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Abstract

Markov regime switching models have been widely used in numerous empirical applications
in economics and finance. However, the asymptotic distribution of the maximum likelihood
estimator (MLE) has not been proven for some empirically popular Markov regime switching
models. In particular, the asymptotic distribution of the MLE has been unknown for models in
which the regime-specific density depends on both the current and the lagged regimes, which
include the seminal model of Hamilton| (1989) and the switching ARCH model of [Hamilton and
Susmel| (1994). This paper shows the asymptotic normality of the MLE and the consistency of

the asymptotic covariance matrix estimate of these models.
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likelihood estimator; Markov regime switching
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1 Introduction

Since the seminal contribution of Hamilton! (1989)), Markov regime switching models have become
a popular framework for applied empirical work because they can capture the important features of
time series, such as structural changes, nonlinearity, high persistence, fat tails, leptokurtosis, and
asymmetric dependence (see, e.g., Evans and Wachtel, [1993; Hamilton and Susmel, 1994} Gray,
1996; |Sims and Zhal, [2006; [noue and Okimoto|, [2008; |Ang and Bekaert) |2002; |Okimoto, 2008}, [Dai
et al., [2007).
Consider the Markov regime switching model defined by a discrete-time stochastic process
{Yi, Xi} written as
Yi = fo(Ye1,-- -, Yios, Xpi€r), (1)
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where {e;} is an independent and identically distributed sequence of random variables, {Y;} is an
inhomogeneous s-order Markov chain on a state space ) conditional on X}, such that the conditional
distribution of Y3 only depends on X} and the lagged Y’s, X} is a first-order Markov process in a
state space X', and fy is a family of functions indexed by a finite-dimensional parameter § € ©. In
(1), the Markov chain {X}} is not observable.

Surprisingly, the asymptotic distribution of the maximum likelihood estimator (MLE) of the
Markov regime switching model has not been fully established in the existing literature. [Bickel
et al.| (1998) and Jensen and Petersen|(1999) derive the asymptotic normality of the MLE of hidden
Markov models, in which the conditional distribution of Y, depends on Xj but not on the lagged
Y’s. For hidden Markov models and Markov regime switching models with a finite state space,
the consistency of the MLE has been proven by Leroux ((1992), Francq and Roussignol (1998]), and
Krishnamurthy and Rydén| (1998).

In an influential paper, Douc et al.| (2004) [DMR, hereafter| establish the consistency and
asymptotic normality of the MLE in autoregressive Markov regime switching models with a
nonfinite hidden state space X under two assumptions. First, DMR assume that the conditional
distribution of Y3 does not depend on the lagged Xj’s. Specifically, on page 2259, DMR assume
that

n—1
k=n—s

for each n > 1 and given {Yj}

{(Vie}p=oohy and { X3 }020.

and X,, Y, is conditionally independent of

Second, DMR assume in their Assumption Al(a) that the transition density of X} is bounded away
from 0.
These two assumptions together rule out models in which the conditional density Y; depends

on both the current and the lagged regimes. Suppose that we specify X} in as
Xp, = (Xp, Xp1,- - ,)ka—p+1), (2)

where p > 2, and )~(k follows a first-order Markov process and is called the regime. Then, the
transition density of X} inevitably has zeros. For example, when p = 2 and X = (X’ s X k—1), We
have Pr (X411 = (7/,7)| Xk = (4,5)) = 0 when j’ # i. Consequently, the asymptotic distribution
of the MLE has not been proven for some popular Markov regime switching models including the
seminal model of Hamilton (1989) and the switching ARCH (SWARCH) model of Hamilton and
Susmel (1994).

Example 1 (Hamilton (1989)). Consider the following model:
p—1

Vi =pg, tup with = Z’Yﬂ“k—é +oe,  forp> 2, (3)
/=1

where e ~ i.i.d. N(0,1) and X}, follows a Markov chain on X = {1,2,..., M} with Pr(X} =

j|Xk_1 =) = p;j, where M represents the number of regimes. Let



0= (..., 1Y Apih<ismi<j<m—1) withy = (y1,...,vp—1,0)". Then, the conditional density
Of Yk given (Yk—la . ,Yk_p), and Xk = (Xk, .. 7Xk—p+1)/ 18

1 ((Yk —pg,) = 0 e (Veer — M)zk_[)>

9o(YeYi—1,. ., Yipt1, Xi) = —¢

o o
where ¢(2) = (1/V21) exp(—22/2). |Hamilton (1989) estimates model (@ with M =2 and p =5
using data on U.S. real GNP growth.

Example 2 (SWARCH model of Hamilton and Susmel (1994))). Consider the following model:

p—1
Vi =+ Y +og heex with b =0+ e (heer—0)?  forp>2,
=1

where e, ~ i.i.d. N(0,1) or Student t with v degrees of freedom, and X}, follows a Markov chain
on X = {1,2,...,M} with Pr(Xy = j|Xp_1 = i) = pij. For a Gaussian SWARCH model, let
0 =(01,....0,7 {pij h<icmi<j<m—1) with 0; = 0]2- and v = (1, Yy Y0, V15 - - -, Yp—1)"- Then, the
conditional density of Yy, giwen (Yi_1,...,Yi—p) and Xy = (Xp, ..., Xp_pt1) is

1 Y. —u—~,Yr_
90 (Yl Vi1, -, Yoy, Xp) = ) (UL
anhk O’thk

2
where h% = + 212;11 e (Yk_é_,u_'Yka—E—1> )

7%,

In the models of Hamilton/ (1989) and Hamilton and Susmel (1994), the transition probability of
X, = (Xk, ... ,Xk_p+1)' has zeros when p > 2. Therefore, Assumption Al(a) of DMR is violated.
As discussed on pages 2257-2258 of DMR, Assumption Al(a) is a crucial assumption for their
Corollary 1 (page 2262) that establishes the deterministic geometrically decaying bound on the
mixing rate of the conditional chain, X|Y. As DMR recognize on page 2258, this deterministic
nature of the bound is vital to their proof of the asymptotic normality of the MLE.

This paper shows the consistency and asymptotic normality of the MLE of the Markov regime
switching model f with p > 2, including the models of [Hamilton| (1989) and |[Hamilton and
Susmel (1994). To the best of our knowledge, there exists no rigorous proof in the literature of
the asymptotic normality of the MLE of these models, even though these models are popular in
applied work and empirical researchers regularly make inferences based on the presumed asymptotic
normality (see, e.g., Goodwinl [1993; Garcia and Perron 1996} [Hamilton and Lin, [1996; Fong, [1997;
Ramchand and Susmel, [1998; Maheu and McCurdy, [2000; [Edwards and Susmel, 2001). This paper
therefore provides the theoretical basis for statistical inferences associated with these models.

To derive the asymptotic normality of the MLE, we first establish a bound on the mixing rate of
the conditional chain, X|Y, in Corollary (1l Our bound is written as a product of random variables,

where all but finitely many of them are strictly less than 1. Consequently, the mixing rate of the



conditional chain is geometrically decaying almost surely. We then use this mixing rate to show that
the sequence of the conditional scores and conditional Hessians given the m past periods converge
to the conditional score and conditional Hessian given the “infinite past” as m — oo. Given these
results, we show the asymptotic normality of the MLE under standard regularity assumptions by
applying a martingale central limit theorem to the score function (Proposition as well as by
proving a uniform law of large numbers for the observed Fisher information (Proposition . These
results extend those in DMR to an empirically important class of models where the density depends
on lagged regimes. Another feature of the present study is that we introduce an additional weakly
exogenous regressor, Wy.

The remainder of this paper is organized as follows. Section 2 introduces the notation, model,
and assumptions. Section 3 derives the bound on the mixing rate of the conditional chain, X|Y.
Section 4 derives the consistency of the MLE, and the asymptotic normality of the MLE is shown
in Section 5. Section 6 reports the simulation results. Section 7 collects the proofs and Section 8

collects the auxiliary results.

2 Model and assumptions

Our notation largely follows the notation in DMR. Let := denote “equals by definition.” For a

k x 1 vector x = (x1,...,2;)" and a matrix B, define |z| := Va’x and |B| := \/Amax(B’'B), where
Amax(B’'B) denotes the largest eigenvalue of B'B. For a k x 1 vector a = (ay,...,a;) and a

function f(a), let V2f(a) := Vau f(a). For two probability measures u; and pso, the total vari-
ation distance between p1 and po is defined as ||p1 — pa||7y := supy |p1(A) — p2(A)|. ||- ||y satisfies
Sllpf(;c) o<f(@)<1 | [ f@)pi(de)— [ f(z)pz(dz)| = ||p1—pellrv and supsymax, |f@)<1 | [ f(@)p(dz)—
[ f(z)p2(dx)| = 2|1 — pel|rv for any two probability measures p; and po (see, e.g., [Levin et al.
(2009} Proposition 4.5)). Let I{A} denote an indicator function that takes the value of 1 when A
is true and 0 otherwise. C denotes a generic finite positive constant whose value may change from
one expression to another. Let a Vb := max{a, b} and aAb := min{a,b}. Let |z] denote the largest
integer less than or equal to z, and define (z)4 := max{z,0}. For any {xz;}, we define Z x; =0
and H?:a x; '= 1 when b < a. “i.0.” stands for “infinitely often.” All limits below are taken as
n — oo unless stated otherwise.

We consider the Markov regime switching process defined by a discrete-time stochastic process
{( Xk, Yi, Wi)}, where (X, Yy, W) takes the values in a set X x Y x W with the associated Borel
o-field B(X x Y x W). We use pg(-) to denote densities with respect to the probability measure
on B(X x Y x W)®Z. For a stochastic process {Uz} and a < b, define U := (U,,Uss1,...,Up).
Denote Yj_1 := (Ys_1,...,Ys_s) for a fixed integer s and ?Z = (Y4, Yai1,...,Yy). Define
Zy = (X, Yi). Let Qo(z, A) :=Py(Xy, € A|X}_1 = x) denote the transition kernel of {X}}72,.

We now introduce our assumptions, which mainly follow the assumptions in DMR.

Assumption 1. (a) The parameter 6 belongs to ©, a compact subset of R?, and the true parameter



value 0* lies in the interior of ©. (b) {X;}52, is a Markov chain that lies in a compact set X C R%.
(c) Qo(z,-) has a density qgo(x,-) with respect to a finite dominating measure p on B(X') such that
w(X) =1, and 09 = supgeg Sup, 4ex qo(x,2’) < co. (d) There exists a finite p > 1 such that
0 < o_ :=infgcoinf, prex po(zi|Tr—p = 2') and oy 1= supgee SUP, wrex Po(Tr|TH—p = ') < 00. (e)
{(YVe, W) }32_ . takes the values in a set Y x W C R x Rdw,
Assumption 2. (a) For each k > 1, X, is conditionally independent of (X572, ?k_l , W§°) given
_1. (b) For each k > 1, Y}, is conditionally independent of (Y* sill,Xk ! Wk ! , W5 1) given
(Yj_1, Xp, W), and the conditional distribution of Y} has a density go(yr|Yr_1, Xx, Wi) with
respect to a o-finite measure v on B(Y). (c) W is conditionally independent of (Yo, Xo) given
Wo. (d) {(Zk, Wi)}32, is a strictly stationary ergodic process.

Assumption 3. For all y € Y,y € Y%, and w € W, 0 < infpeginficxr 9o(¢' ¥, x,w) and
SUPgeo SUPgex 90(V'[¥, 2, w) < oo.

Assumption (c) is also assumed on page 2258 of DMR. This assumption excludes the case
where X = R and p is the Lebesgue measure but allows for continuously distributed X} with finite
support. Assumption (d) implies that the state space X of the Markov chain {X}} is v,-small for
some nontrivial measure v, on B(X). Therefore, for all # € ©, the chain {X}} has a unique invari-
ant distribution and is uniformly ergodic (Meyn and Tweedie, 2009, Theorem 16.0.2). Assumptions
(a)(b) imply that Zj, is conditionally independent of (ZF~2, Wh=1, 1) given (Zg_1, Wk) hence,
{2}, is a Markov chain on Z := X x Y*® given {W}.}72,. Under Assumptions [2| I ), the con-
ditional density of Z{} given W{ is written as pp(Z{|W{) = po(Zo|Wo) [ 11 1p9(Zk\Zk 1, Wk) Be-
cause {(Zx, Wi)}72, is stationary, we extend {(Zx, Wi) }22, to a stationary process {(Zx, Wi) }722 _
with doubly infinite time. We denote the probability and assomated expectation of {(Zy, Wi)}22
under stationarity by Py and Eg, respectivelyﬂ Assumption [3|is stronger than Assumption A1(b) in
DMR, which assumes only 0 < infgeg [ 1 90(¥/'[¥, 2)p(dx) and supyce [, e 9017, x)p(dz) < 0o
When X is finite, Assumption [3] becomes identical to Assumption A3 of [Francq and Roussignol
(1998)), who prove the consistency of the MLE when X is finite. It appears that assuming a lower
bound on gy similar to Assumption [3] is necessary to derive the asymptotics of the MLE when
infy inf, ,» go(z,2') = 0. When p = 1, we could weaken Assumption (3| to Assumption Al(b) in
DMR, but we retain Assumption [3] to simplify the exposition and proof.

Following DMR, we analyze the conditional log-likelihood function given Yo, W2, and X( = z
rather than the stationary log-likelihood function given Y, and W{ because, as explained in
DMR (pages 2263-2264), the conditional initial density pg(X0|?§_1) cannot be easily computed

in practice. The conditional density function of Y7 is

n
po(Y7 Yo, W, 20) :/Hpe(Yk,LUHYk—l»ﬂ?k—hWk)um(dx?% (4)

'DMR use Py and Ey to denote the probability and expectation under stationarity because their Section 7 deals
with the case when Zj is drawn from an arbitrary distribution. Because we assume {(Zi, Wi)}52 o is stationary
throughout this paper, we use notations such as Py and Ey without an overline for simplicity.



where po(yr, Tx[Fr_1, Th—1,wk) = qo(Th—1,%k)90(Yk|F k1, Th> wk). Assumptions [2(a)(b)(c) imply
that, for £ > 1, W}, is conditionally independent of Zlg_l given W’g_l because p(Wk]Z]g_l, ng_l) =
p(WE, 25~) /p(W5 ™", Zg ") and, for j = k, k—1, p(W§, Zg ™) = p(Zo, W) [T:2) (Zel Ze-1, We) =
p(WIWo)p(Zo|Wo) T1EZ] p(Z4| Zi—1, Wy). Therefore, for 1 < k < n, we have

p9(Y]1€’?07W6va0) :p9(Y]1€’?07W§7‘T0)7 (5)
po(YT| Y0, W§) = pa(Y{[Yo, WE). (6)

In view of and @, we can write the conditional log-likelihood function and stationary log-

likelihood function as

< . k-1
In(0, 20) := log pg (YT Y0, Wi, 0) = Y logpg(Yi[Yy . W, 20),
o (7)

n\|IN n . k-1
1n(0) == log pg (YT Y0, W5) = Y logpp(Yi|Yy , W().
k=1

Many applications use the log-likelihood function in which the conditional density ps(Y 7Y o, W2, x)
is integrated with respect to xy over a probability measure & on B(X'), where £ can be fixed or

treated as an additional parameter. We also analyze the resulting objective function:
16.6) = 1o ([ pa (VY0 W)l ) 0

3 Uniform forgetting of the conditional hidden Markov chain

In this section, we establish a mixing rate of the conditional hidden Markov chain, which is the
process { X} given the sequence of Y’s and W’s. The bounds on this mixing rate are instrumental
in deriving the asymptotic properties of the MLE. Corollary 1 of DMR shows that the conditional
hidden Markov chain forgets its past at a deterministic exponential rate. As DMR note on page
2258, their deterministic rate holds only when p = 1. We derive the convergence rate of the
conditional Markov chain when p > 1.

First, we derive the minorization condition (Rosenthal, 1995) on the conditional hidden Markov
chain. Lemma 1 of DMR derives the minorization condition when p = 1 and the covariate W}, is
absent. The following lemma generalizes Lemma 1 of DMR to accommodate p > 2 and covariate
Wk When p > 2, the minorization coefficient w(-) depends on (?Z:;,Wi:l) because ?Z:}D

P
provide information on X}, in addition to the information provided by Xj_,.

Lemma 1. Assume Assumptions []H{3 Let m,n € Z with —m < n and 6 € ©. Then, (a) under

Py, conditionally on (Y_,,, W™ ), {Xx}7__,. is an inhomogeneous Markov chain, and (b) for all

—m +p < k <n, there exists a function u,(¥p_,, W, A) such that

2We replace the conditioning variable Y., in DMR with Y, because the subsequent analysis uses Y-,



(i) For any A € B(X), (¥p_i,wWp) — me(¥Yi_i, Wi, A) is a Borel function;

(ii) For any (Yi_1,Wp), tk(Yi_1, Wy, ) is a probability measure on B(X). Furthermore,
pr(Yi_1, Wi, o) < p for all (Yp_q,wy), and, for all (?ﬁm,WEm%

1
s

. ~k— -
inf Py (Xy € A[Xpp =2, Y2, W) > w3y, WD) (Yioy, Wi, A),

1

—k—
where w(Y j_,,

Wi:;) :=o0_/o4 when p=1, and, when p > 2

e k—1 <~ 2
. o_infy meIIz:Zl)+1 Hi:k_p+1 90(Yi|Y i1, 23, W)

p?

w(?’,z: W,Iz:;) = 9)

k—1 N
04 Supyg SUPXZ:;H Hz‘:k—p—H 9o(YilY i1, 25, Wy)

The following corollary provides the rate at which the conditional chain {Xj}}__ = given
(Y", W™ ) forgets its past. This corollary is an immediate consequence of Lemmas and
when —m +p < k <n. When k < —m + p, this corollary holds because ||p; — po|l7y < 1 for any

probability measures pu; and po.

Corollary 1. Assume Assumptions[IH3 Let m,n € Z with —m < n and 6§ € ©. Then, for all

—m < k <mn, all probability measures 1 and pe on B(X), and all (?ﬁm,W’_‘m),

/ Py (Xp € | X =2, Y2, W) 1 (da) —/ Py (Xp € | X =2, Y ", W™,,) p2(dz)
X x

[(ketm) o] R |
(1__(U(S{_”n+7n_p"A]—ﬂ%+p#—l))'

TV

IN

—m+pi— —m~+pi—p
=1

The convergence rate of the conditional hidden Markov chain depends on the minorization coeffi-

cient w(?z:;, W]]z:;). If this coefficient is bounded away from 0, the chain forgets its past exponen-
tially fast. When p > 2, this coefficient is not bounded away from 0 because il’lfyk:—l wh—1 w(y’,z:;, w’,z:;)
k—p’ "V k—p

VF1 ywk—1 k-1
0. However, w(Yk_p, Wk_p) becomes close to zero only when Yk_/erl

: k-1 T k-1 “1y -
cause the denominator of w(Y},_,, W:_;) is finite and the numerator of w(Y),_,, Wg_;) is a product

takes an unlikely value be-

of the conditional density gg(y|¥,z,w). As a result, w(?z:;, WZ:;) is bounded away from 0 with
a probability close to 1. In the following sections, we use this fact to establish the consistency and

asymptotic normality of the MLE.

3Strictly speaking, Wj_, in w(?ii,l,,wk !

1y . k—1 _
k?p) is superfluous because w(Yk,p,W';ﬂl)) does not depend on Wy_,.
We retain Wy _,, for notational simplicity.



4 Consistency of the MLE

Define the conditional MLE of §* given Y, W¢, and Xg = xg as

04, := argmax (6, o),
IS
with 1,,(0, z¢) defined in @ In this section, we prove the consistency of the conditional MLE. We

introduce additional assumptions required for proving consistency.

. _ -1
Assumption 4. (a) by := SuPyee SUPy, 3, 2.0 90(¥1(¥0, T, w) < 00. (b) Eg«|logb_ (Yo, W1)| < oo,
Kk . . ~
where b_ (Y. _;, W) := infpco infy, cx 9o (Yi| Y1, 25, Wi).

Assumption 5. There exist constants a > 0, C1,Cy € (0,00), and 8 > 1 such that, for any r > 0,
Pg* (bf(?(l), Wl) < Cle_ar) < 027“_6.

Assumption [4(a) is also assumed in Assumption (A3) of DMR. Assumption [4(b) is stronger
than Assumption (A3) of DMR, who assume Egy-|log(infgco [ go(Y1[Yo0,z)p(dz)| < co. Assump-
tion || implies that Eg« supgeg sup,ex | 10g(g9o(Y1| Yo, 2, W1))| < oo, which is similar to the moment
condition used in the standard maximum likelihood estimation, but the infimum is taken over x
in addition to . Assumption [5| restricts the probability that infpee infs, cx go(Yi|Y k-1, Tk, Wk)
takes an extremely small value. Assumption [5| is not restrictive because the right hand side
of the inequality inside Pg«(-) is exponential in r and the bound Cyr—# is a polynomial in 7.
An easily verifiable sufficient condition for Assumption [5| is Eg«|log b_(?(l),Wl)fHé < oo for
some > 0. This is because Pg*(b_(?(l),Wl) < bye ) = Py« ( log(b_(?(l),Wl)/b+)| > ar) <
(Eg+| log(b— (Y, W1) /b4 )|1+9)/(ar) 0 < Cor=(1+9) where the first equality follows from b_ (Y, W1) <
by, and the second and third inequalities follow from Markov’s inequality and Minkowski’s inequal-
ity. Examples [I] and [2] satisfy Assumptions [4] and

In the following lemma, we show that the difference between the conditional log-likelihood

function 1, (6, o) and the stationary log-likelihood function I,,(6) is o(n) Pyp--a.s.

Lemma 2. Assume Assumptions[IH3. Then,

n~! sup sup |1,(0, z0) — 1,(0)] = 0 Pg«-a.s.
ToEX €O

When p = 1, Lemma 2 of DMR shows that supycg |ln (0, z0) — 1,,(8)] is bounded by a determin-

istic constant. When p > 2, Lemma 2 of DMR is no longer applicable because |I,,(6,x0) — 1,,(0)]
Yo~
<pi—1 i— : : . i—1 -
that {w(Ygz_p,sz_;)}¢21 is stationary and ergodic and that e := Pg*(w(?ﬁz_p,wgﬁ_;) < 90)
is small when 0 > 0 is sufficiently small. Because the strong law of large numbers implies that

(In/p))~! Z}Z{pJ ]I{w(?ﬁz:;, Wﬁ;:;) > ¢} converges to 1 — € Pyp«-a.s. from the strong law of large

depends on the products of 1 — w( ;,Wﬁ;:;)’s for i = 1,...,|n/p]. A key observation is



numbers, 1 — w(?ﬁii}o, Wﬁz:;) > 1 — ¢ holds for a large fraction of the w(?gz::;, Wgz:zl))’s. Conse-

quently, we can establish a Py:-a.s. bound on n=|1,,(6, ) — 1,,(9)].
We proceed to show that, for all § € ©, pg(Yk\?k_l Wk Wk )

k—1
—m? 7m) 1
Pg+-a.s. as m — oo and that we can approximate n~'l,,(6) by n=t > }_, log po(Yi|Y - oo, WE ),

—00?

converges to pg(Yi|Y

which is the sample average of the stationary ergodic random variables. For x € X and m > 0,
define

—k—1
Apmz(0) :=logpe(Ye|Y -, , W*, . X, = 2),

k—1
Ajm(0) = log pp(Yi| Y2, , WE,)
—k—1 <k—1
= 1og/p9(ykyY_m,W’jm,X_m =2 _p)Po(dz_p| Y, WF ),

so that [,,(6) = > p_; Ago(6). The following proposition corresponds to Lemma 3 of DMR. This
proposition shows that, for any k > 0, the sequences {Ay ., (8)}m>0 and {Ag 1.2(0) }m>0 are uni-

formly Cauchy sequences and hence converge uniformly in 8 € © with probability one.

Lemma 3. Assume Assumptions ﬂ Then, there exist a constant p € (0,1) and random sequences
{Akm }k>1.m>0 and {By}r>1 such that, for all1 <k <n and m' > m >0,

(a)  sup sup|Apma(0) = Mgy (0)] < Ak7mpt(k+m)/3pj,
z,x'€X 0O

(b)  supsup |Agm () — Apm(0)| < Ak7mpt(k+m)/3pj7
zEX €O

()  sup supsup |Agm(0)| + sup sup |Ay ., (0)] < By,
m>0xeX HcO m>00e0

where Py« (Apm > M i.0.) =0 for a constant M < oo and By, € LY(Pp-).

Lemma [3(a) implies that {Ag .(0)}m>0 is a uniform Cauchy sequence in § € © with prob-
ability one and that limy, oo Ak m 2(0) does not depend on x. Let A o(f) denote this limit.
Because {Ay m 2(0)}m>o0 is uniformly bounded in L!(Py+) from Lemma (c), {Ak,m.z(0) }m>0 con-
verges t0 Ay oo(f) in L' (Pg«) and Ag () € LY(Pp) by the dominated convergence theorem.
Define [(6) := Ep+[Ag,(0)]. Lemma [3| also implies that n~'1,,(f) converge to n=' >"1_; Ak o (6),
which converges to [(6) by the ergodic theorem. Therefore, the consistency of éxo is proven if this
convergence of n=11,,(8) — 1(0) is strengthened to uniform convergence in # € © and the additional
regularity conditions are confirmed.

We introduce additional assumptions on the continuity of gy and gg and identification of 6*.

Assumption 6. (a) For all (y,y,w) € Y* x Y x W and uniformly in z,2' € X, qo(x,2') and
99(V'|y, x,w) are continuous in 6. (b) Pg*[pg*(Yl\?gm,Wl_m) + pg(Yl\?gm,Wl_m)] > 0 for all
m >0 and all 0 € © such that 0 # 6*.

Assumption |§|(b) is a high-level assumption because it is imposed on pg(}/ﬂ?(im, WL ). When



the covariate Wy, is absent, DMR prove consistency under a lower-level assumption (their (A5')),
which is stated in terms of pg(Y?|Y(). We use Assumption |§|(b) for brevity.
The following proposition shows the strong consistency of the (conditional) MLEE|

Proposition 1. Assume Assumptions . Then, sup,, cx 102, — 0*] = 0 Pg--a.s.

Francq and Roussignol (1998, Theorem 3) prove the consistency of the MLE when the state
space of X}, is finite. Proposition |1| generalizes Theorem 3 of Francq and Roussignol| (1998)) in the
following three aspects. First, we allow X} to be continuously distributed. Second, we analyze
the log-likelihood function conditional on Xy = xg, whereas Francq and Roussignol| (1998) set the
initial distribution of X; to any probability vector with strictly positive elements. In other words,
we allow for zeros in the postulated initial distribution of {X}}. Third, we allow for an exogenous
covariate {Wp}}_.

Define the MLE with a probability measure £ on B(X) for xg as ég = argmaxgcg I, (0, &) with
[,(0,€) defined in . Proposition 1| implies the following corollary.

Corollary 2. Assume Assumptions @ Then, for any &, ég — 0* Py«-a.s.

5 Asymptotic distribution of the MLE

In this section, we derive the asymptotic distribution of the MLE and consistency of the asymp-
totic covariance matrix estimate. Because éxo is consistent, expanding the first-order condition

Voln (0, 70) = 0 around 6* gives
0= Van(éx0,$0) = v9ln(9*7 xO) + vgln(§7 l’o)(émo - 9*)7 (10)

where § € [0*,0,,] and 0 may take different values across different rows of V2l,(0,70). In the
following, we approximate Vgln(G,xo) => Vg logpg(Yk|?§_1,W’5,Xo = x9) for j = 1,2 by
>ohoy Vilog pg(Yk|?]:i, WF* ), which is a sum of a stationary process. We then apply the cen-
k=1 <xrk .
WF ). A similar

—0o0?

tral limit theorem and law of large numbers to n =7/ pya Vg log po (Yi|Y
expansion gives the asymptotic distribution of n'/ 20 — 07).

We introduce additional assumptions. Define X, := {(z,2') € X2 : gp(z,2’) > 0}.

Assumption 7. There exists a constant 6 > 0 such that the following conditions hold on G := {6 €
©:10—0% < d}: (a) For all (¥,y',w,x,2") € Y x Y x W x X x X, the functions go(y'|¥,w,z) and
qo(x,2') are twice continuously differentiable in 0 € G. (b) supgeq SUD, 4t |V log go(z,2")| < oo
and supgeq SUD,, e xt [VZlog go(z,2')| < 00. (c) Eg+[supgeq supgex |Volog go(Y1[Yo,z, Wh)|?] <

oo and Eg+[supgeq supgex V2 1og go(Y1Y o, 2, W1)|] < 00. (d) For almost all (¥,y',w) € Y* x Y x

“A Caussian regime switching model with regime-specific mean p; and variance 0]2- is subject to the unbounded
likelihood problem (Hartigan, 1985) in that the likelihood diverges to infinity if we set p; = Yi for some k and let
o; — 0. In this paper, the compactness assumption (Assumption a)) in effect imposes a lower bound on o; and
hence rules out the unbounded likelihood problem.

10



W, there exists a function fg. ., : X — RY in L' () such that supgeq 9o (V' [y, 2, w) < fyy w(@).
(e) For almost all (z,¥,w) € X x Y* x W and j = 1,2, there exist functions fi?w : Y = RT in
LY (v) such that |Vgge(y’|y,x,w)| < f£7y7w(y’) for all 6 € G.

Assumption 8. Eg-[sup,,>qsupyeq | Vo logpg(Yll?(im,Wlm)\Q] < 00,

Eg+ [sup,,>0 SUPpec |V3 logpg(Yl]?(lm, WL ] < oo,

Eg+ [sup,,,>0 SuPpe SUPzex [Vo logpg(Yll?(im, W! X . =2)? < oo, and
Eg+ [SUP,;,>0 SUPge SUD e v |V§ logpg(Y1|?2m, W! X . =1)|] <.

Assumption [7] is the same as Assumptions (A6)—(A8) of DMR except for accommodating the
case inf(, ,ycx2 qo(z,2’") = 0 and the covariate WW. Examples [1| and [2[ satisfy Assumption (7| As-
sumption a is a high-level assumption that bounds the moments of Vg log pe (Ykl?’:nl, W*E ) and
V]é log pg(YH?]i:nl, Wk X_,, = z) uniformly in m. When p = 1, DMR could derive Assumption
by using the L3~/ (PPp«) convergence of VZ, log po(Y |?]:n1, W*E ) and VZ, log po(Y |?]:n1, Wk X =
x) to Vjé log pg (YH?&;, W]ioo) asm — oo. When p > 2, we need to assume Assumption g because

our Lemma [6{only shows that these sequences converge to Vg log pe(Yy |?I:i, WP __) in probability.

5.1 Asymptotic distribution of the score function

This section derives the asymptotic distribution of n_1/2V9ln(9*,:Eg) and n_I/QVgln(G*,g). We
introduce a result known as the Louis missing information principle (Louis, [1982), which expresses
the derivatives of the log-likelihood function of a latent variable model in terms of the conditional
expectation of the derivatives of the complete data log-likelihood function. Let (X,Y, W) be ran-
dom variables with py(y, z|w) denoting the joint density of (Y, X) given W, and let py(y|w) be
the marginal density of Y given W. Then, a straightforward differentiation that is valid under

Assumption [7] gives

Vologpe(Y W) =Eg [Vglogpe (Y, X|W)|Y, W],

(11)
Vi logpo(Y|W) = Eq [V log pe(Y, X|W)|Y, W] + varg [Vg log p(Y, X |W)|Y, W].

Define 22_1 = (Y, X3, Yi_1,Xg_1). For j = 1,2, denote the derivatives of the complete data
log-density of (Y, Xj) given (Y1, Xx_1, Wi) by

(0,21, Wi) := Vylog po(Yie, Xi| Y1, Xp—1, Wi)
= VJQ log q@(kala Xk) + Vé logge(ka ’?kfla Xk’? Wk)

We use a short-handed notation (;Sgk = ¢J’(0,2§,1, Wy). We also suppress the superscript 1 from

Ppis SO that ¢gr = @py.. Let |¢7|oo = Suppeq SUD, 4t |V log go(z, )]

+ SUpge SUPex | V5108 9o (Vi Yi—1, 2, Wi)|.

11



Define, for x € X, k> 1, m > 0, andj:1,2E|

k—1

J k—1 —
E o _m,W_m,X,m—a:
t=—m-+1

AN () [ > o

t=—m-+1

Y, WX, = g;] — Ty

Because ¥} ma(0) =V logpg(Yk]Y W’“ ms X—m = x) from , we can express Vyl, (60, x0) as

n

- k-1
Voln(8,z0) = Zve log po(Yi|Yo , WE, Xo = 20) = Z U} 0.20(0)-
k=1 =1

We show that {\I!k m, +(0)}m>0 is a Cauchy sequence that converges to a limit at an exponen-
tial rate. Note that \Pimm(ﬁ) is a function of Egy| g,tH for t = —m +1,...,k. When t is large,
the difference between Ey[ t]Y,m,Wlim,X_m = z] and Eg[ t|Y,m , Wk ,,X_m/ = '] with
m' >m ig small by virtue of Corollary When ¢ is small, we bound Eg| t|Y Wk X =
x] — Eg[ Z,t\Y Wk ' X_,, =] in ¥/ (6) by using the following lemma. This lemma corre-

—m> km.x

—m>

sponds to Lemma 9 of DMR and derives the minorization constant for the time-reversed process
{Xn—k}o<k<n+m conditional on (wm,WTlm).

Lemma 4. Assume Assumptions and @ Let m,n € Z with —m < n and § € ©. Then, (a) under
Py, conditionally on (?ﬁm, W?", ), the time-reversed process { Xp_ to<k<n+m @S an inhomogeneous
Markov chain, and (b) for all p < k < n + m, there exists a function ﬂk(yi;nﬂp_l,wi;@ﬂp—l,A)
such that

(i) Forany A € B(X), (Y-, AL e /Y v . M=l W R A) s a Borel function;

m m

(ii) For any (" FP~1 Wi Fe=l Ay [ (3" Kl WL ) s o probability measure on
B(X). Furthermore, fx(y", k“’ 1,W7_L;1k+p71,-) < p for all (¥, k+p ! wr_L;nkﬂ)fl), and,
for all (Y7557~ W k1)

Py (Xn,keA}anHp,?’” W )

<n—k+p-1 —htp—1y~ n—k+p—1 —ktp—
>w(Y, " ,Wz,;p 1>uk(Y’im g ,W’im LA,
where w(?Z:Zer_l, WZ:Zer_l) = 0_/o, when p =1, and, when p > 2,

w(?ﬁiz+pil,wz:£+p71) is defined as in (@) but replacing k — 1 and k —p in (@ with n —
k+p—1andn—k.

The following lemma shows that the time-reversed process {X,_}o<k<n+m conditional on

°DMR (page 2272) use the symbol A . 2(0) to denote our W}, .(0), but we use Wy m o (0) to avoid confusion
with A, (6) used in Lemma [3}
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il

(Y,
corresponds to equation (39) on page 2294 of DMR.

W ) forgets its initial conditioning variable (i.e., Y, and W,,) exponentially fast. Part (b)

Lemma 5. Assume Assumptions[]] and[3. Let m,n € Z with m,n >0 and 0 € ©. Then,

n

(a) for all —=m <k <n and all (Y_,,, W",.),

[0 (0 € 77, W) =By (X e (X W) |
L(n—1=k)/p) . )
2 Dpitp —2—pi+
< H (1 —w(Yy 5 pit1s WZ_z_ﬁJf)) :

i=1

TV

(b) for all —m+1 <k <n and all (?n W oz,

—m>

HPQ (Xe € ¥ 0 W2 Xy = ) — By (X € -]?ﬁ;l,wz;l,x_m =) H
L(n=1-F)/p] it y
< I (-eimidwisnm).
=1

TV

Define, for K >0, m >0, and j =1, 2,

k
> o

t=—m+1

k—1
U . (0) =Ky Y_m,W’im] — Ky [ P

t=—m+1

Y’i;nl,w’“;j] .

Note that U} (0) = V, logpg(Yk|?l:n1,W’im). From Corollary |1| and Lemma we obtain the

following bound on ¥ (#) — lllim(ﬁ) and \I/‘,imr(ﬁ) = Uyt 2 (0)-

k,m,x

Lemma 6. Assume Assumptions @ Then, for j = 1,2, there exist a constant p € (0,1), random
sequences { Akm te>1m>0 and { By, }m>0, and a random variable K; € L3771 (Pp+) such that, for all
1<k<nandm >m>0,

(a) supsup U] (0)— ‘I’i,m@)‘ < Kj(k +m)?ptrm/aetil gy

bcGaex | T
(b) Sup sup ’\IJ‘I]C m x(@) - \Iji: m’,x’ (0)‘ = [Kj(k + m)2 + Bm]pL(k+m)/4(p+1)j Ak,ma
0eG z,x’eX Y T

where Py« (Agm > 1 4.0.) =0, By, < 00 a.s., and the distribution function of By, does not depend

on m.

Because B, pl(Etm)/Ap+DI/2 5 10 as m — oo, Lemma@implies that {; (0)}m>0 converges
k—1

to \I/,{W(e) = Vologpg(Yi|Y_ o, W* ) in probability uniformly in € G and = € X. Define the
filtration F by Fy := o((Y;, Wiy1) : —oo < i < k). It follows from Egy- [qj,lgm(e*n?’i;l,w’zm] =0,
Assumption |8, and combining Exercise 2.3.7 and Theorem 5.5.9 of Durrett| (2010) that

Eg- [0} (6%)[Y" 0, WE ] = 0 and 1(6%) := Eg. [W} . (6%)(¥ o (6"))'] < oc. Therefore,
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{\11,1C o(0%)}52 _ is an (F,Py-)-adapted stationary, ergodic, and square integrable martingale differ-
ence sequence, to which a martingale central limit theorem is applicable. The following proposition

establishes the asymptotic distribution of the score function.

Proposition 2. Assume Assumptions @ Then, (a) for any zo € X, n= 2Vl (0*,x0) —q
N(0,1(6%)); (b) for any probability measure & on B(X) for xo, n~ 2Vl (6*,€) —4 N(0,1(6%)).
5.2 Convergence of the Hessian

This section derives the probability limit of n='V2,,(6, z¢) and n=!'V21,,(0, &) when 6 is in a neigh-
borhood of #*. Define

B k k—1
5k ~k—1 _
Fk’m@(g) 1= varg Z ot Y_m,Wlim,X_m = x] — vary [ Z dot|Y WwWh—1 X_,, = :C] ,

—_m —m )
Lt=—m-+1 t=—m-+1
(13)
i k — k—1 k1
Tim(0) :=varg | > o Ym,wkm] — vary [ > o Ym,w’j;}] : (14)
Lt=—m+1 t=—m-+1

From the Louis missing information principle , we can write V2al,, (6, xo) in terms of {¥2 = (6)}
and {T'm.2(0)} as

n n

k-1
Viln(0,20) = > Vilogpa (Ve[ Yo, W§, Xo = 20) = D _[W7 .1 (6) + Tk.0,0 (6)]-
k=1 =1

The following lemma provides the bounds on I'y ,,, , () that are analogous to Lemma @

Lemma 7. Assume Assumptions ﬁ Then, there exist a constant p € (0,1), random sequences
{Chkom tk>1.m>0 and {Dm}m>0, and a random variable K € LY(Py+) such that, for all1 <k <n

and m' >m >0,

(a)  SUpSUp [Thmo(6) — Tiu6)] < K (I + m)PpllEsm/senlcy
0eG zeX

() sup sup |Tkma(0) — Thmr o ()| < K[(k+m)® + D] ptEtm/16e+] ey
0eGrx'eX
where Po« (Cm > 1 4.0.) = 0, Dp, < 00 Pgs-a.s. and the distribution function of D, does not

depend on m.

Lemma [7| implies that {I' ;, »(0)}m>0 converges to I'y () in probability uniformly in z € &
and 8 € G. The following proposition is a local uniform law of large numbers for the observed

Hessian.
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Proposition 3. Assume Assumptions[1H8 Then,

sug |n_1V§ln(0, x) — Egs [\1'3700(0) + F07OO(9)]| —p 0.
xre

The following proposition shows the asymptotic normality of the MLE.

Proposition 4. Assume Assumptions @ Then, (a) for any zo € X, n= Y20, — 0%) —4
N(0,I(6*)~Y); (b) for any probability measure & on B(X) for g, nil/Q(ég —0%) =4 N(0,1(6%)71).

5.3 Convergence of the covariance matrix estimate

When conducting statistical inferences with the MLE, the researcher needs to estimate the asymp-
totic covariance matrix of the MLE. Proposition |3| already derived the consistency of the observed

Hessian. We derive the consistency of the outer-product-of-gradients estimates:

2 _ - ~k—1 ~k—1

Iy (0) :=n"") " Valogp(Yil Y, Wi, m0)(Velogpa (Ve[ Yy W§,20)), (15)
k=1

7 v k-1 k-1

I(0) :==n"" ) Vologpee(Yel Yy WE)(Volog poe(Yil Yo WE)), (16)
=1

where Vj logpgg(Yk\?lg_l, WE) .= Vylog fpg(Yk\?lg_l, WE 20)¢(dzg). In applications,
Vo log pe(Yi |?§71, W ) can be computed by numerically differentiating log pg (Y |?’gil, WE, z0),
which in turn can be computed by using the recursive algorithm of [Hamilton| (1996)).

The following proposition shows the consistency of the outer-product-of-gradients estimate. Its

proof is similar to that of Proposition [3| and hence omitted.

Proposition 5. Assume Assumptions@. Then, sup, ¢y Loy (0)—1(6%)| =, 0 and I¢(8) —, 1(6%)
for any 0 such that 0 —p 0% and any §.

6 Simulation

As an illustration, we provide a small simulation study based on the Markov regime switch-
ing model . The simulation was conducted with an R package we developed for Markov
regime switching modelsﬁ We generate 1000 data sets of sample sizes n = 200,400, and 800
from model with p = 5, using the parameter value estimated by Hamilton (1989) for U.S.
real GNP growth from 1952Q2 to 1984Q4. Specifically, the true parameter value of our simu-
lated data is taken from Table I of [Hamilton| (1989) with 6 = (u1, 2, 71,72, 73, V4, 0, P11, P22) =
(1.522,—0.3577,0.014, —0.058, —0.247, —0.213, 0.7690, 0.9049, 0.7550)’E| For each of the 1000 data

5The R package is available at https://github.com/chiyahn/rMSWITCH.
"We simulate (800 + n) periods and use the last n observations as our sample, so that the initial value for our
data set is approximately drawn from the stationary distribution.
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sets, we estimate the parameter 6 by the MLE, where we also treat the initial distribution of X,
¢ = (Pr(Xo=1),Pr(Xo =2))’, as a parameter to be estimated together with 6. Given the estimate,
we construct the asymptotic 95 percent confidence interval by using the outer-product-of-gradients
estimator , while fixing £ at its estimated value, and then examine the frequency at which the
95 percent confidence interval contains the true parameter value. Table [1| presents the results. At
n = 200, the asymptotic 95 percent confidence intervals slightly undercover the true parameter with
the coverage probability ranging from 0.875 to 0.944. As the sample size increases from n = 200
to 400, and then to 800, the actual coverage probability approaches 95 percent, indicating that the
asymptotic approximation improves as the sample size increases. Table [2| presents the coverage
probabilities of the asymptotic 95 percent confidence intervals when we use the outer-product-
of-gradients estimator by setting o = 2 rather than . Consistent with our theoretical
derivation, the results in Table [2| are similar to those in Table [1} suggesting that the choice of the
initial value of zg in constructing the covariance matrix estimate does not affect the performance

of the asymptotic confidence intervals.

Table 1: Coverage probability of the asymptotic 95 percent confidence intervals with é

P11 P21 b1 B B3 Ba H1 U2 o

n =200 | 0.916 0.911 0.938 0.926 0.944 0.925 0.916 0.896 0.875
n =400 | 0.938 0.933 0.930 0.944 0.943 0.937 0.946 0.929 0.922
n =800 | 0.942 0.942 0.945 0.941 0.950 0.956 0.939 0.941 0.930

Notes: Based on 1000 replications. Each entry reports the frequency at which the asymptotic 95 percent confidence
interval constructed from (16 contains the true parameter value.

Table 2: Coverage probability of the asymptotic 95 percent confidence intervals with xg = 2

D11 P21 B1 B2 B3 Ba 11 12 o

n =200 | 0.915 0.920 0.938 0.927 0.941 0.934 0.922 0.901 0.884
n =400 | 0.932 0.932 0.938 0.949 0.942 0.939 0.945 0.929 0.923
n =800 | 0.943 0.945 0.945 0.939 0.949 0.956 0.936 0.937 0.929

Notes: Based on 1000 replications. Each entry reports the frequency at which the asymptotic 95 percent confidence
interval constructed from (15) with 2o = 2 contains the true parameter value.

7 Proofs
Throughout these proofs, define Vy, := (Y,, W{).

Proof of Lemma[1l The proof uses a similar argument to the proof of Lemma 1 in DMR. Because
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{Zy}}__,, is a Markov chain given {W}}}'__ , we have, for —m < k <n,
Po(Xp, € AIXF LY, W2, ) =Py(Xy, € A X1, Y}, W}).

Therefore, {X;,}?__, conditional on (Y_,,, W”, ) is an inhomogeneous Markov chain, and part
(a) follows.
We proceed to prove part (b). Observe that if —m +p < k < mn,

Po(Xy € AlXp—p, Y W) = Po(Xi € Al Xj—p, Y, WE_), (17)
because the left hand side of can be written as

7]{:_ JE—
Po(Xyp € A YR |1 Xep, Y2,/ W) By(Xy € A Y[ Xy, Vi, Wi

7]{7 - =3
Po(Yy i1 [ Xk—p, Yo, W) Po(Yi_pi1| Xi—p Yioop, WE_,)

The equality holds even when the conditioning variable W"_p on the right hand side is replaced
with Wi ., but we use Wp_ for notational simplicity. Write the right hand side of as

]P)G(Xk S A|Xk—p7?1lz—pa Tk,’L—p)
k-1
fA pQ(Xk =, Y]Z‘Xk*pv Yk—p? Wg_p)ﬂ(dm)
~k—1
Po(Y | Xp—p, Y WZ—p)

p?

= [ B = alXep YU WE D (YE1X0 = 2,0, Wi ()
A

—1
X </ p@(Xk = x|Xk—paYk—pawllzfé)pQ(YZ’Xk = x7Yk—17WZ):u(d$)> .
X

When p = 1, we have pg(xk|xk_p,?,lz:;, W,]z:;) = pg(xk|rp—_1) € [0—,04+]. Therefore, the stated
result follows with px(Y,_1, W7, A) defined as

k(Y 1, Wi A) = /APQ(YZ!Xk = :r,Yk_hWZ)u(dx)// po(Yi| Xy =2, Yy 1, Wi)p(dx).
x

(18)
Note that [, po(Y2| Xk = 2, Y1, W) u(dz) > 0 from Assumption
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When p > 2, a lower bound on pg(xk\xk_p,?],z:;,, W’,::;) is obtained as

Po(Tk|Tk—p, ?Z:}D, W],::;)

_ po (T, Ylii:;la+1|xkfpv?kfp7 W’;iigl,)

B Pe(leiiéﬂlxk—pv?k—p’W;’ii;)

- J H?:kprrl q6(Ti-1, i) Hf:_klprrl 96(YilYi-1, i, Wi)u®(p’1)(d><ﬁi§+1)
o Tl ks @0(@im1, @) Ty 90 (Vi X iy, i, Wi)p®P(dxf_ )

) . . . ke -
infg infy, o, po(zr|rr—p) infy inf g1 11 90(YalYia, i, W)

>

_ . 19)
] (
SUPg SUDy, o, PO(Tk|Tk—p) SUPg SUPyh-1 [k pi1 90(Yal Yoo, 23, Wi)

Similarly, an upper bound on pg(xx|T—p, ?]Z:;, W’,j:llj) is given by the reciprocal of 1) Therefore,
the stated result holds with p,(Y),_;, W, A) defined in . O

Proof of Lemma[g In view of (7)), the stated result holds if there exist constants p € (0,1) and
M < oo and a random sequence {by} with Py« (b > M i.0.) = 0 such that, for k=1,...,n,

ke —h— b
sup sup logpg(Yk|Y§ I,ng,mo) —logpg(Yk|Y§ 1,W’5)‘ < min +,ka/3prk )
ToEX €O b (Yk—h Wk)
(20)
7k .
because by /b_(Y_1, Wi) < 0o Py--a.s. from Assumptlon
First, it follows from pg(YH?gil,ng,xo) = [ 9o(Yi|Yr—1, 7k, Wk)IP’g(dxk|xo,?§71,W§),
k-1 — k-1 .

po(Yi|Yy ,WE) = J 90(Ye| Y k-1, 2, Wi )Po(dzi| Y , WE), and Assumption (a) that
pg(YH?’gil,ng,xo),pg(Yk\?gil,ng) € [b,(?i_l, W), bs] uniformly in § € © and zy € X.
Hence, from the inequality |logz —logy| < |z — y|/(x A y), we have, for k =1,...,n,

—k—1 k-1 5k
sup sup |logpg(Ya| Yy, W§,z0) — log po(Ye| Yy , WE) < by /b (Yy_1, Wh). (21)
x0€X €O
This gives the first bound in .
We proceed to derive the second bound in . Using a derivation similar to and noting
that Xj is independent of Wj, given X gives, for any —m +p < k < n,

k—1

- k1
Py(Xy, € [ Xpp, Yy, WE) = Py( X € | Xip, Y3y WEZ)): (22)
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Consequently, for any —m +p < k < n,
k-1
pO(YkJ|Y—m ) lem’ m*m)

— k—1 _
_ / / 00 (k¥ k1, 20, W) (ks Yo WE DBy (drg_ple o, 0 WD) (), (23)

po(VilY', WE )

—m

//ge Yl Y ko1, 2k, Wi)po (wk | p, Yo Wi )Py (day Y WED) (dy). (24)

Furthermore,
Py(Xyp € (Y1 W) = /Pg(Xk b € |, Y L WPy (da_, XN WD) (25)

Combining , , and for m = 0 and applying Corollary [I| and the property of the total
variation distance gives that, for any p < k < n and uniformly in zg € X,

k-1 k-1
pol¥y " W 0) — po(Vil Yo W)
‘//90 Vil Yi—1, i, Wi)po (x| p— p7Yk vak 1) (dzy)

k—1 _ k—1 _
% (Po(dopplwo, Yoy ' WE) = Po(doy [V ', WE™)]

[(k—=p)/p]
~5pi—1
< I (1-wtV) sw [ aoilY s Wom(arlow Y WEDulda)
i=1 Th—p
L(k—p)/p] i o
< II (1-w(Vis))  sw peehlesp Vi, WETD) / 90 (Yi[Y 1, ap, Wie) ().
i=1 ack,a:k pEX

(26)

Furthermore, and imply that, for any k > p, (pg(YM?gil,ng, xo) /\pg(YH?ﬁil,ng))
> inf 2, e pexpg(kak p,Yk p,Wk 1 fgg (Y| Yr_1, 2, Wi)pu(dry). Therefore, it follows from
|logz — logy| < |z —y|/(z Ay), (26), and and the subsequent argument that, for p < k < n,

[(k—p)/p] Pl
—k—1 k —k—1 k H ( w(Vpi—p))
sup sup |logpe(Yi|Yy  Wg,z0) — logpe(Yi|Y 7W0)‘ < ~— - (27)
TOEX 0O w(kap)

We first bound Ht(k_p)/m( (Vpi*l)) on the right hand side of (27)). Fix € € (0,1/8]. Because
(Vt p) > (0 for all Vt L e yPEsTL WP from Assumptlon (note that w(Vt ;) =o0_/o4 > 0 when

= 1), there exists p € (O, 1) such that Py« (1— w(Vt_p) > p) <e. Define I; :=T{1— W(Vgﬁ 1) >ph
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[(k )/p]
then, we have Eg«[I;] < e and 1 — w(VZ 11,) < pt=1i. Consequently, with aj, := p~2i=1  Li

L(k—p)/p] i1 [(k=p)/p)=SE5PP L L k=p)/p)
H (1 — W(Vpi—p)) <p =t =p - (28)
=1

Because V::l is stationary and ergodic, it follows from the strong law of large numbers that
(L(k—p)/p))~* ZZL( 1 PP T s By [I;] < € Pg«-a.s. as k — oo. Therefore, ay is bounded as

Py (ap > p~2LE=P)/Pl 6y = 0. (29)

We then bound 1/w(V£:;) on the right hand side of 1} Let C3 := (0_/o4)?(C1 /by )?®P~1) > 0;
then, we have Pg*(w(vl,z:;) < Cge20-Dry < (p — 1)1@9*(1),(?’,2_1,%) < Cre™®") for any
r > 0. In view of p € (0,1), there exists a finite and positive constant Cy such that p¢ =
e~20p=DCs For k > 2p, set © = Cy|(k — p)/p] > 0 so that pclk=P)/p] = ¢=2a(p=1)r " Then,
Py (w(Vi_y) < CaptlE=P/ply < (p—1)Pye (b_(Yy_y, Wi) < Cre=Cile=p)/p)) for | > 2p, and it fol-
lows from Assumptionthat > ey Por (w(Vz:;) < C3pelE=P)/pl) < 0. Therefore, Py- (w(vﬁj)) <
Cspclk=p)/p] i.0.) = 0 from the Borel-Cantelli lemma. Substituting this bound and and
into gives, for p < k <n,

sup sup [log po (V[ Y s W, o) — log po(Vil ¥, W)| < p1 39U/l (30)
zoEX 0O
where Py« (b, > M i.0.) = 0 for a constant M < oo.

The right hand side of gives the second bound in because (1 — 3e)|(k — p)/p] >
[(k—=p)/p]/2 > |(k—p)/2p] > |k/3p], where the last inequality holds because, for any numbers
a,b>0and k >0,

[(k —a)+/b] > [k/(a+b)]. (31)

Therefore, holds, and the stated result is proven.
O

Proof of Lemma[3 The proof uses a similar argument to the proof of Lemma 3 in DMR and the
proof of Lemma [2| We first show part (a) for —m + p < k < n. Using a similar argument to
and in conjunction with Corollary (1| gives

po(Yi Y WE X =) — pp(V[ Y W X = )
///ge Yl Yho1, 2, Wi)po (x| p, Yo p,Wk u(dy)
X Po(dap—p| X = T, X0k W )[5I(dx,m) Py(dz | Xy = 2/, Y0 WE )} (32)

[(k—p+m)/p]
x7—m+pi—1 ~
< I (-w(Vouins))  sw po(eilerp Yis, WED) / 96 (Y[ Y1, @, Wi p(daz,),

i=1 T Th—p€X

20



where the first equality uses the fact Py(Xp—p € -|X_m,?]rn1,, Wk )
=Py(Xj—p € | X m,Y Wk m)s which is proven as

Furthermore, and imply that, for any k& > —m + p, (pg(Yk|Y Wk Tom) A
po (YY", W /axfm)) > 1nf:r§€,zk ex Po(Ty| k- o Yo p?Wk Y [ 90(Yie|Y i 1,fL‘k,sz) (day).

Therefore, it follows from the inequality |logz —logy| < |z —y|/ (:c Ay) that

‘logpg Vil Y5 W X =) — logpe (ViYL WE X0 =)
HL(kz p+m)/p) (1 _ w(v—mﬂ’?:;)) (33)

—m-+pi
(Vk: p)

Proceeding as in (28)-(30) in the proof of Lemma [2| we find that there exist p € (0,1) and € €
(0,1/8] such that the right hand side of is bounded by pU=20Lk=ptm)/p] y=cl(k=p)/PI B;  where
Py« (Bk,m > M i.0.) = 0 for a constant M < oo. Therefore, part (a) is proven for —m—|—p <k <nby
noting that p~<l(k=p)/p] < p=el(b—p+m)/p] and using the argument following (|3 Part (a) holds for
1 <k < —m+p—1 because |10gp9(Yk|Y W’im,X,m =ux)— logpg(Yk|Y WE X =

2')| is bounded by by /b (Yk_l,Wk), which is finite Pyp«-a.s. Part (b) follows from replacing
Pg(dl‘ m| X g = Y_m, WF ) in with Pg(dx,m\?]:nl,wlim). Part (c) follows from
b (Yk 1, W) < pg(Yk\Y L Wk ms X—m =) < by and Assumption O

—m _m/

Proof of Proposition[1 The proof follows the argument of the proof of Proposition 2 and Theorem 1
in DMR. From Property 24.2 of Gourieroux and Monfort| (1995| page 385), the stated result holds if
(i) © is compact, (ii) 1,,(6, zo) is continuous uniformly in zo € X, (iii) sup,,cx Supgee [0 n (0, o) —
[(0)| — 0 Pg«-a.s., and (iv) [(0) is uniquely maximized at 6*.

(i) follows from Assumption [If(a). (ii) follows from Assumption [6fa). In view of Lemma [2] and
the compactness of O, (iii) holds if, for all § € ©,

limsuplimsup sup |[n '0,(0) —1(6)] =0 Pp--a.s. (34)
50  n—oo |0/—0|<s

Noting that 1,,(6) = > 7_; Ag,0(6), the left hand side of is bounded by A + B + C, where

A := limsup sup

n—oo '€

n'Y (Ago(f Akoo(o))‘,
k=1

n

n! kZl(Ak,oo(el) — Ago(0))

B :=limsuplimsup sup
6—0 n—oo |0'—0|<§

)

C :=limsup |n

n—o0

12 (Akoo(0) — Eg«Akoo(0))] -
=1

Fix z € X. Setting m = 0 and letting m’ — oo in Lemma (a)(b) show that supgcg |Ak,0(8) —
Aoo(0)| < supgee |Ak,0(0)— Ak 0.0 (8)|+5upgee [Ar,0, ()= Ak oo (8)] < 24500/ while suppeg [Ar0(6)—
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Ao, (0)] + supgeg |Ar0,0(0) — Agoo(0)] < 4By follows from Lemma [3(c). Consequently, A = 0
Py+-a.s. B is bounded by, from the ergodic theorem and Lemma [9

n

hrn limsupn~! sup  |Ag oo 0’ — Apoo(8
mptimsupn 30 s A0 0) = Beoe(0)

=lmEp | sup [Apgo(f) —Apc(@)|| =0 Pys-ass.
6—0 |0"—0|<6

C =0 Pp+-a.s. by the ergodic theorem, and hence (iii) holds. For (iv), observe that

Eg«| log pg(Yl\Y WL )| < oo from Lemma ¢). Therefore, for any m, Eg«[log pg (Y1 ]Y WL )]
is uniquely maximized at 6* from Lemma 2.2 of Newey and McFadden)| (1994) and Assumption [6[b)
Then, (iv) follows because Egy+[log pg (Y1|Y

from Lemma [3| and the dominated convergence theorem. Therefore, (iv) holds, and the stated

—m> —m>

—m> WL )] converges to [(#) uniformly in 6 as m — oo

result is proven. O

Proof of Corollary[3. Observe that [n11,(6,£) — 1(0)] < sup,,cx [n~ 0 (6, o) — 1(6)] because
infoocx 1n(0,20) < 1,(0,§) < sup, cx In(6,70). Furthermore, 1,,(6,€) is continuous in 6 from the
continuity of 1,,(6,zp). Therefore, the stated result follows from the proof of Proposition O

Proof of Lemmal{]. The proof is similar to the proof of Lemmall] Because the time-reversed process

{Z—k }o<k<n+m is Markov conditional on W” . we have, for 1 <k <n+m,

Pe(Xn—k S A’XZ—IC-H?Y w ) PG(Xn k€ A‘Xn k+17Yn .

—m>

W,

Therefore, {X,,_1}o<k<nim is an inhomogeneous Markov chain given (Y ,,, W", ), and part (a)

s
follows.
For part (b), because (i) the time-reversed process {Z,_j}o<k<nt+m is Markov conditional on

W" . (ii) Y,_k+p is independent of X"/ M1 given (Xn_k+p,?qi_k+p_1,W’_‘m), (ill) Xp—pyp is

m

independent of the other random variables given X,,_j4,—1, and (iv) Wj,_p4, is independent of

Zﬁ;nkﬂ’ ! " k+p ! we have, for 1 <k < n+m,

given W_

N

Py (Xp k€ Al Xy pip, Yy W) =Py (Xn . eA’Xn pipy Y P W’F’““H). (35)

m
Observe that in view of n — k > —m,
Py (X € A X oy, Yo, 77 Wi lor )

k+p—1 — _
= Py (Xn-pop| Xns € AT W)

X Py (X € ALY EFT WP W) By (Y W)
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It follows that
[ Go, Xy oy Y P W R ()

Jro Go(@, X, Yooy 07 WP (d)

—m

Py (Kb € A| Xy, Y7L W)

where Go(2, Xp—tips Yo P W R (X | X = 2, YT Wkl
po(Xp—k = :v,Yfm'TEp 17W7imk++1p 1|Yfm’VV m)-
When p = 1, we have pg(Xp_ip| Xt =2, Y, _, btp—l Wn_k+p_1) =po(Xp_ps1| X =12) €
[0_,04]. Therefore, the stated result follows with ,uk(ﬂ k] W EHP=L A defined as
BT ki gy Japok = a Y" ke %wz:m‘“:f’:l@_m,w_m)mdx). (36)
[y Po(Xpop =, Y R W Ky L W) u(d)

Note that [, po(Xp_ =z Y”mkﬂp ! Wﬁmk:f’ Y, Wop)p(da) > 0 from Assumption

~n—kt+p—1 n—k+p—1
Y, . , W )

When p > 2, it follows from a derivation similar to that pg(n—p1p|Tn—r, ek

is bounded from below by

n—k+p—1 ~N
infoinfy, . 2. . Po(Tn_iplTn_t)infginf .- S [l i 90(Yal Y1, 2, W)

_ 37)
r— ; (
SUPg SUPg, o w Po(Tn—kip|Tn—) SUPp SUD_n— nokip- T n*é’ﬂ 90(Yi|Y 1,2, W5)

and an upper bound on pg(xn_k+p|xn_k,?2:l,z+pfl,Wz:lzﬂkl) is given by the inverse of .
Therefore, the stated result holds with jiy defined in . O

Proof of Lemmal[j. When k > n — 1, the stated result holds trivially because ngl a; = 1 when
J < i. We first show part (a) for k¥ < n — 2. Because the time-reversed process {Z,_ to<k<n+m
is Markov conditional on W™ and W,, is independent of Z,,_; given W,_1, we have Py(X} €
Y W) = [Pe(Xp € |an1, Y s WD Py(dzy 1 [Y,,, W), Similaly, we obtain
Po(Xp € Y W) = [Py(Xy € -|xn,1,?’j;n1,W’1;n1)Pg(dxn UYL W Tt follows
that

‘Pg (Xk S \wm,Wﬁm) — Py (Xk € ‘?yi;nlv“ﬂi;})‘

g/m(xke.

Therefore, the stated result follows from applying Lemmas [4] and [§] to the time-reversed process
{X,—i}"=F conditional on (Y "W -,
For part (b) for £ < n — 2, by using a similar argument to the proof of Lemma 4} we can show

xn_l,?"i;l,wml) ’]P’e (dzn 1 [Y" 0, W™, — Py (dxn_l\?’i:nl,vvﬁ;})) .

—_m

that (i) conditionally on (?ﬁm,W’lm,X_m), the time-reversed process {X,_k}o<k<ntm—1 IS an

inhomogeneous Markov chain, and (ii) for all p < k < n+m — 1, there exists a probability measure
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[ (F P WL 0 A) such that, for all (Y7, TP WP g,

—m —-m

Po (Xn—k € Al Xn—pip, Yoy, W Xy = )
—n—k+p—1 —k4p—
=Py (Xn—k; € A‘Xn—/f-i-vaTim p ’Wﬁm +p 1’X,m = l’)
—ktp—1 hp—1y - —ktp-1 —ktp—
> w(?z—k; P 7WZ_l]z+p I)Mk(?im P 7WT_ka+p laX—m =, A)a
with the same w(?ﬁizﬂj_l, Wz:l,:ﬂ’ 1 as in Lemma Therefore, the stated result follows from
a similar argument to the proof of part (a). O

Proof of Lemma[6 The proof follows the argument of the proof of Lemma 13 in DMR. When

(k,m) = (1,0), the stated result follows from \IJJLOJ(H) = Eg+] ngWO, Xo = z], \11{70(9) = Ey+| gIWO],

SUPgeq \quék| < |¢i|oo, and Assumption Henceforth, assume (k,m) # (1,0) so that k +m > 2.
For part (a), it follows from Lemma [10(a)—(e) that

k
V@) = VO <47 1l (Umtom A s )

t=—m+1
' k
; -
< 4_71%%;(9 |¢>t,!oot ZH (Qt—l,—m A Qt,k—l) ) (38)
=—m

where Q1 = [T (1= (V) and Qe o= [T (10— w(VE500D)

as defined in the paragraph preceding Lemma As shown on page 2294 of DMR, we have
i G loe < S (1Y 12107 oo /(11 V 12 < 206V m)R[SS2_ 6f]oo /(11 V 1)2] < (5 -+
m)?K; with K; € L379(Py+).

We proceed to bound Zf:,mﬂ(ﬂt—l,—m Ay 1) on the right hand side of . Similar to the
proof of Lemma fix e € (0,1/8p(p+1)]; then, there exists p € (0,1) such that Py« (1 —w(VZ:;) >
p) < e. Define I,; := Zi’gﬁ)* I{1 - w(Vﬁizﬂ)_l) > p} and vf := 3¢, Ip;. Observe that (recall
we define H?:c x; = 1 when ¢ > d)

[(a=3)/p] .
I «a- WV < p(uafs)/pJfL(bfs)/pj>+fz};”g;l§;}m+1H{lfw(viizz_bzp}
i=[(b—s)/p]+1 (39)

< P00 /ol

where the second inequality follows from |z| — |y| > |z —y], (lz/p])+ = |z+/p], s + ([ (b —
s)/p] +1) —p>b—p,and s+ p[(a —s)/p] —1 < a— 1. Similarly, we obtain
[(k—1-b)/p] o it
(1= w(Vi_o pish)) < ple 0w/l (40)

i=[(k—1—a)/p]+1

because k —2 —p|(k—1—-b)/p|+1>band k—2—p([(k—1—a)/p]+1)+p<a+p—1. By
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applying to Qi—1,—m with a =t —1,b = s = —m, applying to Qt,k_l with a =k — 1 and
b =t, and using and —m + 1 <t < k, we obtain

Qi1 < pLO—1FML/pI=V T8 L)/ )=k,
ST - ’ 41
Oy g < pl=1=D+/pl=vi™" < =)/ (4]) | =vE, D)
Observe that, for any p € (0,1), ¢ > 0 and any integers a < b,
o0 [(b—a)/2] o
3 <pt(t+a)/cJ A pL(b—t)/cJ) < 3 Loy S pltarel
t=—00 t=—00 t=|(b—a)/2|+1
<_¢ (pt(b—t(b—a)/%)/cJ + pL(L(b—a)/2J+1+a)/cJ) (42)
I—p
< % la+b)/2e]
L=p

From |) Zf:_mﬂ(Qt,l,,m/\Qt,k_l) is bounded by 2(p—|—1),ouk+m)/2(p+1”_”Em—P/(l—p). Because
Vzﬂj ~ is stationary and ergodic, it follows from the strong law of large numbers that (|(k +

m)/2(p + 1)])_11/Em_p — 2(p+ 1)Ep-[I;] < 2p(p + 1)e Py+-a.s. as k +m — oo. In view of
e < 1/8p(p + 1), we have Py« (p“k+m)/2(p+mf”fmfp > pllktm)/2(0+11/2 i 6.) = 0. Henceforth, let
{bk,m }k>1,m<0 denote a generic nonnegative random sequence such that Py« (by ,, > M i.0.) = 0 for
a finite constant M. With this notation and the fact that [(k+m)/2(p+1)]|/2 > |(k+m)/4(p+1)],
Zf:_mH(Qt,L,m A Qt7k_1) is bounded by

plEtm)/4(p+1)] Dk (43)
and part (a) is proven.

For part (b), it follows from and Lemma )—(e) that

k —-m
\II‘]jc’m’:L’(e) - \Ifi’m,w,(Q)‘ <4 Z (Qt—l,—m A Qt,kq) |7 o0 + 2 Z Qt,k—l\‘f’g‘oo'
t=—m-+1 t=—m/+1

The first term on the right hand side is bounded by (k + m)2K;plktm/Ap+Dlp,  with K; €

L377(Pp+) from the same argument as the proof of part (a). For the second term on the right hand
. I ~ ~ .- - k—1— h—2—pi+
side, write 1 as Q1 = Q,m,k,lﬁt’lzn_l, where Qt’lgn_l = le(zt(kffl/g)/ijrl(l_w(vk—2—gz+zl))>'

—m

By applying to Qt_,zn_l with @ = —m and b = ¢, we obtain ;" < plem=t)/pl=v™ 1y
conjunction with Qo< 1, the second term on the right hand side is bounded by ZQ_m,k_lRm,m/,

tk—1 =
where
Ry =Y diml¢lloes  dim = min{1, Lm0/l (44)
t=—m'+1

From a similar argument to 7, we can bound Q_,, 51 as Q_,p1 < plEFm/AR+DIE,
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It follows from (—m — t)"ty;™ — Eg«[l,;] < pe Pygs-as. as t + m — —oo that Py« (dim >
pl=m=0/pl/2 3 6) = 0. Furthermore, |¢| satisfies Py (|¢] |00 > p~ L™= D/21/416)) = 0 from
Markov’s inequality and the Borel-Cantelli lemma. Therefore, ]P’g*(dt,m|¢5|oo > pllem=0/pl/4 4 6)) =
0. In conjunction with 0 < dt,m‘d)z‘oo < 00 Py+-a.s., we obtain R,, := SUD,y > Bmymy < 00 Pge-as.,
and the distribution of R,, does not depend on m because V; is stationary. Therefore, part (b) is

proven by setting B,, = R,,. O

Proof of Proposition[3 By setting m = 0 and letting m’ — oo in Lemma @ we obtain

SUPgeq SUPzex |‘If,1€0$(9) - \111 (0] < (Ki + Bo)k?pl*/4®+1] 4; 5. Furthermore, the sum over
finitely many supgeq Supgcx \\I/k 0.2(0) — \II}COO(H)\ is 0o(n'/?) Pp«-a.s. because

Ep+ [suppeq SUPLecx |\I'k 0.2(0)]] < oo and Eg- [supgeg |\1!1 (0)]] < o0 from Assumption |8 Therefore,
we have n 1/2V91n(9*,$0) =n"1230 Wk koo (07) = n*1/2 Y oreq Vi oo (0%) + 0p(1).

Because {‘11,1600(9*)}202
sequence, it follows from a martingale difference central limit theorem (McLeish) 1974, Theorem
2.3) that n=1/23°7_, \IJ,1€7OO(9*) —q N(0,1(6%)), and part (a) follows. For part (b), let pno(xo)
denote pg(Y7| Y0, W§, ), and observe that

_o 18 a stationary, ergodic, and square 1ntegrable martingale difference

Vo | pno(xo)é(dzo) _ [ Volog pno(zo)pne(xo)é(dzo)
J pro(z0)&(dao) J pro(x0)&(dxo) '

Therefore, min,, Vgl, (6%, z0) < Vgl (0*,€) < maxy, Vgl (0%, x0) holds, and part (b) follows. [

veln(0> g) =

Proof of Lemma[7 The proof follows the argument of the proof of Lemma 17 in DMR and the
proof of Lemma [6] Fix e € (0,1/32p(p 4+ 1)] and choose p € (0,1) as in the proof of Lemma [|
When (k,m) = (1,0), the stated result follows from supgeq |por| < |Pk|oo. Henceforth, assume
(k,m) # (1,0) so that k +m > 2. For a < b, define S? := S>°__ #p;. Let {bpm}h>1.m<0 denote
a generic nonnegative random sequence such that Pg«(by ,, > M i.0.) = 0 for a finite constant M.
We prove part (a) first. Write I'y 5, 2(0) — T (0) = A+ 2B + C, where

A —varg[Ska\V,m, m = ] —varg[Ska\V,m, —m =]
—varg[S¥, L [VE ]+ varg[S5, L [V,

B := covg|pgx, Sf;ll+1|V_m,X,m = x| — covg|pgk, Sﬁ;lﬂlvlim],

C := varg[por| V" 1y X = @] — varg[gor V", ).

From Lemma [L0}(f)—(k), A is bounded as

|A| < 24 Z (Qs—l,—m A Qt—l,s A Qt,k—l) ‘d)t|oo|¢s|oo

m+1< <t<k 1
—m+1<s<t<k—1

From equation (46) of DMR on page 2299, we have max_,,41<s<t<k—1 |t|oo|Ps|oc <
(3 + 1) T2 612 /(1] V 1P < (k + m)PK for K € L' (Bye).
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We proceed to bound Qg1 A1, A Quk_l. By using the argument in -, we obtain
Qe m A1 Aoy < <pL(s+m)/(p+1)J A plt=9)/ D] 5 pL(k—t)/(erl)J) oV Emp,

Furthermore, a derivation similar to DMR (page 2299) gives, for n > 2,

~

n/2n

s

3 <pts/(p+1)J A plt=9)/@+D) 5 pL(n—t)/(p+1)J> <9 (put—s)/(pw A pL(n—t)/(p+1)J>_
0<s<t<n s=0 t=s
From , the right hand side is bounded by
n/2
3 pln=9)/20] < cpln/awn] (45)
s=0

where the inequality holds because > 22 pl/b) < bple/tl /(1 — p) for any integers a > 0 and b > 0.
Hence, A is bounded by K (k + m)3pl+m)/4@+]p, by setting n = k + m in and noting
that (|(k+m)/4(p+ 1))t ﬁm p —4(p+1)Ep-[I);] < 4p(p+ 1)e < 1/2 Py--a.s. as k +m — oo.

For B, from Lemma (10| u ), , 41), t > —m, and , B is bounded as, with M =

MaX_ 1 <t<k—1 |¢k|oo|¢t\oo,

|B] <12 Z (Qe—1,—m A Q1) My,
—m~+1<t<k—1
<12 Y (p<t+m)/<p+1) A p<k—t>/<p+1>> o Emp My,
—m+1<t<k—1
< Cplth+m) 2+ 1)) vk

which is written as K (k+m)3plttm)/Ae+ DIy, o for K € L' (Pg+). C is bounded by 6Q% 1 m|¢r|%
from Lemma [10(h), and part (a) is proven.
We proceed to prove part (b). Write 'y, (0) = A+ 2B 4+ 2C + D, where

A= [Ska\V_m,X, /—x]—varg[S m+1|V_m,X, r=1]

B = 0[¢9k;5_m +1|V7m s X = 2],

C := covy[S*~ m+1, Jrl|V_m, X p=1- cove[Sk;lH, +1‘V—m X =2,
D := vary[S_ ,H\V_m, m = '] — varg[S~ ’+1‘V—m7 = 2.

T,z (0) — Al is bounded similarly to [Ty m.(0) — Tim(6)] in part (a) by using Lemma [10} From
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Lemma (g), B is bounded by 237, | Qi _1¢|Prloc|Pt|cc = B1 X Bz, where

L(k=1=1)/p] i m L(=m=t)/p) .
Bi=2¢le [  O-w(Vigi5)), Br= ) [I -w(Vigm) o

i=[(—m—t)/p|+1 t=—m/+1 i=1

B is bounded by ’¢k’oopt(k+m)/2(p+l)J by m from the same argument as part (a). Because Py (|¢g|oc >

p~ LkFm)2(+0]/2 5 o) = 0, By is bounded by pl-+m)/4e+D]p, . For By, because HZL(;lmft)/pJ (1—
tpi-1
W(Vitpiop

for R, ., defined in to show that Ba,, = SUP/>m B2 < 00 Pys-a.s. and By, is stationary.
Therefore, B is bounded by plt+m)/4r+ Dy, B, .

)) is bounded by plEm=0/Pl=n Ty from , we can use the same argument as the one

. . ~k —k—1
|C|+|D| is bounded by, with A; 5 := |covg[dar, Pos|V _p, Xy = &) —covg|ogr, os| Vs X_py =
'],
k—1 —-m —-m k—1 —-m k—1 _
Z Z At,s S 2 Z Z At,s S 2 Z Z <Qt—1,s A Qt,k—l) ‘¢t|oo|¢s|oo (46)
t=—m/+1s=—m'/+1 s=—m/+1 t=s s=—m/+1 t=s

Similar to , we obtain

V1o A Qs < (putfs)/(pﬂnfvi:;” A pL<k—t>/<p+1>J—uf—1) < (pL(t—s)/(p+1)J A pL(k—t)/(pH)J) oV n

Therefore, the right hand side of is bounded by

— k—1
k—1 7V—m
9 Z Z <pL(t—s>/<p+1)J A pL(k—t)/(p+1)J> P50V b Bt oo s oo (47)

s=—m/+1 t=s

DMR (page 2300) show that the following holds for £ > 1, m >0 and ¢,s < 0:

ift <(k+s—1)/2, then (Jt| —1)/2 < (3k+s—3)/4 —t,
if (k+s—1)/2<t<k—1,then (|t| —1)/4 <t + (—k — 35 + 1)/4.

Consequently, is bounded by

ll4m=2)/8p+ 15§ L2 S D) s |
s=—m/+1
(k+3)/2 =
| S pl@kEIAD gy ST LR ) g
t=s t=(k+s)/2
—m k—1
< CPUHm=DBEHDIEL S e S g 1S DA g

s=—m/+1 t=s

< pL(k+m)/16(p+1)J bim X E X Fppy oy,
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where E = 320 plU=1/4p+D]|g,| - and F, 0 = A pL(—m—s)/S(p+1)J—ys‘j’;‘és‘oo. Bo-
cause E € LY (Py+), F,, := SUDyy >, Finyme < 00 Pgs-aus., and F,, is stationary, |) is bounded by
plktm)/16(e+ D]y, ET,,, and part (b) is proven. O

Proof of Proposition[3 Define YT, »(0) := \IJ%m@@) + Tpmz(0) and Yp oo(0) = \Ilz’oo(e) +
Tk 0o(6), so that Val,(0,2) = > p_; Tro.(f). By setting m = 0 and letting m’ — oo in Lem-
mas |§| and |7} we obtain supgec supgex | Tk 0.2(0) — Thoo(0)] < (Ka+ Bo)k2plk/4e+D 4 o+ K (k3 +
D) ptF/16@+DI 0y . Furthermore, the sum over finitely many supgec Supgex | Tr0.2(0) — Tr.oo(0)]
is o(n) Pg«-a.s. because Eg- supgcq sup,ey | Tr02(0)] < oo and Eg« supgeq | Th,00(f)| < oo from
Assumption [8] Therefore, we have supgeq Sup,ex [P Vala(0,2) —n =130 Tioo(0)] = 0p(1).

Consequently, it suffices to show that

sup [n ™'Y~ Th oo (0) — Eg- [Lo,00(0)]| = 0. (48)
beq 1
Because G is compact, holds if, for all § € G,
1Y Yhoo(8) = Egr[Yo,00(6)] = 0, (49)
k=1

lim lim sup
6—0n—o0 |o'—0| <6

Y Thoo(0) =Y Thoo(0)] =0 Pge-aus. (50)
k=1 k=1

holds by ergodic theorem. Note that the left hand side of is bounded by
limgs_o limy oo n ™t Y p; sup|g/—g|<s | Lk,o0(0') — Ti,00(f)], Which equals
limg_,0 Eg supjg/_g <5 1T0,00(0") — Y0.00(0)| Pg=-a.s. from ergodic theorem. Therefore, (50) holds if

lim Eg sup |Yo,00(6") — Yo,00(#)| = 0. (51)
0—0 |0'—0|<6

Fix a point o € X. The left hand side of is bounded by 2A4,, + C},, where

Ap i=Eg-sup [Yomao(0) — Yo,00(0)], Cp, :=lim Ep« sup ’TO,m,xo(e/) — Y0,m,20 (0)‘ .
0eG 6—=0 |67—0|<6
From Lemmas [6] and [7} suppeg | Yo,m.wo(0) — Yo,00(0)] —p 0 as m — oo. Furthermore, we have
Eg+ sup,,,>1 suppec [ To,m,z0(0)| < 00 and Egp+ supgeq [Yo,00(0)] < 0o from Assumption |8 Therefore,
Ay — 0 .as m — oo by the dominated convergence theorem (Durrett} 2010, Exercise 2.3.7). C,,, =0
from Lemma |11|if m > p. Therefore, holds, and the stated result is proven. O

Proof of Proposition[4 Inview of and Propositions and part (a) holds if (i) Eg- [¥§ . (0)+
Iy oo(f)] is continuous in # € G and (ii) Eg*[\llgm(ﬂ*) + T000(6%)] = —1(6%). (i) follows from
(51). For (ii), it follows from the Louis information principle and information matrix equality
that, for all m > 1, Egy- [\Ilé’m(O*)(\Il&m(G*))’] = —[Ey- [\II%M(G*) + Tom(60%)]. From Lemmas@
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and [7] Assumption [§] and the dominated convergence theorem, the left hand side converges to
Eg [¥§ 00 (0%) (¥4 00 (0%))] = 1(6*), and the right hand side converges to —Eg- [¥§ . (0%) 4+ To,00(6*)].
Therefore, (ii) holds, and part (a) is proven.

For part (b), an elementary calculation gives, with p,e(x) denoting pp(Y7|Yo, W§, z),

[ n7tV21og pro(wo)pne(w0)é(dzo) | [(n 12V log pua(w0))?pre(x0)é(dao)

—1v72
nVela(8,8) = T paalz0)€(dao) * T paslo)€(do)
[ [ nTY2Vg1og puo(w0)pns(x0)€(dio) :
T paalz0)€(dao) |

The sum of the last two terms is 0, (1) because suppe Supex [~ Vg log ppg(z)—n=Y2 37, \Illlg,oo @) =
0p(1). Therefore, ming, n='V2l, (0, z0) + 0p(1) < n™1V21,(0,€) < maxy, n 'Val,(0,z0) + op(1)
holds, and part (b) follows. O

8 Auxiliary results

The following lemma provides the convergence rate of a Markov chain X;. When X; is time-
homogeneous, this result has been proven by Theorem 1 of Rosenthal| (1995)). This lemma extends

Rosenthal| (1995) to time-inhomogeneous X;.

Lemma 8. Let { X;}+>1 be a Markov process that lies in X, and let Py(z, A) :== P(X; € A|X;—1 = ).

Suppose there is a probability measure Q.(-) on X, a positive integer p, and £, > 0 such that
Pf(x,A) :=P(X; € A|X;p = 2) > e1Qi(A),

for all x € X and all measurable subsets A C X. Let Xo and Yy be chosen from the initial

distributions w1 and o, respectively, and update them according to P,(xz, A). Then,

L%/p]
IP(Xy € ) —P(Ye€)ov < J] (1 —ei).

i=1
Proof. The proof follows the line of argument in the proof of Theorem 1 of|[Rosenthal (1995). Start-
ing from (Xo, Yp), we let X; and Y; for ¢ > 1 progress as follows. Given the value of X; and Y3, flip a
coin with the probability of heads equal to ;4. If the coin comes up heads, then choose a point x €
X according to Q4p(+) and set X1, = Y1, = z, choose (Xiy1,..., Xiq1p—1) and (Yiq1,...,Yeqrp—1)
independently according to the transition kernel Pyii(xi1|xt), ..., Pip—1(Tt4p—1|Tt4p—2) condi-
tional on X;y, = x and Y;4, = z, and update the processes after ¢ 4+ p so that they remain equal
for all future time. If the coin comes up tails, then choose X;, and Y;{, independently according
to the distributions (P, (Xt, ) = €t4pQuip(1)) /(1 —tp) and (Pf, (Y, ) —et4pQi1p(-)) /(1 = Et4p),
respectively, and choose (X¢41,..., Xi1p—1) and (Yiq1,...,Yi4p—1) independently according to the

transition kernel Pyii(x¢y1|zt), ..., Pryp—1(Ti4p—1|Ti4p—2) conditional on the value of X;;, and
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Yi4p. It is easily checked that X; and Y; are each marginally updated according to the transition
kernel Pz, A).
Furthermore, X; and Y; are coupled the first time (call it 7') when we choose Xy, and Yi4,

both from Q;4,(-) as earlier. It now follows from the coupling inequality that
IP(Xy € ) —P(Yyx € )|lrv <P(Xp #Yy) <P(T > k).
By construction, when t is a multiple of p, X; and Y; will couple with probability ;. Hence,
P(T>k)<(1—ep) (1= €ksplp)

and the stated result follows. ]

The following lemma corresponds to Lemma 4 of DMR and implies that Eg« [Ag o ()] is con-

tinuous in #. This lemma is used in the proof of the consistency of the MLE.

Lemma 9. Assume Assumptions[IH6, Then, for all 6 € O,

lim Eg« | sup [Agoo(f') — Aoso(8)|| = 0.

6—0 |0—6'|<5
Proof. The proof is similar to the proof of Lemma 4 in DMR but requires a small adjustment when
p > 2. We first show that Ay, () is continuous in 0 for any fixed z € X and any m > p + 1.
Recall that Ag g, ,(0) = log po(Yo[Y L WO, X_ ., =z) and

—m>

Do (Y9m+l ‘?—mv ngv Xom = x)

pQ(Y:}n+1|?fma W_l X_m= .%') '

s W

—m>

po(Yo[Y Xy =a) =

—m>

For j € {—1,0}, we have

pe(Yim—s—l |?*m7 Wim? X om = 33)

J J _ o (52)
:/qe($a$m+1) I @@z T[] go(Vil¥ir, i, W)umH(axl,, ).
i=—m-+2 i=—m+1

Because the integrand is bounded by (69b4 )™, pg(Y£m+1|?,m, X_,, =2, W’ ) is continuous
in @ by the continuity of ¢y and gy and the bounded convergence theorem. Furthermore, when
j > —m + p, the infimum of the right hand side of in 6 is strictly positive Py«-a.s. from
Assumptions [I(d) and 8] Therefore, Agm (0) is continuous in § Pg--a.s. Because {Agn.(0)} is
continuous in # and converges uniformly in § € © Py--a.s., Ag oo (6) is continuous in 6 € © Py«-a.s.
The stated result then follows from Eg- suppcg [Ao,00(f)| < 00 by Lemma [3{c) and the dominated

convergence theorem. O

The following lemma is used in the proof of Lemmas [6] and [7]] This lemma provides the bounds
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on the difference in the conditional expectations of qb' = ¢ (0, Zﬁ_l, W¢) when the conditioning sets
: L(=Fk)/p] SV 4 i 0, .. = TTLE=0/p] N 1-pitp
are different. Define Q= [[;2; (1= w(Viipiop)) and Q= [ [ (1-— (Vk 1—pit1))

with defining Hi’:a x; = 11if b < a, where w(-) is defined in Lemma |1| and Vz = (Ya, wh).

Lemma 10. Assume Assumptions . Then, for allm’ >m >0, all -m<s<t<mn,albed,
and all x, 7’ € X and j = 1,2,

() |Eoldhy V" . X = ] — Egl ), [V ]| < 21—l ¥} oo
(0)  [Eoldpy [V ] = Eoldgy| V2]l < 21,6 |oos
() [Eoldh,[V" s Xom = ] — Bo[gh)[V",, ,,X, s =] < 2016
(d)  [Eoldh| V" s X = 2] — Eg[6,| V"0 s X = ]| < 204101167
() [Eoldh| V"] — Eolop |V 1| < 2% 1116},
and
(f)  [co¥olgar, dos| V]| < 201516t ool Dsoo,
(9)  [c0%[Bot, Pos| Vs Xm = ]| < 201 ] 6t 0| b5 0
(h)  [coVe[dat: Gos| V' s X = ] — TV [P0t Pos| V]| < 6Qs—1,—m|Pt|o|Ps] oo
(i) [coValdar, Pos|V iy Xem = ] — TV [0a1, Gos| Vs Xy = &' < 6Q5—1, 1| Dt ] 00| D00
(G)  [coValdar D0s V" ] — CoValdats D05 V7 1| < 621 |t ocl b oo
(k) |cove [¢9t7¢95|v oy X—m = ] — COV&[@@ta%s\V m 7X—m =z]| < 6Qtn 1] Pt |00 | @5 0o-

Proof of Lemma[10 To prove parts (a)-(c), we first show that, for all —m < k < ¢ — 1, all
probability measures p; and pg on B(X), and all V",

Sjp /PG(X:;—I € A’Xk = ﬂf,vim)ﬂl(dx) - /PQ(Xi—l € A‘Xk = $7V7_Lm)ﬂ2(d93)
L(t—1—k)/p] _— (53)
< I (-wevio).
=1

When k =t—1, holds trivially. When —m < k < t—1, equation and the Markov property
of Z; imply that Pe(X!_; € A|X;, V.,,) = Po(Xl; € A|Xy, Vy) = [Pe(X!_, € A|X; g =
Ti_1, VZ)pg(xt_l | Xk, VZ) p(dri—1). Consequently, from the property of the total variation distance,
the left hand side of is bounded by

H [ B € 130 =2, V(o) — [ Ba(Xio € X0 = 2, Vina(da)

TV

This is bounded by HL (t-1=k)/p J( (Vﬁiﬁz 1)) from Corollary and is proven.
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We proceed to show parts (a)—(c). For part (a), observe that

Eq] gt|vr_lm7X—m =2_p) = /Vé log pg (Y, 2| Yi—1, 2e—1, We)po(Xi_1 [V 1y #—m ) @2 (dx]_y ),
(54)

Ee[ jat|v7im] = /Vja logpe(}/;f? xt’?t—la Tt—1, Wt)pe(xi—l|Vim)u®2(dxi—1)v (55)

and py(xt_ V") = [pa(xt [V 0 @ m)po(x |V )pi(dz_p,). Note that, for any conditioning
set G, we have Pyg(X!_,|G) = 0 if gg(X;—1, X;) = 0. Therefore, the right hand side of (54) and

are written as

/Vg logQG(Yt’?tflaﬂUt,Wt)Pe(Xi—ﬂ]:)M@Q(dxi—l) +/+ Vg logqg(:vt,l,xt)pg(x§_1|}')u®2(dx§_l),
XG

with F = {V", . z_m},{V",.}. Therefore, part (a) follows from the property of the total variation
distance and setting k = —m in (53)). Parts (b) and (c) are proven similarly.
Part (d) holds if we show that, for all —m +1 < ¢ <n and VT_Lm,

sup ’]P@(Xg,l €A X m =2, V" )~ Po(X!_, € A|X =2, V")
A

[(n—1-t)/p] - (56)
X 2—pitp
< ]I (1 - W(Vn—2—pi+1)) :
i=1
When t > n —1, holds trivially. When ¢ < n — 2, observe that the time-reversed process
{Zn—k}Yo<k<nim is Markov. Hence, for any —m + 1 <t < k, we have Pp(X!_; € A|X_m,vlim)
: <t 7k . .
JPo(Xt_, € A|Xy = 24, V_,,)po(@e| X, V_,, ) pu(dy). Therefore, 1) is proven similarly to 1)
by using Lemma [5|b). Part (e) is proven similarly by using Lemma [5|a).
We proceed to show parts (f)—(k). In view of (55)), part (f) holds if we show that, for all
—-m<s<t<n,

sup  |Po(Xi_, € A, XS, € BV, —Po(X|_, € AIV", )Po(X:_, € BIV",)]|
A,BeB(X?)

L(t=1-5)/p] . (57)
—stpi—
< H (1 - w(vs+pz¥p)> :
i=1
When s > t—1, holds trivially because Hg:1 a; =1 when j < i. When s <t — 2, observe that
Pp(Xi_y € A, XS € B|V71m) = fB Po(Xi_y € AIX{_ = Xi—hVim)PG(X§—1|Vﬁm)ﬂ®2(dxi—1)
and Py(X:_, € BV, = [gpo(xs_ [V, )u®?(dx5_,). Hence, in view of the Markov property
of {X;} given V" | the left hand side of (57) is bounded by sup, sup, <y |Po(X_; € A|X, =
26, V) — Po(XL_, € A[V",)|. From (53), this is bounded by [T/ (1 — w(VIET))),

s+pi—p
and follows. Part (g) is proven similarly by replacing the conditioning variable V' with

m
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(X_pn, V",). Parts (h)-(k) follow from , , and the relation |cov(X, Y |F)—cov(X, Y| Fs)| <
|[E(XY|F1) — E(XY|F)| + [E(X|F1) — E(X[FR)|E(Y|F) + E(X[F)E(Y[F) - EY|FR)]. O

The following lemma corresponds to Lemma 14 of DMR and shows that Eg- [¥§ ,,, ,(6)], Eg-[¥5 ., .(0)],

and Egp«[I'o,m.»(0)] are continuous in 6.

Lemma 11. Assume Assumptions[IH8 Then, for j = 1,2, all x € X and m > p, the functions
N

0.m.(0) and Lo m(0) are continuous in 6 € G Pp«-a.s. In addition,

(@) limEge | sup |5, .(0) =), (07| =0,
d—0 |9/—9|§5

(b)  lim Eg [ sup  |Tom.e(8) — Tome(@)|| = 0.

d—0 |9’—9|§5

Proof. The proof is similar to the proof of Lemma 14 in DMR. For brevity, we suppress W;
and WO from ¢’ (9,2;_1,Wt) and the conditioning set. We prove part (a) first. Note that
SUPpeq SUPzex |\1167m7x(9)|3_j < (2 Z?:_mﬂ |¢7]00)? 9 € L1 (Pg+). Hence, the stated result holds if,

form>pand —-m+1<t<0,

lim sup (Eg[¢/ (0,2 )[Y" 0 Xom = 2] —Bol¢? (0.Z;_))[Y" . X =2]| =0 Pp-as.
5—)0‘91_9|S5
Write

A — —0 —— =0
Eg[¢? (0,2 1)|Y s X = 7] = /W(e, thl)p9(X§71 = x§,1|Y,m,X_m = x),u®2(dx§,1). (58)

0

For all x!_, such that pp(xt_,[Y ., X-m = 2) > 0, ¢/(6,xt_,,Y, ;) is continuous in § and
bounded by |¢!|o < co. Furthermore, pg(X! |, = xi_ll?o_m,X_m = z) is continuous in § and
bounded from above uniformly in 6 € G because pg(X!_; = xi_;, Y%, 1 [Y_ X = 2) is
continuous in § and bounded from above by (69b4)™ and pp(Y?,,,1|Y —m, X_mm = @) is continuous
in # and bounded from below by gtm/Pl H?:_m_H [ infpe go(Ye| Y11, z¢)pu(dzy) > 0. Consequently,
the integrand on the right hand side of is continuous in # and bounded from above uniformly
in # € G. From the dominated convergence theorem, the left hand side of is continuous in @,
and part (a) is proven.

Part (b) holds if, for —-m +1 < s <t <0,
lim sup [covy 60", Z21), 60", Zy) [V 0y X =
0—0 ‘glielgé

—covg[d(0', 7)), 80,7 )Y X = x]‘ =0 Pp-as.

This holds by a similar argument to part (a), and part (b) follows. O
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