridder (2003), Bajari, Hong, Krainer, and Nekipelov

(2010), Bajari, Chernozhukov, Hong, and Nekipelov (2009), Hahn and Ridder (2013, 2016), and

Ackerberg, Chen, Hahn, and Liao (2015), Liao and Ridder (??). LR moment functions can be

constructed in each of these settings by adding the first step influence function derived for each

case as an adjustment to the original, identifying moment functions.

Another contribution is the development of LR moment conditions for dynamic discrete

choice. We derive the influence adjustment for first step estimation of conditional choice prob-

abilities as in Hotz and Miller (1993). We find encouraging Monte Carlo results when various

machine learning methods are used to construct the first step. We also give LR conditional

moment restrictions that are based on orthogonal instruments.

An additional contribution is to provide general estimators of the influence adjustment term

that can be used to construct LR moments without knowing their form. These methods estimate

the adjustment term numerically, thus avoiding the need to know its form. It is beyond the scope

of this paper to develop machine learning versions of these numerical estimators. Such estimators

are developed by Chernozhukov, Newey, and Robins (2018) for average linear functionals of
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conditional expectations.

Further contributions include novel classes of DR estimators, including linear functionals of

nonparametric instrumental variables and density estimators, and a characterization of (nec-

essary and sufficient conditions for) double robustness. We also give related, novel partial

robustness results where original moment conditions are satisfied even when the first step is not

the truth.

A main contribution is simple and general asymptotic theory for LR estimators that use

cross-fitting in the construction of the average moments. This theory is based on the structure

of LR moment conditions as an identifying moment condition depending on one first step plus

an influence adjustment that can depend on an additional first step. We give a remainder

decomposition that leads to mean square consistency conditions for first steps plus a few readily

interpretable rate conditions. For DR estimators there is only one rate condition, on a product

of sample remainders from two first step estimators, leading to particularly simple conditions.

This simplicity motivates our inclusion of results for DR estimators. This asymptotic theory

is also useful for existing moment conditions that are already known to be LR. Whenever the

moment condition can be decomposed into an identifying moment condition depending on one

first step and an influence function term that may depend on two first steps the simple and

general regularity conditions developed here will apply.

LR moments reduce smoothing bias resulting from first step nonparametric estimation rel-

ative to original moment conditions. There are other sources of bias arising from nonlinearity

of moment conditions in the first step and the empirical distribution. Cattaneo and Jansson

(2017) and Cattaneo, Jansson, and Ma (2017) give useful bootstrap and jackknife methods for

removing nonlinearity bias. Newey and Robins (2017) show that this bias may also be removed

by cross fitting in some settings. We allow for cross-fitting in this paper.

Section 2 describes the general construction of LR moment functions for semiparametric

GMM. Section 3 gives LR moment conditions for dynamic discrete choice. Section 4 shows

how the first step adjustment term can be estimated. Section 5 gives novel classes of DR

moment functions and characterizes double robustness. Section 6 gives an orthogonal instrument

construction of LR moments based on conditional moment restrictions. Section 7 gives simple

and general asymptotic theory for LR estimators.

2 Locally Robust Moment Functions

The subject of this paper is GMM estimators of parameters where the sample moment functions

depend on a first step nonparametric or large dimensional estimator. We refer to these estimators

as semiparametric. We could also refer to them as GMMwhere first step estimators are “plugged

in” the moments. This terminology seems awkward though, so we simply refer to them as
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semiparametric GMM estimators. We denote such an estimator by ̂, which is a function of the

data 1   where  is the number of observations. Throughout the paper we will assume that

the data observations  are i.i.d. We denote the object that ̂ estimates as 0, the subscript

referring to the parameter value under the distribution 0 of .

To describe semiparametric GMM let (  ) denote an  × 1 vector of functions of the
data observation  parameters of interest , and a function  that may be vector valued. The

function  can depend on  and  through those arguments of  Here the function  represents

some possible first step, such as an estimator, its limit, or a true function. A GMM estimator

can be based on a moment condition where 0 is the unique parameter vector satisfying

[( 0 0)] = 0 (2.1)

and 0 is the true . We assume that this moment condition identifies  Let ̂ denote some

first step estimator of 0. Plugging in ̂ to obtain (  ̂) and averaging over  gives the

estimated sample moments ̂() =
P

=1(  ̂) For ̂ a positive semi-definite weighting

matrix a semiparametric GMM estimator is

̃ = argmin
∈

̂()̂̂()

where  denotes the transpose of a matrix  and  is the parameter space for . Such

estimators have been considered by, e.g. Andrews (1994), Newey (1994a), Newey and McFadden

(1994), Pakes and Olley (1995), Chen and Liao (2015), and others.

Locally robust (LR) moment functions can be constructed by adding to the identifying

or original moment functions (  ) the influence function adjustment for the first step

estimator ̂. To describe this influence adjustment let ( ) denote the limit of ̂ when 

has distribution  where we restrict  only in that ( ) exists and possibly other regularity

conditions are satisfied. That is, ( ) is the limit of ̂ under possible misspecification, similarly

to Newey (1994). Let  be some other distribution and  = (1 − )0 +  for 0 ≤  ≤ 1
where 0 denotes the true distribution of  We assume that  is chosen so that () is well

defined for   0 small enough and possibly other regularity conditions are satisfied, similarly to

Ichimura and Newey (2015). The influence function adjustment will be the function (   )

such that for all such 




[(  ())] =

Z
(  0 0)() [(  0 0)] = 0 (2.2)

where  is an additional nonparametric or large dimensional unknown object on which (   )

depends and the derivative is from the right (i.e. for positive values of ) and at  = 0

This equation is the well known definition of the influence function (  0 0) of ( ) =

[(  ( ))] as the Gateaux derivative of ( ) e.g. Huber (1981). The restriction of  so
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that () exists allows (  0 0) to be the influence function when ( ) is only well de-

fined for certain types of distributions, such as when ( ) is a conditional expectation or density.

The function (   ) will generally exist when [(  ( ))] has a finite semiparametric

variance bound. Also (   ) will generally be unique because we are not restricting  very

much. Also, (   ) will be the influence adjustment term from Newey (1994a), as discussed

in Ichimura and Newey (2017).

LR moment functions can be constructed by adding (   ) to (  ) to obtain new

moment functions

(   ) = (  ) + (   ) (2.3)

Let ̂ be a nonparametric or large dimensional estimator having limit ( ) when  has distrib-

ution  with (0) = 0 Also let ̂() =
P

=1 (  ̂ ̂) A LR GMM estimator can be

obtained as

̂ = argmin
∈

̂()̂ ̂() (2.4)

As usual a choice of ̂ that minimizes the asymptotic variance of
√
(̂−0) will be a consistent

estimator of the inverse of the asymptotic variance Ω of
√
̂(0) As we will further discuss,

(   ) being LR will mean that the estimation of  and  does not affect Ω, so that Ω =

[( 0 0 0)( 0 0 0)
 ] An optimal ̂ also gives an efficient estimator in the wider

sense shown in Ackerberg, Chen, Hahn, and Liao (2014), making ̂ efficient in a semiparametric

model where the only restrictions imposed are equation (2.1).

The LR property we consider is that the derivative of the true expectation of the moment

function with respect to the first step is zero, for a Gateaux derivative like that for the influence

function in equation (2.2). Define  = (1 − )0 +  as before where  is such that both

() and () are well defined. The LR property is that for all  as specified,




[(  () ( ))] = 0 (2.5)

Note that this condition is the same as that of Newey (1994a) for the presence of ̂ an ̂ to

have no effect on the asymptotic distribution, when each  is a regular parametric submodel.

Consequently, the asymptotic variance of
√
̂(0) will be Ω as in the last paragraph.

To show LR of the moment functions (   ) = (  ) + (   ) from equation

(2.3) we use the fact that the second, zero expectation condition in equation (2.2) must hold for

all possible true distributions. For any given  define ( ) = [(  ( ))] and (  ) =

(  ( ) ( ))

Theorem 1: If i) ( ) =
R
( 0)(), ii)

R
( )() = 0 for all  ∈ [0 ̄)

and iii)
R
(  )0() and

R
( )() are continuous at  = 0 then




[( )] = −( )


 (2.6)
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The proofs of this result and others are given in Appendix B. Assumptions i) and ii) of

Theorem 1 require that both parts of equation (2.2) hold with the second, zero mean condition

being satisfied when  is the true distribution. Assumption iii) is a regularity condition. The

LR property follows from Theorem 1 by adding () to both sides of equation (2.6) and

noting that the sum of derivatives is the derivative of the sum. Equation (2.6) shows that the

addition of (   ) "partials out" the effect of the first step  on the moment by "cancelling"

the derivative of the identifying moment [(  ())] with respect to  . This LR result for

(   ) differs from literature in its Gateaux derivative formulation and in the fact that is

not a semiparametric influence function but is the hybrid sum of an identifying moment function

(  ) and an influence function adjustment (   )

Another zero Gateaux derivative property of LR moment functions is also useful. If the sets

Γ and Λ of possible limits ( ) and ( ), respectively, are convex and ( ) and ( ) can vary

separately from one another then LR moment functions will have the property that for any

 ∈ Γ,  ∈ Λ, and ̄( ) = [( 0  )],




̄((1− )0 +  0) = 0




̄(0 (1− )0 + ) = 0 (2.7)

That is, the expected value of the LRmoment function will have a zero partial Gateaux derivative

with respect to each of the first steps  and  This property will be useful for several results to

follow and a stronger, Frechet derivative version will be useful in the asymptotic theory.

The approach of constructing LR moment functions by adding the influence adjustment dif-

fers from the model based approach of using as moment functions an efficient influence function

or score for a semiparametric model. The approach here is estimator based rather than model

based. The influence adjustment (   ) is determined by the nonparametric estimator ̂

and the moment functions (  ) rather than some underlying semiparametric model. This

estimator based approach has proven useful for deriving the influence function of a wide vari-

ety of semiparametric estimators, as mentioned in the Introduction. Here this estimator based

approach provides a general way to construct LR moment functions. For any moment function

(  ) and first step estimator ̂ a corresponding LR estimator can be constructed as in

equations (2.3) and (2.4).

The addition of (   ) does not affect identification of  because (  0 0) has

expectation zero for any  and true 0 Consequently, the LR GMM estimator will have the

same asymptotic variance as the original GMM estimator ̃ when
√
(̃− 0) is asymptotically

normal, under appropriate regularity conditions. The addition of (   ) will change other

properties of the estimator. As discussed in Chernozhukov et al. (2017, 2018), it can even

remove enough bias so that the LR estimator is root-n consistent and the original estimator is

not. We further discuss this phenomena in Section 7.

If  was modified so that  is a function of a smoothing parameter, e.g. a bandwidth,
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and  gives the magnitude of the smoothing bias of () then equation (2.5) is a small bias

condition, being equivalent to

[( 0 () ())] = ()

Here [( 0 () ())] is a bias in the moment condition resulting from smoothing and

this bias shrinks faster than  In this sense LR GMM estimators have the small bias property

considered in NHR. This interpretation is also one sense in which LR GMM is "debiased."

In some cases the original moment functions (  ) are already LR and the influence

adjustment will be zero. An important class of moment functions that are LR are those where

(  ) is the derivative with respect to  of an objective function where nonparametric

parts have been concentrated out. That is, suppose that there is a function (  ) such that

(  ) = (  ()) where () = argmax [(  )], where  includes () and

possibly additional functions. Proposition 2 of Newey (1994a) and Lemma 2.5 of Chernozhukov

et al. (2018) then implies that (  ) will be LR. This class of moment functions includes

various partially linear regression models where  represents a conditional expectation. It also

includes the efficient score for a semiparametric model, Newey (1994a, pp. 1358-1359).

Cross fitting, that is also known as sample splitting, has often been used to improve the

properties of semiparametric and machine learning estimators; e.g. see Bickel (1982), Schick

(1986), and Powell, Stock, and Stoker (1989). Cross fitting is known to remove a source of bias

and can be used to construct estimators with remainder terms that converge to zero as fast

as known possible, as in NHR and Newey and Robins (2017). Cross fitting is also useful for

double machine learning estimators, as outlined in Chernozhukov et. al. (2017, 2018). For these

reasons we allow for cross-fitting, where sample moments have the form

̂() =
1



X
=1

(  ̂ ̂)

with ̂ and ̂ being formed from observations other than the  This kind of cross fitting

removes an "own observation" bias term and is useful for showing root-n consistency when ̂

and ̂ are machine learning estimators.

One version of cross-fitting with good properties in examples in Chernozhukov et. al. (2018)

can be obtained by partitioning the observation indices into  groups  ( = 1  ) forming

̂ and ̂ from observations not in , and constructing

̂() =
1



X
=1

X
∈

(  ̂ ̂) (2.8)

Further bias reductions may be obtained in some cases by using different sets of observations

for computing ̂ and ̂ leading to remainders that converge to zero as fast as known possible
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in interesting cases; see Newey and Robins (2017). The asymptotic theory of Section 7 focuses

on this kind of cross fitting.

As an example we consider a bound on average equivalent variation. Let 0() denote the

conditional expectation of quantity  conditional on  = (  ) where  = (1 

2 )

 is a vector

of prices and  is income The object of interest is a bound on average equivalent variation for

a price change from ̄1 to ̌1 given by

0 = [

Z
(1 )0(1 2 )1] (1 ) = ()1(̄1 ≤ 1 ≤ ̌1) exp{−(1 − ̄1)}]

where () is a function of income and  a constant. It follows by Hausman and Newey

(2016) that if  is a lower (upper) bound on the income effect for all individuals then 0 is

an upper (lower) bound on the equivalent variation for a price change from ̄1 to ̌1 averaged

over heterogeneity, other prices 2 and income . The function () allows for averages over

income in specific ranges, as in Hausman and Newey (2017).

A moment function that could be used to estimate 0 is

(  ) =

Z
(1 )(1 2 )1 − 

Note that

[( 0 )] + 0 = [

Z
(1 )(1 2 )1] = [0()()] 0() =

(1 )

0(1|2 ) 

where 0(1|2 ) is the conditional pdf of 1 given 2 and . Then by Proposition 4 of Newey
(1994) the influence function adjustment for any nonparametric estimator ̂() of [| = ]

is

(   ) = ()[ − ()]

Here 0() is an example of an additional unknown function that is included in (   ) but

not in the original moment functions (  ). Let ̂() be an estimator of [| = ] that

can depend on  and ̂() be an estimator of 0(), such as ̂(1|2 )−1(1 ) for an estimator
̂(1|2 ) The LR estimator obtained by solving ̂() = 0 for (  ) and (   ) as

above is

̂ =
1



X
=1

½Z
(1 )̂(1 2 )1 + ̂()[ − ̂()]

¾
 (2.9)

3 Machine Learning for Dynamic Discrete Choice

A challenging problem for estimating dynamic structural models is the dimensionality of state

spaces. Machine learning addresses this problem through the use of model selection to estimate

high dimensional choice probabilities. These choice probabilities estimators can then be used
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in conditional choice probability (CCP) estimators of structural parameters, following Hotz and

Miller (1993). In order for CCP estimators based on machine learning to be root-n consistent

they must be based on orthogonal (i.e. LR) moment conditions, see DML. Adding the adjust-

ment term provides the way to construct LR moment conditions from known moment conditions

for CCP estimators. In this Section we do so for the Rust (1987) model of dynamic discrete

choice.

We consider an agent choosing among  discrete alternative by maximizing the expected

present discounted value of utility. We assume that the per-period utility function for an agent

making choice  in period  is given by

 = ( 0) +  ( = 1   ;  = 1 2 )

The vector  is the observed state variables of the problem (e.g. work experience, number of

children, wealth) and the vector  is unknown parameters. The disturbances  = {1  }
are not observed by the econometrician. As in much of the literature we assume that  is i.i.d.

over time with known CDF that has support   is independent of and state process  and 

is first-order Markov.

To describe the agent’s choice probabilities let  denote a time discount parameter, ̄()

the expected value function,  ∈ {0 1} the indicator that choice  is made and ̄() =

( 0) + [̄(+1)| ] the expected value function conditional on choice  As in Rust

(1987), in each period the agent is assumed to make the choice  that maximizes the expected

present discounted value of utility ̄() +  The probability of choosing  in period  is then

(̄) = Pr(̄() +  ≥ ̄() + ;  = 1  ) ̄ = (̄1()  ̄())
0 (3.1)

These choice probabilities have a useful relationship to the structural parameters  when

there is a renewal choice, where the conditional distribution of +1 given the renewal choice and

 does not depend on  Without loss of generality suppose that the renewal choice is  = 1

Let ̃ denote ̃() = ̄()− ̄1() so that ̃1 ≡ 0. As usual, subtracting ̄1 from each ̄

in (̄) does not change the choice probabilities, so that they depend only on ̃ = (̃2  ̃)

The renewal nature of  = 1 leads to a specific formula for ̃ in terms of the per period

utilities  = ( 0) and the choice probabilities  =  (̃) = (1(̄) (̄))
0 As in Hotz

and Miller (1993), there is a function P−1( ) such that ̃ = P−1() Let ( ) denote the

function such that

() = [ max
1≤≤

{P−1() + }|] = [ max
1≤≤

{̃ + }|]

For example, for multinomial logit () = 5772− ln(1) Note that by  = 1 being a renewal
we have [̄+1| 1] =  for a constant , so that

̄() = ̄1 +() = 1 +  +()
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It then follows that

̄ =  + [̄(+1)| ] =  + [1+1 +(+1)| ] + 2 ( = 1  )

Subtracting then gives

̃ =  − 1 + {[1+1 +(+1)| ]−[1+1 +(+1)|1]} (3.2)

This expression for the choice specific value function ̃ depends only on ( ) (+1), and

conditional expectations given the state and choice, and so can be used to form semiparametric

moment functions.

To describe those moment functions let 1() denote the vector of possible values of the

choice probabilities [| = ] where  = (1  )
0 Also let (  1) ( = 2  )

denote a possible [1(+1 )+(1(+1))| ] as a function of ,  and 1 and +1( 1)
a possible value of [1( ) +(1(+1))|1] Then a possible value of ̃ is given by

̃(  ) = ( )− 1( ) + [(  1)− +1( 1)] ( = 2  )

These value function differences are semiparametric, depending on the function 1 of choice prob-

abilities and the conditional expectations , ( = 2  ) Let ̃(  ) = (̃2(  )  ̃(  ))
0

and () denote a matrix of functions of  with  columns. Semiparametric moment functions

are given by

(  ) = ()[ −  (̃(  ))]

LR moment functions can be constructed by adding the adjustment term for the presence of

the first step  This adjustment term is derived in Appendix A. It takes the form

(   ) =

+1X
=1

(   )

where (   ) is the adjustment term for  holding all other components  fixed at their

true values. To describe it define

̃(̃) =  (̃)̃ 1 = Pr(1 = 1) 10() = [1|+1 = ] (3.3)

0() = [()̃(̃)


(̃)
|+1 = ] ( = 2  )

Then for  = +1 and  = (  ) let

1(   ) = −
Ã

X
=2

{()−[()̃(̃)]
−1
1 1()}

!
[(1()) ]

0{ − 1()}

(   ) = −()̃(̃(  ))


(̃(  ))
{1( ) +(1())− (  1)} ( = 2  )

+1(   ) = 

Ã
X

=2

[()̃(̃(  ))]

!
−11 1{1( ) +(1())− +1( 1)}
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Theorem 2: If the marginal distribution of  does not vary with  then LR moment

functions for the dynamic discrete choice model are

(  ) = ()[ −  (̃(  ))] +

+1X
=1

(  )

The form of (  ) is amenable to machine learning. A machine learning estimator of the

conditional choice probability vector 10() is straightforward to compute and can then be used

throughout the construction of the orthogonal moment conditions everywhere 1 appears. If

1( ) is linear in  say 1( ) = 011 for subvectors 1 and 1 of  and  respectively, then

machine learning estimators can be used to obtain ̂[1+1| ] and ̂[̂+1| ] ( = 2  )
and a sample average used to form ̂+1( ̂1). The value function differences can then be

estimated as

̃(  ̂) = ( )−1( )+ ̂[1+1| ]01− ̂[1+1|1]01+ ̂[̂+1| ]− ̂[̂+1|1]
Furthermore, denominator problems can be avoided by using structural probabilities (rather

than the machine learning estimators) in all denominator terms.

The challenging part of the machine learning for this estimator is the dependence on  of the

reverse conditional expectations in 1(). It may be computationally prohibitive and possibly

unstable to redo machine learning for each  One way to to deal with this complication is to

update  periodically, with more frequent updates near convergence. It is important that at

convergence the  in the reverse conditional expectations is the same as the  that appears

elsewhere FIX.

With data  that is i.i.d. over individuals these moment functions can be used for any  to

estimate the structural parameters  Also, for data for a single individual we could use a time

average
P−1

=1 (  )( − 1) to estimate  It will be just as important to use LR moments
for estimation with a single individual as it is with a cross section of individuals, although our

asymptotic theory will not apply to that case.

Bajari, Chernozhukov, Hong, and Nekipelov (2009) derived the influence adjustment for

dynamic discrete game of imperfect information. Locally robust moment conditions for such

games could be formed using their results. We leave that formulation to future work.

We report a Monte Carlo study. The design of loosely like bus replacement application of

Rust (1987). Here  has transition density

+1 =

(
 +(25 1)2  = 1

 = 1 +(25 1)2  = 0

We assume that the agent chooses  contingent on state to maximize

∞X
=1

−1[(
√
 + ) + (1− )]  = −3  = −4

13



We estimate the conditional choice probability and conditional expectation of tomorrow given

today using kernel and series nonparametric regression. The series approximation is taken inside

the logit estimator of choice probability. We estimate adjustment term using series regression

throughout; kernel estimation of adjustment term did not work well. Here are results for 1000

periods for a single decision maker

LR CCP Estimators, Dynamic Discrete Choice

Bias Std Err 95% Cov

 RC  RC  RC

Two step kernel -.24 .08 .08 .32 .01 .86

LR kernel -.05 .02 .06 .32 .95 .92

Two step quad -.00 .14 .049 .33 .91 .89

LR quad -.00 .01 .085 .39 .95 .92

Logit Lasso -.12 .25 .06 .28 .74 .84

LR Logit Lasso -.09 .01 .08 .36 .93 .95

Random Forest -.15 -.44 .09 .50 .91 .98

LR Ran. For. .00 .00 .06 .44 1.0 .98

Boosted Trees -.10 -.28 .08 .50 .99 .99

LR Boost Tr. .03 .09 .07 .47 .99 .97

Here we find bias reduction and confidence intervals that for the most part have coverage

that is closer to nominal. We also find smaller standard errors for the LR estimator in a number

of cases.

4 Estimating the Adjustment Term

Construction of LR moment functions requires an estimator ̂( ) of the adjustment term.

The form of (   ) is known for some cases from the semiparametric estimation literature.

Powell, Stock, and Stoker (1989) derived the adjustment term for density weighted average

derivatives. Newey (1994a) gave the adjustment term for mean square projections (including

conditional expectations), densities, and their derivatives. Hahn (1998) and Hirano, Imbens,

and Ridder (2003) used those results to obtain the adjustment term for treatment effect esti-

mators, where the LR estimator will be the doubly robust estimator of Robins, Rotnitzky, and

Zhao (1994, 1995). Bajari, Hong, Krainer, and Nekipelov (2010) and Bajari, Chernozhukov,

Hong, and Nekipelov (2009) derived adjustment terms in some game models. Hahn and Ridder

(2013, 2016) derived adjustments in models with generated regressors including control func-

tions. These prior results can be used to obtain LR estimators by adding the adjustment term

with nonparametric estimators plugged in.

14



For new cases it may be necessary to derive the form of the adjustment term. Also, it is

possible to numerically estimate the adjustment term based on series estimators and other non-

parametric estimators. In this Section we describe how to construct estimators of the adjustment

term in these ways.

4.1 Deriving the Formula for the Adjustment Term

One approach to estimating the adjustment term is to derive a formula for (   ) and

then plug-in ̂ and ̂ in that formula A formula for (   ) can be obtained as in Newey

(1994a). Let ( ) be the limit of the nonparametric estimator ̂ when  has distribution 

Also, let  denote a regular parametric model of distributions with  = 0 at  = 0 and

score (derivative of the log likelihood at  = 0) equal to (). Then under certain regularity

conditions (  0 0) will be the unique solution to


R
(  ( ))0()



¯̄̄̄
=0

= [(  0 0)()] [(  0 0)] = 0 (4.1)

as {} and the corresponding score () are allowed to vary over a family of parametric

models where the set of scores for the family has mean square closure that includes all mean

zero functions with finite variance. Equation (4.1) is a functional equation that can be solved to

find the adjustment term, as was done in many of the papers cited in the previous paragraph.

The influence adjustment can be calculated by taking a limit of the Gateaux derivative as

shown in Ichimura and Newey (2017). Let ( ) be the limit of ̂ when  is the true distribution

of , as before. Let 

 be a family of distributions that approaches a point mass at  as  −→ 0

If (  0 0) is continuous in  with probability one then

(  0 0) = lim
−→0

µ
[(  (


 ))]



¯̄̄̄
=0

¶
  

 = (1− )0 + 
  (4.2)

This calculation is more constructive than equation (4.1) in the sense that the adjustment

term here is a limit of a derivative rather than the solution to a functional equation. Ichimura

and Newey (2017) use this formula to derive the adjustment term when ̂ is a nonparametric

instrumental variables (NPIV) estimator. In Section 6 we use those results to construct LR

estimators when the first step is NPIV.

With a formula for (   ) in hand from either solving the functional equation in equa-

tion (4.1) or calculating the limit of the derivative in equation (4.2), one can estimate the

adjustment term by plugging estimators ̂ and ̂ into (   ) This approach to estimating

LR moments can used to construct LR moments for the average surplus described near the end

of Section 2. There the adjustment term depends on the conditional density of 1 given 2 and

. Let ̂(1|2 ) be some estimator of the conditional pdf of 1 given 2 and  Plugging
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that estimator into the formula for 0() gives ̂() =
(1)

̂(1|2)
This ̂() can then be used in

equation (2.9)

4.2 Estimating the Adjustment Term for First Step Series Estima-

tors

Estimating the adjustment term is relatively straightforward when the first step is a series

estimator. The adjustment term can be estimated by treating the first step estimator as if it

were parametric and applying a standard formula for the adjustment term for parametric two-

step estimators. Suppose that ̂ depends on the data through a  × 1 vector ̂ of parameter
estimators that has true value 0. Let (  ) denote (  ) as a function of  Suppose

that there is a  × 1 vector of functions ( ) such that ̂ satisfies
1√
̄

X
∈̄

( ̂) = (1) (4.3)

where ̄ is a subset of observations, none which are included in  and ̄ is the number of

observations in ̄ Then a standard calculation for parametric two-step estimators (e.g. Newey,

1984, and ??) gives the parametric adjustment term

(  ̂ Ψ̂) = Ψ̂()( ̂) Ψ̂() = −
X
∈̄

(  ̂)



⎛⎝X
∈̄

( ̂)



⎞⎠−1   ∈ 

In many cases (  ̂ Ψ̂) is known to approximate the true adjustment term (  0 0)

as shown by Newey (1994a, 1997) and Ackerberg, Chen, and Hahn (2012) for estimating the

asymptotic variance of functions of series estimators. Here this approximation is used for es-

timation of  instead of just for variance estimation. The estimated LR moment function will

be

(  ̂ Ψ̂) = (  ̂) + (  ̂ Ψ̂) (4.4)

We note that if ̂ were computed from the whole sample then ̂() = 0. This degeneracy does

not occur when cross-fitting is used, which removes "own observation" bias and is important for

first step machine learning estimators, as noted in Section 2.

We can apply this approach to construct LR moment functions for an estimator of the

average surplus bound example that is based on series regression. Here the first step estimator

of 0() = [| = ] will be that from an ordinary least regression of  on a vector () of

approximating functions. The corresponding (  ) and ( ) are

(  ) = ()0 −  ( ) = ()[ − ()0] () =
Z

(1 )(1 2 )1
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Let ̂ denote the least squares coefficients from regressing  on () for observations that are

not included in . Then the estimator of the locally robust moments given in equation (4.4) is

(  ̂ Ψ̂) = ()
0̂ −  + Ψ̂()[ − ()

0̂]

Ψ̂ =
X
∈̄

()
0

⎛⎝X
∈̄

()()
0

⎞⎠−1 
It can be shown similarly to Newey (1994a, p. 1369) that Ψ̂ estimates the population least

squares coefficients from a regression of 0() on () so that ̂() = Ψ̂() estimates

0() In comparison the LR estimator described in the previous subsection was based on an

explicit nonparametric estimator of 0(1|2 ) while this ̂() implicitly estimates the inverse
of that pdf via a mean-square approximation of 0() by Ψ̂()

Chernozhukov, Newey, and Robins (2018) give a machine learning method for choosing the

functions to include in the vector (). This method can be combined with machine learning

methods for estimating [|] to construct a double machine learning estimator of average
surplus, as shown in Chernozhukov, Hausman, and Newey (2018).

In parametric models moment functions like those in equation (4.4) have been used to "partial

out" nuisance parameters  For maximum likelihood they are the basis of Neyman’s (1959) C-

alpha test. Wooldridge (1991) generalized such moment conditions to nonlinear least squares

and Lee (2005), Bera et. al (2010), and Chernozhukov et. al. (2015) to GMM.What is novel here

is their use in construction of semiparametric estimators and the interpretation of the estimated

LR moment functions (  ̂ Ψ̂) as the sum of an original moment function (  ̂) and

an adjustment term (  ̂ Ψ̂).

4.3 Estimating the Adjustment Term with First Step Smoothing

The adjustment term can be estimated in a general way that allows for kernel density, locally

linear regression, and other kernel smoothing estimators for the first step. The idea is to dif-

ferentiate with respect to the effect of the  observation on sample moments. Newey (1994b)

used a special case of this approach to estimate the asymptotic variance of a functional of a

kernel based semiparametric or nonparametric estimator. Here we extend this method to a

wider class of first step estimators, such as locally linear regression, and apply it to estimating

the adjustment term for construction of LR moments.

We will describe this estimator for case where  is a vector of functions of a vector of variables

 Let (  ) be a vector of functions of a data observation , , and a possible realized value

of  (i.e. a vector of real numbers ). Also let ̂( ) =
P

∈̄ (  )̄ be a sample

average over a set of observations ̄ not included in  where ̄ is the number of observations
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in ̄ We assume that the first step estimator ̂() solves

0 = ̂( )

We suppress the dependence of  and ̂ on a bandwidth. For example for a pdf () a kernel

density estimator would correspond to (  ) = (− )−  and a locally linear regression

would be ̂1() for

(  ) = (− )

Ã
1

− 

!
[ − 1 − (− )

02]

To measure the effect of the  observation on ̂ let ̂

() be the solution to

0 = ̂( ) +  · (  )

This ̂

() is the value of the function obtained from adding the contribution  · (  ) of

the  observation. An estimator of the adjustment term can be obtained by differentiating the

average of the original moment function with respect to  at  = 0 This procedure leads to an

estimated locally robust moment function given by

(  ̂) = (  ̂) +




1

̄

X
∈̄

(  ̂

(·))

¯̄̄̄
¯̄
=0



This estimator is a generalization of the influence function estimator for kernels in Newey

(1994b).

5 Double and Partial Robustness

The zero derivative condition in equation (2.5) is an appealing robustness property in and of

itself. A zero derivative means that the expected moment functions remain closer to zero than

 as  varies away from zero. This property can be interpreted as local insensitivity of the

moments to the value of  being plugged in, with the moments remaining close to zero as 

varies away from its true value. Because it is difficult to get nonparametric functions exactly

right, especially in high dimensional settings, this property is an appealing one.

Such robustness considerations, well explained in Robins and Rotnitzky (2001), have moti-

vated the development of doubly robust (DR) moment conditions. DR moment conditions have

expectation zero if one first stage component is incorrect. DR moment conditions allow two

chances for the moment conditions to hold, an appealing robustness feature. Also, DR moment

conditions have simpler conditions for asymptotic normality than general LR moment functions
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as discussed in Section 7. Because many interesting LR moment conditions are also DR we

consider double robustness.

LR moments that are constructed by adding the adjustment term for first step estimation

provide candidates for DR moment functions. The derivative of the expected moments with

respect to each first step will be zero, a necessary condition for DR. The condition for moments

constructed in this way to be DR is the following:

Assumption 1: There are sets Γ and Λ such that for all  ∈ Γ and  ∈ Λ

[( 0 )] = −[( 0  0)] [( 0 0 )] = 0

This condition is just the definition of DR for the moment function (  ) = (  )+

(   ), pertaining to specific sets Γ and Λ

The construction of adding the adjustment term to an identifying or original moment function

leads to several novel classes of DR moment conditions. One such class has a first step that

satisfies a conditional moment restriction

[ − 0()|] = 0 (5.1)

where  is potentially endogenous and  is a vector of instrumental variables. This condition

is the nonparametric instrumental variable (NPIV) restriction as in Newey and Powell (1989,

2003) and Newey (1991). A first step conditional expectation where 0() = [|] is included
as special case with  =  Ichimura and Newey (2017) showed that the adjustment term for

this step takes the form (  ) = ()[− ()] so (  ) + ()[− ()] is a candidate

for a DR moment function. A sufficient condition for DR is:

Assumption 2: i) Equation (5.1) is satisfied; ii) Λ = {() : [()2]  ∞} and Γ =

{() : [()2]  ∞}; iii) there is () with [()
2]  ∞ such that [( 0 )] =

[(){()− 0()}] for all  ∈ Γ; iv) there is 0() such that () = [0()|]; and

v) [2 ] ∞

By the Riesz representation theorem condition iii) is necessary and sufficient for[( 0 )]

to be a mean square continuous functional of  with representer () Condition iv) is an addi-

tional condition giving continuity in the reduced form difference [()−0()|], as further
discussed in Ichimura and Newey (2017). Under this condition

[( 0 )] = [[0()|]{()− 0()}] = [0(){()− 0()}]
= −[(  0)] [( 0 )] = [(){ − 0()}] = 0

Thus Assumption 2 implies Assumption 1 so that we have
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Theorem 3: If Assumption 2 is satisfied then (  )+(){−()} is doubly robust.

There are many interesting, novel examples of DR moment conditions that are special cases

Theorem 3. The average surplus bound is an example where  =   =   is the observed

vector of prices and income, Λ = Γ is the set of all measurable functions of  with finite second

moment, and 0() = [| = ] Let 1 denote 1 and 2 the vector of other prices and

income, so that  = (1 
0
2)
0. Also let 0(1|2) denote the conditional pdf of 1 given 2 and

() = (1 ) for income . Let (  ) =
R
(1 2)(1 2)1 −  as before. Multiplying

and dividing through by 0(1|2) gives, for all   ∈ Γ and 0() = 0(1|2)−1()

[( 0 )] = [

Z
(1 2)(1 2)1]−0 = [[0()()|2]]−0 = [0(){()−0()}]

Theorem 3 then implies that the LR moment function for average surplus (  ) + ()[−
()] is DR. A corresponding DR estimator ̂ is given in equation (2.9).

The surplus bound is an example of a parameter where 0 = [( 0)] for some linear

functional ( ) of  and for 0 satisfying the conditional moment restriction of equation (5.1)

For the surplus bound ( ) =
R
(1 2)(1 2)1 If Assumption 2 is satisfied then choosing

(  ) = ( )− a DR moment condition is ( )−+()[−()] A corresponding
DR estimator is

̂ =
1



X
=1

{( ̂) + ̂()[ − ̂()]} (5.2)

where ̂() and ̂() are estimators of 0() and 0() respectively. An estimator ̂ can be

constructed by nonparametric regression when  =  or NPIV in general. A series estimator

̂() can be constructed similarly to the surplus bound example in Section 3.2. For  = 

Newey and Robins (2017) give such series estimators of ̂() and Chernozhukov, Newey, and

Robins (2018) show how to choose the approximating functions for ̂() by machine learning .

Simple and general conditions for root-n consistency and asymptotic normality of ̂ that allow

for machine learning are given in Section 7.

Novel examples of the DR estimator in equation (5.2)  =  are given by Newey and Robins

(2017) and Chernozhukov, Newey, and Robins (2018). Also Appendix B gives a generalization

to () and () that satisfy orthogonality conditions more general than conditional moment

restrictions and novel examples of those. A novel example with  6=  is a weighted average

derivative of 0() satisfying equation (5.1). Here ( ) = ̄()() for some weight

function ̄(). Let 0() be the pdf of  and () = −0()−1[̄()0()] assuming
that derivatives exist. Assume that ̄()()0() is zero on the boundary of the support of

Integration by parts then gives Assumption 2 iii). Assume also that there exists 0 ∈ Λ with

() = [0()|] Then for estimators ̂ and ̂ a DR estimator of the weighted average
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derivative is

̂ =
1



X
=1

{̄()
̂()


+ ̂()[ − ̂()]}

This is a DR version of the weighted average derivative estimator of Ai and Chen (2007). A

special case of this example is the DR moment condition for the weighted average derivative in

the exogenous case where  =  given in Firpo and Rothe (2016).

Theorem 3 includes as special cases existing DR moment functions when  = , including

the mean with randomly missing data given by Robins and Rotnitzky (1995), the class of DR

estimators in Robins et al. (2008), and the DR estimators of Firpo and Rothe (2016). We

illustrate for the mean with missing data. Let  =   = ( ) for an observed data indicator

 ∈ {0 1} and covariates  (  ) = (1 )−  and 0() = Pr( = 1| = ) Here it

is well known that

[( 0 )] = [(1 )]− 0 = [0(){()− 0()}] = −[0(){ − ()}]

Then DR of the moment function (1 )−  + ()[ − ()] of Robins and Rotnitzky (1995)

follows by Proposition 5.

Another novel class of DR moment conditions are those where the first step  is a pdf of a

function  of the data observation  By Proposition 5 of Newey (1994a), the adjustment term

for such a first step is (   ) = () − R ()() for some possible . A sufficient

condition for the DR as in Assumption 1 is:

Assumption 3:  has pdf 0() and for Γ = { : () ≥ 0, R () = 1} there is 0()
such that for all  ∈ Γ

[( 0 )] =

Z
0(){()− 0()}

Note that for (  ) = ()−R (̃)(̃)̃ it follows fromAssumption 3 that[( 0 )] =
−[(  0)] for all  ∈ Γ. Also, [( 0 )] = [()] −

R
(̃)0(̃) = 0 Then As-

sumption 1 is satisfied so we have:

Theorem 4: If Assumption 3 is satisfied then (  ) + ()− R (̃)(̃)̃ is DR.
The integrated squared density 0 =

R
0()

2 is an example for (  ) = () − 

0 = 0 and

(   ) = ()−  + ()−
Z

(̃)(̃)

This DR moment function seems to be novel. Another example is the density weighted average

derivative (DWAD) of Powell, Stock, and Stoker (1989), where (  ) = −2 ·()−.
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Let () = [|]0(). Assuming that ()() is zero on the boundary and differentiable,
integration by parts gives

[( 0 )] = −2[()]− 0 =

Z
[(̃)]{(̃)− 0(̃)}

so that Assumption 3 is satisfied with 0() = () Then by Theorem 4

̂ =
1



X
=1

{−2̂()


+
̂()


−
Z

̂(̃)


̂(̃)̃}

is a DR estimator. It was shown in NHR (1998) that the Powell, Stock, and Stoker (1989)

estimator with a twicing kernel is numerically equal to a leave one out version of this estimator

for the original (before twicing) kernel. Thus the DR result for ̂ gives an interpretation of the

twicing kernel estimator as a DR estimator.

The expectation of the DR moment functions of both Theorem 3 and 4 are affine in  and

 holding the other fixed at the truth. This property of DR moment functions is general, as

shown by the following characterization of DR moment functions:

Theorem 5: If Γ and Λ are linear then (   ) is DR if and only if

[( 0 (1− )0 +  0)]|=0 = 0 [( 0 0 (1− )0 + )]|=0 = 0

and [( 0  0)] and [( 0 0 )] are affine in  and  respectively.

The zero derivative condition of this result is a Gateaux derivative, componentwise version

of LR. Thus, we can focus a search for DR moment conditions to those that are LR. Also, a DR

moment function must have an expectation that is affine in each of  and  while the other is

held fixed at the truth. It is sufficient for this condition that ( 0  ) be affine in each of

 and  while the other is held fixed. This property can depend on how  and  are specified.

For example the missing data DR moment function (1 )−+()−1[−()] is not affine

in the propensity score () = Pr( = 1| = ) but is in () = ()−1.

In general Theorem 5 motivates the construction of DR moment functions by adding the

adjustment term to obtain a LR moment function that will then be DR if it is affine in  and 

separately. It is interesting to note that in the NPIV setting of Theorem 3 and the density setting

of Theorem 4 that the adjustment term is always affine in  and  It then follows from Theorem

5 that in those settings LR moment conditions are precisely those where [( 0 )] is affine

in  Robins and Rotnitzky (2001) gave conditions for existence of DR moment conditions in

semiparametric models. Theorem 5 is complementary to those results in giving a complete

characterization of DR moments when Γ and Λ are linear.

Assumptions 2 and 3 both specify that [( 0 )] is continuous in an integrated squared

deviation norm. These continuity conditions are linked to finiteness of the semiparametric
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variance bound for the functional [( 0 )] as discussed in Newey and McFadden (1994)

for Assumption 2 with  =  and for Assumption 3. For Assumption 2 with  6=  Severini

and Tripathi (2012) showed for (  ) = ()()−  with known () that the existence

of 0() with () = [0()|] is necessary for existence of a root-n consistent estimator

of . Thus the conditions of Assumption 2 are also linked to necessary conditions for root-n

consistent estimation when  6= 

Partial robustness refers to settings where [( 0 ̄)] = 0 for some ̄ 6= 0. The novel DR

moment conditions given here lead to novel partial robustness results as we now demonstrate

in the conditional moment restriction setting of Assumption 2. When 0() in Assumption 2 is

restricted in some way there may exist ̃ 6= 0 with [0(){ − ̃()}] = 0 Then

[( 0 ̃)] = −[0(){ − ̃()}] = 0

Consider the average derivative 0 = [0()] where (  ) = () −  for

some  Let  = ([()()
0])−1[()] be the limit of the linear IV estimator with right

hand side variables () and the same number of instruments () The following is a partial

robustness result giving conditions for the average derivative of the linear IV estimator to equal

the true average derivative:

Theorem 6: If− ln 0() = 0() for a constant vector , [()()
0] is nonsingu-

lar, and[()| = ] = Π() for a square nonsingularΠ then for  = ([()()
0])−1[()]

[{()
0}] = [0()]

This result shows that if the density score is a linear combination of the right-hand side

variables () used by linear IV, the conditional expectation of the instruments () given 

is a nonsingular linear combination of (), and () has a nonsingular second moment matrix

then the average derivative of the linear IV estimator is the true average derivative. This is

a generalization to NPIV of Stoker’s (1986) result that linear regression coefficients equal the

average derivatives when the regressors are multivariate Gaussian.

DR moment conditions can be used to identify parameters of interest. Under Assumption 1

0 may be identified from

[( 0 ̄)] = −[( 0 ̄ 0)]

for any fixed ̄1 when the solution 0 to this equation is unique.

Theorem 7: If Assumption 1 is satisfied, 0 is identified, and for some ̄1 the equation

[(  ̄1 0)] = 0 has a unique solution then 0 is identified as that solution.
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Applying this result to the NPIV setting of Assumption 2 gives an explicit formula for certain

functionals of 0() without requiring that the completeness identification condition of Newey

and Powell (1989, 2003) be satisfied, similarly to Santos (2011). Suppose that () is identified,

e.g. as for the weighted average derivative. Since both  and  are observed it follows that

a solution 0() to () = [0()|] will be identified if such a solution exists. Plugging in
̄1 = 0 in the equation [( 0 ̄1 0)] = 0 gives

Corollary 8: If () is identified and there exists 0() such that () = [0()|]

then 0 = [()0()] is identified as 0 = [0()].

Note that this result holds without the completeness condition. Identification of 0 =

[()0()] for known () with () = [0()|] follows from Severini and Tripathi

(2006). Corollary 8 extends that analysis to the case where () is only identified but not

necessarily known and links it to DR moment conditions. Santos (2011) gives a related formula

for a parameter 0 =
R
̃()0(). The formula here differs from Santos (2011) in being an

expectation rather than a Lebesgue integral. Santos (2011) constructed an estimator. That is

beyond the scope of this paper.

6 Conditional Moment Restrictions

Models of conditional moment restrictions that depend on unknown functions are important in

econometrics. In such models the nonparametric components may be determined simultaneously

with the parametric components. In this setting it is useful to work directly with the instru-

mental variables to obtain LR moment conditions rather than a first step influence adjustment.

For that reason we focus in this Section on constructing LR moments by orthogonalizing the

instrumental variables.

Our orthogonal instruments framework is based on based on conditional moment restrictions

of the form

[( 0 0)|] = 0 ( = 1  ) (6.1)

where each (  ) is a scalar residual and  are instruments that may differ across . This

model is considered by Chamberlain (1992) and Ai and Chen (2003, 2007) when  is the same

for each  and for Ai and Chen (2012) when the set of  includes −1 We allow the residual

vector (  ) to depend on the entire function  and not just its value at some function of

the observed data .

In this framework we consider LR moment functions having the form

(   ) = ()(  ) (6.2)
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where () = [1(1)  ()] is a matrix of instrumental variables with  column given by

()We will define orthogonal instruments to be those that make (   ) locally robust.

To define orthogonal instrumental variables we assume that  is allowed to vary over a linear

set Γ as  varies. For each ∆ ∈ Γ let

̄(∆) = (
[1( 0 0 + ∆)|1]


 

[( 0 0 + ∆)| ]


)0

This ̄(∆) is the Gateaux derivative with respect to  of the conditional expectation of the

residuals in the direction ∆ We characterize 0() as orthogonal if

[0()̄(∆)] = 0 for all ∆ ∈ Γ

We assume that ̄(∆) is linear in ∆ and consider the Hilbert space of vectors of random

vectors () = (1(1)  ()) with inner product h i = [()
0()]. Let Λ̄ denote

the closure of the set {̄(∆) : ∆ ∈ Γ} in that Hilbert space. Orthogonal instruments are
those where each row of 0() is orthogonal to Λ̄ They can be interpreted as instrumental

variables where the effect of estimation of  has been partialed out. When 0() is orthogonal

then (   ) = ()(  ) is LR:

Theorem 9: If each row of 0() is orthogonal to Λ̄ then the moment functions in equation

(6.2) are LR.

We also have a DR result:

Theorem 10: If each row of 0() is orthogonal to Λ̄ and (  ) is affine in  ∈ Γ then

the moment functions in equation (6.2) are DR for Λ = {() : [()0( 0 0)0( 0 0)()].

There are many ways to construct orthogonal instruments. For instance, given a × ( − 1)
matrix of instrumental variables () one could construct corresponding orthogonal ones 0()

as the matrix where each row of () is replaced by the residual from the least squares projection

of the corresponding row of () on Λ̄. For local identification of  we also require that

([(  0)]|=0) = dim() (6.3)

A model where 0 is identified from semiparametric conditional moment restrictions with

common instrumental variables is a special case where  is the same for each . In this case

there is a way of constructing orthogonal instruments that leads to an efficient estimator of 0.

Let Σ() denote some positive definite matrix with smallest eigenvalue bounded away from

zero, so that Σ()
−1 is bounded. Let h iΣ = [()

0Σ()−1()] denote an inner product

and note that Λ̄ is closed in this inner product by Σ()
−1 bounded. Let ̃Σ ( ) denote the
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residual from the least squares projection of the  row  ()
0
 of () on Λ̄ with the inner

product h iΣ  Then for all ∆ ∈ Γ

[̃Σ ( )
0Σ()

−1̄(∆)] = 0

so that for ̃Σ( ) = [̃Σ1 ( )  ̃
Σ
 ( )] the instrumental variables ̃

Σ( )Σ()
−1 are

orthogonal. Also, ̃Σ( ) can be interpreted as the solution to

min
{():()0∈Λ̄ =1}

([{()−()}Σ()−1{()−()}0])

where the minimization is in the positive semidefinite sense.

The orthogonal instruments that minimize the asymptotic variance of GMM in the class of

GMM estimators with orthogonal instruments are given by

∗0() = ̃Σ
∗
( )Σ

∗()−1 () =
[(  0)|]



¯̄̄̄0
=0

Σ∗() =  (|)  = ( 0 0)

Theorem 11: The instruments ∗() give an efficient estimator in the class of IV estima-

tors with orthogonal instruments.

The asymptotic variance of the GMM estimator with optimal orthogonal instruments is

([∗


∗0
 ])

−1 = [̃( 
∗Σ∗)Σ∗()

−1̃( 
∗Σ∗)0])−1

This matrix coincides with the semiparametric variance bound of Ai and Chen (2003). Esti-

mation of the optimal orthogonal instruments is beyond the scope of this paper. The series

estimator of Ai and Chen (2003) could be used for this.

This framework includes moment restrictions with a NPIV first step  satisfying[( 0)|] =
0 where we can specify 1(  ) = (  ) 1 = 1 2(  ) = ( ) and 2 =  It

generalizes that setup by allowing for more residuals (  ), ( ≥ 3) and all the residuals to
depend on 

7 Asymptotic Theory

In this Section we give simple and general asymptotic theory for LR estimators that incorporate

the cross-fitting of equation (2.8). Throughout we use the structure of LRmoment functions that

are the sum (   ) = (  )+(   ) of an identifying or original moment function

(  ) depending on a first step function  and an influence adjustment term (   )

that can depend on an additional first step  The asymptotic theory will apply to any moment

function that can be decomposed into a function of a single nonparametric estimator and a
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function of two nonparametric estimators. This structure and LR leads to particularly simple

and general conditions.

The conditions we give are composed of mean square consistency conditions for first steps

and one, two, or three rate conditions for quadratic remainders. We will only use one quadratic

remainder rate for DR moment conditions, involving faster than 1
√
 convergence of products

of estimation errors for ̂ and ̂ When [( 0 ) + ( 0  0)] is not affine in  we will

impose a second rate rate condition that involves faster than than −14 convergence of ̂When

[( 0 )] is also not affine in  we will impose a third rate condition that involves faster than

−14 convergence of ̂ Most adjustment terms (   ) of which we are aware, including

for first step conditional moment restrictions and densities, have [( 0 0 )] affine in 

so that faster −14 convergence of ̂ will not be required by our conditions. It will suffice for

most LR estimators of which we are aware to have faster than −14 convergence of ̂ and faster

than 1
√
 convergence of the product of estimation errors for ̂ and ̂ with only the latter

condition imposed for DR moment functions. We also impose some additional conditions for

convergence of the Jacobian of the moments and sample second moments that give asymptotic

normality and consistent asymptotic variance estimation for ̂.

An important intermediate result for asymptotic normality is

√
̂(0) =

1√


X
=1

( 0 0 0) + (1) (7.1)

where ̂() is the cross-fit, sample, LR moments of equation (2.8). This result will mean

that the presence of the first step estimators has no effect on the limiting distribution of the

moments at the true 0. To formulate conditions for this result we decompose the difference

between the left and right-hand side into several remainders. Let (  ) = ( 0  )

̄( ) = [(  )] and ̄() = [( 0 )] so that ̄( ) = ̄() + ̄( ) Then

adding and subtracting terms gives

√
[̂(0)−

X
=1

( 0 0 0)] = ̂1 + ̂2 + ̂3 + ̂4 (7.2)
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where

̂1 =
1√


X
=1

[( 0 ̂)−( 0 0)− ̄(̂)] (7.3)

+
1√


X
=1

[( ̂ 0)− ( 0 0)− ̄(̂ 0) + ( 0 ̂)− ( 0 0)− ̄(0 ̂)]

̂2 =
1√


X
=1

[( ̂ ̂)− ( ̂ 0)− ( 0 ̂) + ( 0 0)]

̂3 =
1√


X
=1

̄(̂ 0) ̂4 =
1√


X
=1

̄(0 ̂)

We specify regularity conditions sufficient for each of ̂1, ̂2, ̂3 and ̂4 to converge in

probability to zero so that equation (7.1) will hold. The remainder term ̂1 is a stochastic

equicontinuity term as in Andrews (1994). We give mean square consistency conditions for

̂1
−→ 0 in Assumption 3.

The remainder term ̂2 is a second order remainder that involves both ̂ and ̂ When the

influence adjustment is (  ) = ()[− ()] as for conditional moment restrictions, then

̂2 =
−1√


X
=1

[̂()− 0()][̂()− 0()]

̂2 will converge to zero when the product of convergence rates for ̂() and ̂() is faster than

1
√
 However, that is not the weakest possible condition. Weaker conditions for locally linear

regression first steps are given by Firpo and Rothe (2015) and for series regression first steps

by Newey and Robins (2017). These weaker conditions still require that the product of biases

of ̂() and ̂() of converge to zero faster 1
√
 but have weaker conditions for variance

terms. We allow for these weaker conditions by allowing ̂2
−→ 0 as a regularity condition.

Assumption 5 gives these conditions.

We will have ̂3 = ̂4 = 0 in the DR case of Assumption 1, where ̂1
−→ 0 and ̂2

−→ 0

will suffice for equation (7.1). In non DR cases LR leads to ̄( 0) = ̄() + ̄( 0) having

a zero functional derivative with respect to  at 0 so that ̂3
−→ 0 when ̂ converges to 0 at

a fast enough, feasible rate. For example if ̄( 0) is twice continuously Frechet differentiable

in a neighborhood of 0 for a norm k·k  with zero Frechet derivative at 0. Then¯̄̄
̂3

¯̄̄
≤ 

X
=1

√
 k̂ − 0k2 −→ 0

when k̂ − 0k = (
−14). Here ̂3

−→ 0 when each ̂ converges to 0 faster than −14.

It may be possible to weaken this condition by bias correcting (  ̂) as by the bootstrap
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in Cattaneo and Jansson (2017), the jackknife in Cattaneo Ma and Jansson (2017), and cross-

fitting in Newey and Robins (2017). Consideration of such bias corrections for (  ̂) is

beyond the scope of this paper.

In many cases ̂4 = 0 even though the moment conditions are not DR. For example that is

true when ̂ is a pdf or when 0 estimates the solution to a conditional moment restriction. In

such cases mean square consistency, ̂2
−→ 0 and faster than −14 consistency of ̂ suffices

for equation (7.1); no convergence rate for ̂ is needed. The simplification that ̂4 = 0 seems

to be the result of  being a Riesz representer for the linear functional that is the derivative of

̄() with respect to  Such a Riesz representer will enter ̄( 0) linearly, leading to ̂4 = 0

When ̂4 6= 0 then ̂
−→ 0 will follow from twice Frechet differentiability of ̄( 0) in  and

faster than −14 convergence of ̂

All of the conditions can be easily checked for a wide variety of machine learning and conven-

tional nonparametric estimators. There are well known conditions for mean square consistency

for many conventional and machine learning methods. Rates for products of estimation errors

are also know for many first step estimators as are conditions for −14 consistency. Thus,

the simple conditions we give here are general enough to apply to a wide variety of first step

estimators.

The first formal assumption of this Section is sufficient for ̂1
−→ 0

Assumption 4: For each  = 1  , i) Either ( 0 ) does not depend on  orR {( 0 ̂)−( 0 0)}20() −→ 0 ii)
R {( ̂ 0)− ( 0 0)}20() −→ 0 andR {( 0 ̂)− ( 0 0)}20() −→ 0;

The cross-fitting used in the construction of ̂(0) is what makes the mean-square consistency

conditions of Assumption 4 sufficient for ̂1
−→ 0. The next condition is sufficient for ̂2

−→ 0

Assumption 5: For each  = 1  , either i)

√


Z
max

|( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)|0() −→ 0

or ii) ̂2
−→ 0

As previously discussed, this condition allows for just ̂2
−→ 0 in order to allow the condi-

tions of Firpo and Rothe (2015) and Newey and Robins (2017). The first result of this Section

shows that Assumptions 4 and 5 are sufficient for equation (7.1) when the moment functions

are DR.

Lemma 12: If Assumption 1 is satisfied, with probability approaching one ̂ ∈ Γ, ̂ ∈ Λ

and Assumptions 4 and 5 are satisfied then equation (7.1) is satisfied.
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An important class of DR estimators are those from equation (5.2). The following result

gives conditions for asymptotic linearity of these estimators:

Theorem 13: If a) Assumptions 2 and 4 i) are satisfied with ̂ ∈ Γ and ̂ ∈ Λ with

probability approaching one; b) 0() and [{ − 0()}2|] are bounded; c) for each  =

1  ,
R
[̂()− 0()]

20()
−→ 0

R
[̂()− 0()]

20()
−→ 0, and either

√


½Z
[̂()− 0()]

20()

¾12½Z
[̂()− 0()]

20()

¾12
−→ 0

or
1√


X
∈
{̂()− 0()}{̂()− 0()} −→ 0;

then
√
(̂ − 0) =

1√


X
=1

[( 0)− 0 + 0(){ − 0()}] + (1)

The conditions of this result are simple, general, and allow for machine learning first steps.

Conditions i) and ii) just require mean square consistency of the first step estimators ̂ and ̂

The only convergence rate condition is iii), that requires a product of estimation errors for the

two first steps go to zero faster than 1
√
. This condition allows a trade-off in convergence

rates between the two first steps, and can be satisfied even when one of the two rates is not very

fast. This trade-off can be important when 0() is not continuous in one of the components

of , as in the surplus bound example. Discontinuity in  can limit that rate at which 0()

can be estimated. This result extends the results of Chernozhukov et al. (2018) and Farrell

(2015) for DR estimators of treatment effects to the whole novel class of DR estimators from

equation (5.2) with machine learning first steps. In interesting related work, Athey et al. (2016)

show root-n consistent estimation of an average treatment effect is possible under very weak

conditions on the propensity score - allowing for the possibility that the propensity score may

not be consistently estimated - under strong sparsity of the regression function such. Thus, for

machine learning the conditions here and in Athey et al. (2016) are complementary and one may

prefer either depending on whether or not the regression function can be estimated extremely

well based on a sparse method. The results here apply to many more DR moment conditions.

DR moment conditions have the special feature that ̂3 and ̂4 in Proposition 4 are equal

to zero. For estimators that are not DR we impose that ̂3 and ̂4 converge to zero.

Assumption 6: For each  = 1  , i)
√
̄(̂ 0)

−→ 0 and ii)
√
̄(0 ̂)

−→ 0

Assumption 6 requires that ̂ converge to 0 fast enough but places no restrictions on the

convergence rate of ̂ when ̄(0 ̂) = 0
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Lemma 14: If Assumptions 4-6 are satisfied then equation (7.1) is satisfied.

Assumptions 4-6 are based on the decomposition of LR moment functions into an identi-

fying part and influence function. These conditions are different than other previous work in

semiparametric estimation, as in Andrews (1994), Newey (1994), Newey and McFadden (1994),

Chen, Linton, and van Keilegom (2003), Ichimura and Lee (2010), Escanciano et al. (2016), and

Chernozhukov et al. (2018), that are not based on this decomposition. The conditions extend

Chernozhukov et. al. (2018) to many more DR estimators and to estimators that are nonlinear

in ̂ but only require a convergence rate for ̂ and not for ̂.

Another component of an asymptotic normality result is convergence of the Jacobian term

̂() to  = [(  0 0)|=0 ] We impose the following condition for this
purpose.

Assumption 7:  exists and there is a neighborhood N of 0 and k·k such that i) for each
 k̂ − 0k −→ 0

°°°̂ − 0

°°° −→ 0; ii) for all k − 0k and k− 0k small enough (   )
is differentiable in  on N with probability approaching 1 iii) there is  0  0 and () with

[()] ∞ such that for  ∈  and k − 0k small enough°°°°(   )
− ( 0  )



°°°° ≤ () k − 0k
0
;

iii) For each  = 1    and ,
R ¯̄̄

( 0 ̂ ̂) − ( 0 0 0)

¯̄̄
0()

−→
0

The following intermediate result gives Jacobian convergence.

Lemma 15: If Assumption 7 is satisfied then for any ̄
−→ 0 ̂() is differentiable at ̄

with probability approaching one and ̂(̄)
−→

With these results in place in place the asymptotic normality of semiparametric GMM follows

in a standard way.

Theorem 16: If Assumptions 4-7 are satisfied, ̂
−→ 0 ̂

−→ ,  0 is nonsingu-

lar, and [k( 0 0 0)k2] ∞ then for Ω = [( 0 0 0)( 0 0 0)
0]

√
(̂ − 0)

−→ (0  )  = ( 0)−1 0Ω( 0)−1

It is also useful to have a consistent estimator of the asymptotic variance of ̂. As usual such

an estimator can be constructed as

̂ = (̂ 0̂̂)−1̂ 0̂ Ω̂̂̂(̂ 0̂̂)−1

̂ =
̂(̂)


 Ω̂ =

1



X
=1

X
∈I

( ̂ ̂ ̂)( ̂ ̂ ̂)
0
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Note that this variance estimator ignores the estimation of  and  which works here because

the moment conditions are LR. The following result gives conditions for consistency of ̂ 

Theorem 17: If Assumptions 4 and 7 are satisfied with [()
2] ∞  0 is nonsin-

gular, and Z °°°( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)
°°°2 0() −→ 0

then Ω̂
−→ Ω and ̂

−→ 

In this Section we have used cross-fitting and a decomposition of moment conditions into

identifying and influence adjustment components to formulate simple and general conditions for

asymptotic normality of LR GMM estimators. For reducing higher order bias and variance it

may be desirable to let the number of groups grow with the sample size. That case is beyond

the scope of this paper.

8 Appendix A: Proofs of Theorems

Proof of Theorem 1: By ii) and iii),

0 = (1− )

Z
( )0() + 

Z
(  )()

Dividing by  and solving gives

1



Z
(  )0() = −

Z
( )() +

Z
( )0()

Taking limits as  −→ 0,   0 and using i) gives





Z
(  )0() = −

Z
( 0)() + 0 = −( )




Proof of Theorem 2: We begin by deriving 1 the adjustment term for the first step CCP

estimation. We use the definitions given in the body of the paper. We also let

̃(̃) =  (̃)̃ 1 = Pr(1 = 1) 10() = [1|+1 = ]

0() = [()̃(̃)


(̃)
|+1 = ] ( = 2  )
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Consider a parametric submodel as described in Section 4 and let 1( ) denote the conditional

expectation of  given  under the parametric submodel. Note that for ̃ = ̃()

[()̃(̃)
[(1(+1 ))|  = 1]


]

=



[()(̃)



(̃)
(1(+1 ))]

=



[[()(̃)



(̃)
|+1](1(+1 ))]

=



[0(+1)(1(+1 ))] =




[0()(1( ))]

= [0()
(10())



0
1( )


] = [0()

(10())



0
{ − 10()}()]

where the last (sixth) equality follows as in Proposition 4 of Newey (1994a), and the fourth

equality follows by equality of the marginal distributions of  and +1. Similarly, for 1 =

Pr(1 = 1) and 10() = [1|+1 = ] we have

[(1(+1 ))|1 = 1]


=
[−11 1(1(+1 ))]


=

[−11 10(+1)(1(+1 ))]



=
[−11 10()(1( ))]



= [−11 10()
(10())



0
{ − 10()}()]

Then combining terms gives

[( 0 1() −10)]


= −
X
=2

{[()(̃)
[(1(+1 ))|  = 1]


]

−[()(̃)]
[(1(+1 ))|1 = 1]


}

= −
X
=2

[{0()−[()̃(̃)]
−1
1 10()}(10())



0
{ − 10()}()]

= [1( 0 0 0)()]

Next, we show the result for (   ) for 2 ≤  ≤  As in the proof of Proposition 4 of

Newey (1994a), for any  we have




[|  = 1  ] = [



(̃)
{ −[|  = 1]}()|]
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It follows that

[( 0 () −0)]


= −[()(̃)
[1+1 ++1|  = 1  ]


]

= − 


[[()(̃){1+1 ++1}|  = 1  ]]

= −[()(̃)


(̃)
{1+1 ++1 − 0( 0 1)}()]

= [( 0 0 0)()]

showing that the formula for  is correct. The proof for +1 follows similarly. Q.E.D.

Proof of Theorem 3: Given in text.

Proof of Theorem 4: Given in text.

Proof of Theorem 5: Let ̄( ) = [( 0  )]. Suppose that (   ) is DR.

Then for any  6= 0  ∈ Γ we have

0 = ̄( 0) = ̄(0 0) = ̄((1− )0 +  0)

for any  Therefore for any  ,

̄((1− )0 +  0) = 0 = (1− )̄(0 0) + ̄( 0)

so that ̄( 0) is affine in  Also by the previous equation ̄((1−)0+ 0) = 0 identically

in  so that



̄((1− )0 +  0) = 0

where the derivative with respect to  is evaluated at  = 0 Applying the same argument

switching of  and  we find that ̄(0 ) is affine in  and ̄(0 (1− )0 + ) = 0

Next suppose that ̄( 0) is affine  and ̄((1−)0+ 0) = 0 Then by ̄(0 0) =
0, for any  ∈ Γ

̄( 0) = [̄( 0)] = [(1− )̄(0 0) + ̄( 0)]

= ̄((1− )0 +  0) = 0

Switching the roles of  and  it follows analogously that ̄(0 ) = 0 for all  ∈ Λ so ̄( )

is doubly robust. Q.E.D.

Proof of Theorem 6: Let 0() = −0Π−1() so that [0()|] = −0Π−1Π() =

−0()Then integration by parts gives

[( 0 ̃)] = [0(){̃()− 0()}] = −[0(){̃()− 0()}]
= [0(){ − ̃()}] = −0Π−1[(){ − ̃()}] = 0
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Proof of Theorem 7: If 20 is identified then (  ̄1 20) is identified for every . By

DR

[(  ̄1 20)] = 0

at  = 0 and by assumption this is the only  where this equation equation is satisfied. Q.E.D.

Proof of Corollary 8: Given in text.

Proof of Theorem 9: Note that for  = ( 0 0)

̄(0 (1− )0 + )] = (1− )[0()] + [()] = 0 (8.1)

Differentiating gives the second equality in eq. (2.7). Also, for ∆ =  − 0

̄((1− )0 +  0)


= [0()̄(∆)] = 0

giving the first equality in eq. (2.7). Q.E.D.

Proof of Theorem 10: The first equality in eq. (8.1) of the proof of Theorem 9 shows that

̄(0 ) is affine in . Also,

̄((1−)0+ 0) = [0(){(1−)( 0 0)+( 0 )}] = (1−)̄(0 0)+̄( 0)

so that ̄( 0) is affine in  The conclusion then follows by Theorem 5. Q.E.D.

Proof of Theorem 11: To see that ̃Σ
∗
( 

∗)Σ∗()−1 minimizes the asymptotic vari-

ance note that for any orthogonal instrumental variable matrix 0() by the rows of ()−
̃Σ

∗
( ) being in Λ̄

 = [0()()
0] = [0()̃

Σ∗( )
0] = [0()

0
Σ
∗()

−1̃Σ
∗
( )

0]

Since the instruments are orthogonal the asymptotic variance matrix of GMM estimator with

̂
−→  is the same as if ̂ = 0 Define  = 00() and ∗

 = ̃Σ
∗
( )Σ

∗()−1

The asymptotic variance of the GMM estimator for orthogonal instruments 0() is

( 0)−1 0[0()
0
0()

0]( 0)−1 = ([
∗0
 ])

−1[
0
]([

∗
 ])
−10

The fact that this matrix is minimized in the positive semidefinite sense for  = ∗
 is well

known, e.g. see Newey and McFadden (1994). Q.E.D.

The following result is useful for the results of Section 7:

Lemma A1: If Assumption 4 is satisfied then ̂1
−→ 0 If Assumption 5 is satisfied then

̂2
−→ 0
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Proof: Define ∆̂ = ( ̂)−( 0)−̄(̂) for  ∈  and let 

 denote the observations

 for  ∈ . Note that ̂ depends only on 
 . By construction and independence of 


 and

  ∈  we have [∆̂|
 ] = 0 Also by independence of the observations, [∆̂∆̂|

 ] = 0

for   ∈  Furthermore, for  ∈  [∆̂
2
|

 ] ≤
R
[( ̂)−( 0)]

20(). Then we have

[

Ã
1√


X
∈

∆̂

!2
|

 ] =
1


[

ÃX
∈

∆̂

!2
|

 ] =
1



X
∈

[∆̂2
|

 ]

≤
Z
[( ̂)−( 0)]

20()
−→ 0

The conditional Markov inequality then implies that
P

∈ ∆̂
√


−→ 0 The analogous results

also holds for ∆̂ = ( ̂ 0)−( 0 0)− ̄(̂ 0) and ∆̂ = ( 0 ̂)−( 0 0)−
̄(0 ̂). Summing across these three terms and across  = 1   gives the first conclusion.

For the second conclusion, note that under the first hypothesis of Assumption 5,

[

¯̄̄̄
¯ 1√X

∈
[( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)]

¯̄̄̄
¯ |

 ]

≤ 1√


X
∈

[
¯̄̄
( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)

¯̄̄
|

 ]

≤ √
Z ¯̄̄

( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)
¯̄̄
0()

−→ 0

so ̂2
−→ 0 follows by the conditional Markov and triangle inequalities. The second hypothesis

of Assumption 5 is just ̂2
−→ 0 

Proof of Lemma 12: By Assumption 1 and the hypotheses that ̂ ∈ Γ and ̂ ∈ Λ we

have ̂3 = ̂4 = 0 By Lemma A1 we have ̂1
−→ 0 and ̂2

−→ 0 The conclusion then follows

by the triangle inequality. 

Proof of Theorem 13: Note that for  =  − 0()

( ̂ 0)− ( 0 0) = 0()[̂()− 0()]

( 0 ̂)− ( 0 0) = [̂()− 0()]

( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0) = −[̂()− 0()][̂()− 0()]

The first part of Assumption 4 ii) then follows byZ
[( ̂ 0)− ( 0 0)]

20() =

Z
0()

2[̂()− 0()]
20()

≤ 

Z
[̂()− 0()]

20()
−→ 0
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The second part of Assumption 4 ii) follows byZ
[( 0 ̂)− ( 0 0)]

20() =

Z
[̂()− 0()]

220()

=

Z h
̂()− 0()

i2
[2|]0()

≤ 

Z h
̂()− 0()

i2
0()

−→ 0

Next, note that by the Cauchy-Schwartz inequality,

√


Z
|( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)|0()

=
√


Z ¯̄̄
[̂()− 0()][̂()− 0()]

¯̄̄
0()

≤ √{
Z
[̂()− 0()]

20()}12{
Z
[̂()− 0()]

20()}12

Then the first rate condition of Assumption 5 holds under the first rate condition of Theorem

13 while the second condition of Assumption 5 holds under the last hypothesis of Theorem 13.

Then eq. (7.1) holds by Lemma 12, and the conclusion by rearranging the terms in eq. (7.1).

Q.E.D.

Proof of Lemma 14: Follows by Lemma A1 and the triangle inequality. Q.E.D.

Proof of Lemma 15: Let ̂() = ̂() when the derivative exists, ̃ = −1
P

∈ ( 0 ̂ ̂

and ̄ = −1
P

∈ ( 0 0 0) By the law of large numbers, and Assumption 5 iii),P

=1 ̄
−→ Also, by condition iii) for each  and 

[|̃ − ̄||] ≤
Z ¯̄̄

( 0 ̂ ̂) − ( 0 0 0)

¯̄̄
0()

−→ 0

Then by the conditional Markov inequality, for each 

̃ − ̄
−→ 0

It follows by the triangle inequality that
P

=1 ̃
−→  Also, with probability approaching

one we have for any ̄
−→ 0°°°°°̂(̄)−
X
=1

̃

°°°°° ≤
Ã
1



X
=1

()

!°°̄ − 0
°°0 = (1)(1)

−→ 0

The conclusion then follows by the triangle inequality. Q.E.D.

Proof of Theorem 16: The conclusion follows in a standard manner from the conclusions

of Lemmas 14 and 15. Q.E.D.
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Proof of Theorem 17: Let ̂ = ( ̂ ̂ ̂) and  = ( 0 0 0) By standard

arguments (e.g. Newey, 1994), it suffices to show that
P

=1

°°°̂ − 

°°°2  −→ 0 Note that

̂ −  =

5X
=1

∆̂ ∆̂1 = ( ̂ ̂ ̂)− ( 0 ̂ ̂) ∆̂2 = ( 0 ̂)−( 0 0)

∆̂3 = ( ̂ 0)− ( 0 0) ∆̂4 = ( 0 ̂)− ( 0 0)

∆̂5 = ( ̂ ̂)− ( ̂ 0)− ( 0 ̂) + ( 0 0)

By standard arguments it suffices to show that for each  and 

1



X
∈

°°°∆̂

°°°2 −→ 0 (8.2)

For  = 1 it follows by a mean value expansion and Assumption 7 with [()
2] ∞ that

1



X
∈

°°°∆̂1

°°°2 = 1



X
∈

°°°° 


( ̄ ̂ ̂)(̂ − )

°°°°2 ≤ 1



ÃX
∈

()
2

!°°°̂ − 
°°°2 −→ 0

where ̄ is a mean value that actually differs from row to row of ( ̄ ̂ ̂). For  = 2

note that by Assumption 4,

[
1



X
∈

°°°∆̂2

°°°2 |] ≤
Z
k( 0 ̂)−( 0 0)k2 0() −→ 0

so eq. (8.2) holds by the conditional Markov inequality. For  = 3 and  = 4 eq. (8.2) follows

similarly. For  = 5, it follows by the hypotheses of Theorem 17 that

[
1



X
∈

°°°∆̂5

°°°2 |] ≤
Z °°°( ̂ ̂)− ( 0 ̂)− ( ̂ 0) + ( 0 0)

°°°2 0() −→ 0

Then eq. (8.2) holds for  = 5 by the conditional Markov inequality. Q.E.D.

9 Appendix B: Doubly Robust Moment Functions for

Orthogonality Conditions

It is interesting that the general condition [(){−0()}] = 0 for all  ∈ Γ2 of Assumption

2 is like an identification condition for 0. For example, if Γ2 is all functions of  with finite

mean square then that condition is [−0()|] = 0 the nonparametric conditional moment
restriction of Newey and Powell (2003) and Newey (1991). The first condition of Assumption 2

38



also has an interesting interpretation. Suppose that Γ2 is a linear mean-square closed set and

let Π(·|Γ2)() denote the orthogonal projection on Γ2 Then the condition is

[( 0 )] = −[0(){ − ()}] = [0(){Π(()|Γ2)()−Π(0()|Γ2)()}]
= [0(){Π(()− 0()|Γ2)()}]

Here we see that [( 0 )] is a linear, mean-square continuous function of Π(() −
0()|Γ2)() The Riesz representation theorem will also imply that if [( 0 )] is a

linear, mean-square continuous function of Π(()− 0()|Γ2)() then 0() exists satisfying
the first part of Assumption 2. For the case where  =  this mean-square continuity condition

is necessary for existence of a root-n consistent estimator, as in Newey (1994) and Newey and

McFadden (1994) We conjecture that when  need not equal  this condition generalizes

Severini and Tripathi’s (??) necessary condition for existence of a root-n consistent estimator

of 0.

From Proposition 5 it follows that the LR moment function of equation (??) will be DR

when ( 0 1) and ( 1) are affine in 1. We can characterize DR moment conditions

directly in a straightforward way. Suppose that [( 0 1)] is a mean-square continuous

linear functional of [( 1)|] for 1 in a linear set Γ Then by the Riesz representation
theorem there is ∗() in the mean square closure Π of the image of [( 1)|] such that

[( 0 1)] = −[∗()[( 1)|]] = −[∗()( 1)] 1 ∈ Γ (9.1)

Let 0() be any function such that 0() − ∗() is orthogonal to Π and (  ) =

(  1)+2()( 1) Then [( 0 1 0)] = 0 by the previous equation. It also follows

that [( 0 0 )] = 0 by [( 0)|] = 0 Therefore (  1 ) is DR, showing the

following result:

Proposition 9: If [( 0 1)] and [( 1)|] are affine in 1 ∈ Γ with Γ linear

and [( 0 1)] is a mean square continuous functional of [( 1)|] then there is 0()
such that (  1 ) = (  1) + ()( 1) is DR.

It is interesting to note that 0 such that [( 0 1 0)] = 0 for all 1 ∈ Γ is not

unique when Π does not include all functions of , which is the overidentified case of Chen

and Santos (2015). This nonuniqueness can occur when there are multiple ways to estimate

the first step 0 using the conditional moment restrictions [( 0)|] = 0. As discussed in
Ichimura and Newey (2017), the different 0() correspond to different first step estimators,

with 0() = ∗() corresponding to the NP2SLS estimator.

An important class of DR moment conditions are those from the linear nonparametric IV

setting in Newey and Powell (1989, 2003) and Newey (1991) where

( 1) =  − 1() [ − 0()|] = [( 0)|] = 0 (9.2)
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Consider a moment function(  1) such that [( 0 1)] is affine in 1 and mean square

continuous as a function of 1(). Then there exists () such that

[( 0 1)] = [(){1()− 0()]

Suppose also that there is ̄() such that () = [̄()|] Then we have

[( 0 1)] = [(){1()− 0()}] = [[̄()|]{1()− 0()}]
= [̄(){1()− 0()}] = −[̄()[( 1)|]]
= −[̄()( 1)]

It then follows by Proposition 9 or by inspection that (  ) = (  1)+2(){−1()}
is DR for 0() = ̄(). Interestingly, when (  1) = ()1() − , the existence of ̄

with () = [̄()|] is a necessary condition for root-n consistent estimability of 0 as in

Severini and Tripathi’s (2012, Lemma 4.1). We see here that a DR moment condition can always

be constructed when this necessary condition is satisfied. Also, similarly to the above, the 0()

may not be unique.

Proposition 10: If [( 0 1)] is affine and mean square continuous in 1 with Riesz

representer () equation ( 92) is satisfied for ( 1) =  − 1(), and there is ̄() such

that () = [̄()|] then (  1 2) = (  1) + 2()[ − 1()] is DR for any 0

with 0()− ̄() orthogonal to Π.

The partial robustness results of the last Section can be extended to conditional moment

restrictions. Note that by the conditional mean zero restriction in equation (??), 0() has

the property that [{ − 0()}()] = 0 for all () with [()
2]  ∞, that is  −

0() is orthogonal to the set A of functions of  with finite mean square. Let A∗ be a
closed linear subset of A, such as a finite dimensional subset, and let 0 be such that [{ −
0()}∗()] = 0 for all ∗ ∈ A∗. For example, if A∗ is finite dimensional with basis ()
then one could construct 0() = ()0∗ for the population instrument variable coefficients

∗ = ([()()
0])−1[()] when [()()

0] is nonsingular. Then if there is ()

with [( 0 1)] = [(){1() − 0()}] and ∗() ∈ A∗ with () = [∗()|]

we have

[( 0 
∗
1)] = [(){∗1()− 0()}] = [[∗()|]{∗1()− 0()}]
= [∗(){∗1()− 0()}] = −[∗(){ − ∗1()}] +[∗(){ − 0()}] = 0

Thus we have the following result:

Proposition 10a: If [( 0 1)] is affine and mean square continuous in 1 with Riesz

representer () equation ( 92) is satisfied for ( 1) = − 1(), 
∗
1 satisfies [

∗(){−
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∗1()}] = 0 for all ∗ ∈ A∗, and there exists ∗ ∈ A∗ with () = [∗()|] then

[( 0 
∗
1)] = 0

As an example we can show that when  and  have the same dimension,  is Gaussian

and [|] is linear in  linear instrumental variables (IV) estimates the average derivative

of the structural function 0() This result extends Stoker (1986) to instrumental variables.

Assuming  and  include a constant as their last element and [
0
] is nonsingular let

∗ = ([0])
−1[] denote the limit of the linear IV estimator with right-hand side variables

 and instruments 

i

Proposition 10b: If the 0() satisfies [{−0()}|] = 0, the nonconstant elements
of  are multivariate Gaussian with nonsingular variance matrix, [|] = Π and Π is

nonsingular, then [
0
] is nonsingular and for any nonconstant element  of 

∗ = [0()]

Proof of Proposition 10b: Then by iterated expectations [
0
] = [[|]

0
] =

Π[
0
] is nonsingluar. Let (  ) = ()− for any nonconstant element  of 

Then by integration by parts and  being Gaussian there is a constant vector  such that

[( 0 1)] = [(){1()− 0()}] () = −0() = 0

Let A∗ denote the set of linear combinations of  and ∗1() = ∗0 The normal equations

for linear IV imply [∗(){ − ∗1()}] = 0 for all ∗ ∈ A∗. Also, by [|] = Π and Π

nonsingular it follows that for ∗() = 0Π−1 ∈ A∗

[∗()|] = 0Π−1[|] = 0Π−1Π = 0 = ()

Then by Proposition 11 we have [( 0 
∗
1)] = 0, i.e.

[0()] = 0 = [∗1()] = ∗ 

DRmoment conditions can be used to identify parameters of interest. In general, if (  1 2)

is DR and 0 is identified then 0 may be identified from

[( 0 ̄1 0)] = 0

for any fixed ̄1 when the solution 0 to this equation is unique.
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