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Abstract

There are many economic parameters that depend on nonparametric first steps. Ex-

amples include games, dynamic discrete choice, average consumer surplus, and treatment

effects. Often estimators of these parameters are asymptotically equivalent to a sample

average of an object referred to as the influence function. The influence function is useful

in formulating regularity conditions for asymptotic normality, for bias reduction, in effi-

ciency comparisons, and for analyzing robustness. We show that the influence function of

a semiparametric estimator is the limit of a Gateaux derivative with respect to a smooth

deviation as the deviation approaches a point mass. This result generalizes the classic Von

Mises (1947) and Hampel (1974) calculation to apply to estimators that depend on smooth

nonparametic first steps. We characterize the influence function of M and GMM-estimators.

We apply the Gateaux derivative to derive the influence function with a first step nonpara-

metric two stage least squares estimator based on orthogonality conditions. We also use the

influence function to analyze high level and primitive regularity conditions for asymptotic

normality. We give primitive regularity conditions for linear functionals of series regression

that are the weakest known, except for a log term, when the regression function is smooth

enough.
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1 Introduction

There are many economic parameters that depend on nonparametric first steps. Examples in-

clude games, dynamic discrete choice, average consumer surplus, and treatment effects. Often

estimators of these parameters are asymptotically equivalent to a sample average. The thing

being averaged is referred to as the influence function. The influence function is useful for a num-

ber of purposes. The form of remainder terms follows from the form of the influence function so

knowing the influence function is a good starting point in formulating regularity conditions. Its

variance is the asymptotic variance of the estimator and so it can be used for asymptotic vari-

ance estimation and asymptotic efficiency comparisons. It can be used to construct estimators

with improved properties, especially lower bias, as in Chernozhukov, Escanciano, Ichimura, and

Newey (2016). Furthermore, the influence function approximately gives the effect of a single

observation on the estimator, and so can be used for robustness comparisons. Indeed this use

is where the influence function gets its name in the robust estimation literature, see Hampel

(1974).

We show that the influence function is the limit of the Gateaux derivative with respect

to a smooth deviation, as the deviation approaches a point mass. That is, let ( ) denote

the limit of the estimator ̂ when  is the cumulative distribution function (CDF) of a single

observation. Also, let  = (1 − )0 +  where 0 is the true distribution and  some

alternative distribution. We find that the influence function is the limit of ( ) |=0 as
 converges to the CDF of a point. This calculation is an extension of the Von Mises (1947)

and Hampel (1974) formula for the influence function, which is the Gateaux derivative when

 is the CDF of a constant. That classic calculation does not apply to many parameters that

depend on densities, conditional expectations, or identification conditions. Choosing  so that

these objects exist for  , i.e. so that ( ) is well defined, allows the Gateaux derivative to

be calculated for many more estimators. For example,  can be chosen to be a continuous

distribution when ( ) depends on a density or conditional expectation. We characterize the

influence function of M and GMM-estimators.

In an extended example we use the Gateaux derivative limit to derive the influence function

of semiparametric estimators with a first step nonparametric two stage least squares (NP2SLS)

estimator. Here the first step estimates a function that satisfies an infinite set of orthogonal-

ity conditions and may satisfy linear restrictions, such as additivity. We derive the influence

function under correct specification and under misspecification. We apply this calculation to

obtain the influence function in new cases, including the average derivative of a quantile in-

strumental variables estimator. In considering orthogonality conditions other than conditional
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moment restrictions, nonlinear residuals, and linear restrictions on the first step our results go

beyond those of Ai and Chen (2007, 2012), Santos (2011), and Severini and Tripathi (2012).

Also, although asymptotic variances of some estimators have previously been derived for linear

conditional moment restrictions by Ai and Chen (2007) and Santos (2011), the influence func-

tion has not been. As discussed above, the form of the influence function is useful for many

purposes. Furthermore, it is not generally possible to uniquely derive the influence function

from the asymptotic variance (e.g. for least squares in a linear model with homoskedasticity).

Thus, the NP2SLS influence function formulae of this paper appear to be novel and useful even

for the well studied model of conditional moment restrictions that are linear in an unknown

function.

A characterization of the influence function as a solution to a functional equation is given in

Newey (1994). That characterization has proven useful for finding the influence function of many

important estimators, e.g. Newey (1994), Hahn (1998), Hirano, Imbens, and Ridder (2003),

Bajari, Hong, Krainer, and Nekipelov (2010), Bajari, Chernozhukov, Hong, and Nekipelov

(2009), Hahn and Ridder (2013, 2016), and Ackerberg, Chen, Hahn, and Liao (2015). The

Gateaux derivative limit provides a way to calculate the solution to the functional equation,

where the influence function emerges as the limit of the Gateaux derivative. In this way the

Gateaux derivative limit provides a way to circumvent the need to try to guess the solution of

the functional equation. We illustrate this calculation with examples, including NP2SLS. In

addition, the mixture form of  = (1− )0+  can help in formulating important primitive

conditions for existence of the influence function. For NP2SLS the form of  allows us to show

that ( ) is well defined for  6= 0 an essential condition. In this way NP2SLS provides a new
example where the Gateaux derivative limit is essential for finding the influence function.

Knowing the influence function is useful for specifying regularity conditions, because the

form of remainders is determined by the influence function. Regularity conditions that are suf-

ficient for negligible remainders can then be specified. Here we give a remainder decomposition

that leads to primitive conditions for asymptotic equivalence with the sample average of the

influence function. The remainder decomposition has three terms, a stochastic equicontinuity

term, a linearization term, and a linear functional of the first step. This decomposition is like

that of Newey and McFadden (1994) except we linearize the effect of the first step on the ex-

pectation of the moments rather than the sample moments. We give conditions for the linear

functional remainder that are more general in some respects than previously given by Andrews

(1994), Newey (1994), Newey and McFadden (1994), Chen, Linton, and van Keilegom (2003),

Bickel and Ritov (2003), and Ichimura and Lee (2010). These papers all build on pioneering

work on the asymptotic distribution of specific estimators in Robinson (1988), Powell, Stock,

[2]



and Stoker (1989), Pakes and Pollard (1989), Ait-Sahalia (1991), Goldstein and Messer (1992),

Ichimura (1993), Klein and Spady (1993), and Sherman (1993).

We give primitive regularity conditions for linear functionals of series nonparametric regres-

sion. These conditions apply to the linear remainder for any estimator with a first step series

regression. We find that the stochastic size of the remainder is nearly as small as is known

possible and the conditions on the number of series terms nearly as weak as possible when

the regression function is smooth enough. These results have the same small bias structure as

Newey (1994) but use recent results of Belloni, Chernozhukov, Chetverikov, and Kato (2015)

to obtain weak rate conditions for root-n consistency.

After the first version of this paper appeared on ArXiv, Luedtke, Carone, and van der Laan

(2015) and Carone, Luedtke, and van der Laan (2016) used the idea of smoothing the CDF of

an indicator in constructing efficient estimators. This idea is clearly useful in that setting but

we emphasize that we have a different goal, that is calculating the influence function of any

semiparametric estimator.

Summarizing, the contributions of this paper are to i) introduce a Gateaux derivative limit

formula for the influence function; ii) show that the formula is important for finding the influence

function for a NP2SLS first step; iii) give a general remainder decomposition that imposes

weaker regularity conditions than previously; iv) give primitive, weak regularity conditions for

linear functionals of a first step series regression.

In Section 2 we describe the estimators we consider. Section 3 gives the Gateaux derivative

limit formula and conditions for its validity. In Section 4 we derive the influence function when

the first step is the NP2SLS estimator for linear, nonparametric conditional moment restrictions.

Section 5 extends the results of Section 4 to orthogonality conditions, misspecification, nonlinear

residuals, and a restricted first step. Section 6 gives a remainder decomposition and the series

regression results. Section 7 concludes.

2 Semiparametric Estimators

This paper is primarily about estimators where parameters of interest depend on a first step

nonparametric estimator. We refer to these estimators as semiparametric. We could also refer to

them estimators where nonparametric first step estimators are “plugged in.” This terminology

seems awkward though, so we simply refer to them as semiparametric estimators. We denote

such an estimator by ̂, which is a function of the data 1   where  is the number of

observations. Throughout the paper we will assume that the data observations  are i.i.d. We

denote the object that ̂ estimates as 0, the subscript referring to the true parameter, i.e. the

parameter value under the distribution that generated the data.
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The Gateaux derivative limit formula applies generally to asymptotically linear estimators.

An asymptotically linear estimator is one satisfying

√
(̂ − 0) =

X
=1

()
√
+ (1) [()] = 0 [()

()] ∞ (2.1)

The asymptotic variance of ̂ is then [()()
 ]. The function () is referred to as the

influence function, following terminology of Hampel (1974). It gives the influence of a single

observation in the leading term of the expansion in equation (2.1). It also quantifies the effect of

a small change in the distribution on the limit of ̂ as we further explain below. Nearly all root-n

consistent semiparametric estimators we are aware of are asymptotically linear under sufficient

regularity conditions, including M-estimators, Z-estimators, estimators based on U-statistics,

and many others; see Bickel, Klaasen, Ritov, and Wellner (1993).

Many estimators have structure that facilitates derivation of the influence function. One

type of estimator with such structure, that includes most asymptotically linear estimators, is a

maximization (M) estimator where

̂ = argmax
∈

̂()

for a function ̂() that depends on the data and parameters. M estimators have long

been studied. A more general type that is useful when ̂() is not continuous has ̂(̂) ≥
sup∈ ̂()− ̂ where the remainder ̂ is small in large samples. The influence function will

depend only on the limit of the objective function and so is not affected by whether ̂ is an

approximate or exact maximizer of ̂().

Additional useful structure is present for generalized method of moments (GMM; Hansen,

1982) estimators where the moment functions depend on a first step nonparametric estima-

tor. To describe this type of estimator let (  ) denote a vector of functions of the data

observation  , and a function  that may be vector valued. Here  represents some first

step function, i.e. a possible value of a nonparametric estimator. GMM is based on a moment

condition [(  0)] = 0 assumed to be locally uniquely solved at  = 0 Let ̂ de-

note some nonparametric estimator of 0 where ̂ can depend on  to allow sample splitting,

such as a leave one out estimator, that is known to have good properties in some settings.

Plugging in ̂ to obtain (  ̂) and averaging over  gives the estimated sample moments

̂() =
P

=1(  ̂) For ̂ a positive semi-definite weighting matrix a semiparametric

GMM estimator is

̂ = argmax
∈
−̂() ̂̂()2

A GMM estimator is an M-estimator with ̂() = −̂() ̂̂()2. We note that this type

of estimator includes an explicit functional ( ) of the distribution  of a single observations,
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where (  ) = ( ) −  and  =  Many other estimators are also included as special

cases, e.g. see Newey (1994) and Chen and Liao (2015).

An M-estimator will be asymptotically linear under certain conditions. Suppose that ̂()

converges in probability to () that is twice differentiable at  and let  = 2(0)


be the Hessian of () at 0 Then the influence function will be

() = −−1()

where () will be described below. The GMM-estimator will be asymptotically linear with

() having a specific form. Let

 =
[(  0)]



¯̄̄̄
=0

  = plim(̂ )

The limit of the GMM objective function will be () = −[(  0)][(  0)]2

Under correct specification where [( 0 0)] = 0 the chain rule gives  = − .

Also, for GMM it will turn out that () = [( 0 0) +()] where () is an adjust-

ment term for the estimator ̂ of 0. The influence function for GMM is then

() = −()−1 [( 0 0) + ()] (2.2)

Here ( 0 0) + () will be the influence function of ̂(0) and the adjustment term ()

will be the influence function of
R
( 0 ̂)0(). These formulae for the influence function

are valid under regularity conditions, that allow for (  0) to not be smooth in  e.g. as

in Chen, Linton, and van Keilegom, (2003) and Ichimura and Lee (2010).

One specific example is a bound on the average surplus (integrated over heterogeneity) of a

price change when there are bounds on income effects, as in Hausman and Newey (2016a,b). Let

 denote quantity consumed of some good,  = (1 2)
 where 1 is price, 2 is income, 2(2)

be a weight function for income (such as an indicator for some interval divided by the length of

the interval), and () a possible conditional expectation function [| = ]. We assume that

 is a uniform bound on the derivative of demand with respect to income, i.e. the income effect.

We consider a price change from ̆1 to ̄1. Let 1(1) = 1(̆1 ≤ 1 ≤ ̄1) exp(−[1 − ̆1])

The object of interest is a bound on the weighted average over income of average equivalent

variation for a price change from ̆1 to ̄1 given by

0 =

Z
()0() () = 2(2)1(1)

If  is an upper (lower) bound on income effects then 0 is a lower (upper) bound on average

equivalent variation over income and individual heterogeneity of a price change from ̆1 to ̄1.
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This object is identified from the semiparametric moment function

(  ) =

Z
()0()− 

We will derive the influence function for this and other objects below.

3 Calculating the Influence Function

In this Section we describe the Gateaux derivative limit formula for the influence function. The

key object on which the influence function depends is the limit of the estimator when  has a

CDF  that is unrestricted except for regularity conditions. We denote this object by ( ).

One can think of ( ) as the object that is estimated by ̂ when misspecification is allowed.

The idea is that every estimator converges to something under some regularity conditions. The

function ( ) is that something. It describes how the limit of the estimator varies as the

distribution of a data observation varies. Formally, it is a mapping from a set F of CDF’s into

real vectors,

(·) : F −→ <

For M-estimators, ( ) = argmax∈ (  ) where (  ) is the probability limit of ̂()

when  has CDF  under well known regularity conditions that allow interchange of the limit

and argmax operations. In the surplus bound example

( ) =

Z
(̃) [| = ̃]̃ (3.3)

where  [|] denotes the conditional expectation under distribution 

An important feature of ( ) is that it may only be well defined when  is restricted in

some way. In the average surplus example ( ) will be well defined when [|] is well defined
where ()  0 In formal terms this feature means that the domain F of (·) is restricted.
To allow for a restricted domain we consider only variations in  that are contained in F . The
specific kind of variation we consider is a convex combination  = (1 − )0 + 


 of the

true distribution 0 with some other function 

 where  ∈ F for all small enough   The

superscript  and subscript  designate 

 as a member of sequence of functions approaching

the CDF of the constant . Under regularity conditions given below the influence function can

be calculated as

() = lim
−→∞

∙



((1− ) · 0 +  ·

)

¸
 (3.4)

where all derivatives with respect to  are right derivatives at  = 0 unless otherwise stated.

The derivative in this expression is the Gateaux derivative of the functional ( ) with respect
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to a deviation 

 − 0() from the true distribution 0 This formula says that the influence

function is the limit of this Gateaux derivative as 

 approaches the CDF of the constant .

Equation (3.4) can be thought of as a generalization of the influence function calculation of

Von Mises (1947) and Hampel (1974). That calculation is based on 

 =  where  is the

CDF of the constant . If (1− ) ·0+  · is in F then the influence function is given by the
Gateaux derivative

() =



((1− ) · 0 +  · )

The problem with this formula is that  = (1− ) ·0+  ·  will not be in the domain F for
many semiparametric estimators. In many cases  ∈ F (i.e. ( ) being well defined) requires

that certain marginal distributions of  are continuous. The CDF (1− ) ·0+  ·  does not
satisfy that restriction. Equation (3.4) circumvents this problem by allowing us to restrict 

to be in F through a choice of 

 The influence function is then obtained as the limit of a

Gateaux derivative as 

 −→  rather than the Gateaux derivative with respect to . This

generalization applies to most semiparametric estimators.

We can relate equation (3.4) to the pathwise derivative characterization of the influence

function in Newey (1994). Denote a parametric model as  where  denotes a vector of

parameters, with  ∈ F equal to the true distribution 0 at  = 0 Impose that each parametric
model is regular in the sense used in the efficiency bounds literature, so that  has a score

() (derivative of the log-likelihood in many cases, e.g. see Van der Vaart, 1998, p. 362) at

 = 0 and possibly other conditions are satisfied. Suppose that the set of scores over all the

regular parametric families has mean square closure that includes all functions with mean zero

and finite variance. This assumption is the precise meaning of the statement that we are not

restricting  except for regularity conditions. As shown by Newey (1994) the influence function

() is then the unique solution to the functional equation of Van der Vaart (1991),

()


= [()()

 ] (3.5)

as the score () varies over those for regular parametric models. This is a functional equation

that the influence function uniquely solves. In many cases () will be a linear functional

of the score. Root-n consistent estimation will not be possible unless () is a mean

square continuous functional of () in which case the Riesz representation theorem will

imply existence of () satisfying equation (3.5). Thus () can be thought of as the unique

function that gives a Riesz representation.

Equation (3.4) provides a way to calculate the solution to equation (3.5). Consider  as

a parametric submodel with parameter  =   Suppose that  and 

 are both absolutely

continuous with respect to a measure  with pdf 0 and derivative 

 respectively such that

[7]



 = (1 − )0 + 

 is nonnegative for all small enough  . The score for  will be () =

 ln[(1−)0()+()] = 

()0()−1 ignoring regularity conditions for the moment.

For this score equation (3.5) is

( )


= [()()] = [()


()0()] =

Z
(̃)(̃)(̃)

If (̃) is continuous at  then ( ) will approach () as 

(̃) approaches a spike at

. We illustrate this calculation in examples below as well as give regularity conditions for its

validity.

This calculation allows us to avoid figuring out the solution the solution to the functional

equation (3.5). For instance, there is no need to find the Riesz representations in Proposition 4

or 5 of Newey (1994). Instead, the influence function () emerges from the Gateaux derivative

limit calculation. The form of  also turns out to be useful for guaranteeing that ( ) exists

for NP2SLS. These advantages of equation (3.4) are highlighted in the examples to follow.

Another way to calculate the influence function is as the limit of a projection. Consider a

parametric submodel of the form () = 0()
£
1 + () 

¤
where () is a vector of bounded

approximating functions, such as splines or wavelets, normalized to have [()] = 0. For this

likelihood the score vector is () = (). Then by equation (3.5)

() =
()


([()()

 ])−1()

is the population least squares projection of () on () One could calculate () as the mean

square limit of () as the dimension of () grows so that linear combinations of () can

approximate any function. Variants of the related approach to finding the asymptotic variance

by taking the limit of

[()()
 ] =

()


([()()

 ])−1
()





have proven useful in several settings, see Ai and Chen (2003, 2007) and Chen and Liao (2015).

We could use this series expansion to compute the influence function but it is not an explicit

calculation and the limit may be difficult to compute in general. In comparison, the Gateaux

derivative approach just requires taking the limit of a derivative. Also, the Gateaux derivative

calculation does not rely on finding a natural choice of () or any other natural parameteriza-

tion of the limit of the estimator.

We can use the Gateaux derivative limit to characterize the influence function for semipara-

metric M-estimators. Let (  ) denote the limit of the objective function ̂() when the

CDF of  is  . Then under standard regularity conditions ̂ will converge to

( ) = argmax
∈

(  )

[8]



For notational convenience let  = ( ). Suppose that (  ) is twice continuously differ-

entiable in  and  for each  and  is in the interior of the parameter set. Then  satisfies the

first order conditions (   ) = 0. It then follows from the implicit function theorem

that  = −−12(0  )|=0 so that

lim
−→∞

∙





¸
= −−1() () = lim

−→∞
£
2(0  )|=0

¤


Here we see that the function () will be the limit of the cross derivative of ( ) with

respect to  and  .

We can apply this characterization to derive the influence function for GMM. Let  = ( )

and  denote the limits of the first step estimator ̂ and the weighting matrix, respectively,

when  has CDF   Also, let  [·] denote the expectation with respect to   For GMM

(  ) = − [(   )]
 [(   )]2 so that

(  ) = − [(   )
 ] [(   )]

Then under correct specification of the moments where [( 0 0)] = 0 the chain rule gives

lim
−→∞

∙





¸
= −()−1 lim

−→∞

∙



 [( 0  )]

¸
= −()−1 lim

−→∞

½



 [( 0 0)] +




[( 0  )]

¾
= −()−1 lim

−→∞

½Z
(̃ 0 0)


(̃) +




[( 0  )]

¾
= −()−1 {( 0 0) + ()} 

where the second equality follows by the chain rule, the third by the definition of   and the

fourth equality will hold under continuity of ( 0 0) in  with

() = lim
−→∞

½



[( 0  )]

¾
 (3.6)

Here we see by  = ( ) that () is the influence function of
R
( 0 ̂)0(). This ()

is the adjustment term that accounts for the presence of the first step estimator ̂ in the moment

conditions as discussed in Newey (1994). It can be calculated as the Gateaux derivative limit

in equation (3.6).

For M-estimators, certain nonparametric components of ̂() can be ignored in deriving

the influence function. The ignorable components are those that have been “concentrated out,”

meaning they have a limit that maximizes the limit of ̂(). In such cases the dependence of

these functions on  captures the whole asymptotic effect of their estimation. To show this

[9]



result, suppose that there is a function  of  and possibly other variables and a function

̃(   ) such that (  ) = ̃(    ) where

 = argmax


̃(   )

Here ̃(    ) is the limit of ̂() and  the limit of a nonparametric estimator on which

̂() depends, when  has CDF  . Since  maximizes over all  it must maximize over

function ̃ as ̃ varies. The first order condition for maximization over ̃ is

̃(  ̃   )

̃

¯̄̄̄
¯
̃=

= 0

This equation holds identically in , so that we can differentiate both sides of the equality with

respect to  evaluate at  = 0 and  = 0 and interchange the order of differentiation to

obtain
2̃(0   0)


= 0

Then it follows by the chain rule that

() = lim
−→∞

h
2̃(0    )|=0

i
= lim

−→∞

h
2̃(0 0  )|=0

i
 (3.7)

That is, the function  () can be obtained setting  = 0 and differentiating ̃(0 0  )

with respect   In this calculation we are treating the limit  as if it is equal the true value 0.

Equation (3.7) generalizes Proposition 2 of Newey (1994) and Theorem 3.4 of Ichimura

and Lee (2010) to objective functions that are not necessarily a sample average of a function

of  and  There are many important estimators included in this generalization. One of

those is NP2SLS where the residual includes both parametric and nonparametric components.

The result implies that estimation of the function of  that is the nonparametric component

 can be ignored in calculating the influence function of  Another interesting estimator is

partially linear regression with generated regressors. There the estimation of the nonparametric

component can be ignored in deriving the the influence function, just as in Robinson (1988),

though the presence of generated regressors will often affect the influence function, as in Hahn

and Ridder (2013, 2016) and Mammen, Rothe, and Schienle (2012).

To use the Gateaux derivative formula to calculate the influence function we need to specify



. Various kinds of restrictions on 


 may be needed to insure that  ∈ F . In the surplus

bound example [|] must be well defined where ()  0. In other examples an identifica-
tion condition may need to be satisfied. We are free to choose 


 in whatever way is convenient

for imposing these restrictions and ensuring that equation (3.4) holds. A particularly convenient

form of 

 is


(̃) = [1( ≤ ̃)()] (3.8)

[10]



where () is a bounded function with [()] = 1 The variable ̃ represents a possible value

of the random variable  and we suppress a  superscript and  subscript on () for notational

convenience. This 

(̃) will approach the CDF of the constant ̃ as ()0() approaches a

spike at ̃. The boundedness of () makes this distribution convenient, as further discussed

below. Also  will have other useful properties.

We will assume that  ∈ R and that 0 is absolutely continuous with respect to a product

measure  on R with pdf 0(). This assumption allows for individual components of 

to be continuously or discretely distributed, or some mixture of the two. By (̃) bounded

 = (1− )0 + 

 will be a CDF for small enough  with pdf with respect to  given by

 (̃) = 0(̃)[1−  + (̃)] = 0(̃)[1 + (̃)] (̃) = (̃)− 1

Note that by (̃) bounded there is  such that for small enough  

(1− )0 ≤  ≤ 0 (3.9)

so that  and 0 will be absolutely continuous with respect to each other. Also, for any

measurable function  and components  of  the marginal pdf  (̃) of  conditional

expectation  [|] of  given  and its derivative with respect to  are

 (̃) = 0(̃){1 + [()| = ̃]} (3.10)

 [|] =
[|] + [()|]

1 + [()|] 
 [|]


= [{ −[|]}()|]

as shown in Lemma A1 of the Appendix. These formulae will be useful for calculating the

influence function in many cases.

We are free to choose () in whatever way is convenient for the problem at hand. A

particular choice of () that is useful in several cases is a ratio of a sharply peaked pdf to

the true density. To specify such a () let () be a pdf that is symmetric around zero, has

bounded support, and is continuously differentiable of all orders with bounded derivatives. Also

let ̄

 = 

R
((− ̃))(̃)We will assume that (N )  0 for any open set N containing

, so that ̄

  0 for every  and . Let

(̃) = Π=1

(̃) 


(̃) =

³
̄



´−1
(( − ̃)) (3.11)

A corresponding (̃) is

(̃) = (̃)1(0(̃) ≥ 1)0(̃)−1 (3.12)

For this choice of (̃) equation, we will have [()] = 1 for large enough  and equation (3.4)

will hold when (̃) is continuous at  and 0(̃) is bounded away from zero on a set of ̃ that

has full  measure locally to  as shown and further discussed below.
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We can calculate the influence function for the surplus bound using this (). We assume

that the joint pdf 0(̃) of  = ( ) is bounded away from zero on a neighborhood of , so

for large enough , 0(̃) ≥ 1 on the set where (̃) is nonzero, and hence () = ()0(̃),

for large enough . In this case the formula for the derivative of the conditional expectation in

equation (3.10) gives

( )


=





Z
() [| = ] =

Z
()




 [| = ]

=

Z
()[{ − 0()}

( )

0( )
| = ] =

Z
()

0()
[

Z
{ − 0()}( )]

=

Z
()( − 0())( ) () = ()0()

Assume that 0(̃) 1(̃1), 2(̃2) and 10(̃) are continuous at  so that (̃)[̃− 0(̃)] is

continuous at . Then as  −→∞ we have




( ) −→ ()[ − 0()] (3.13)

We can also characterize the influence function in this example using Proposition 4 of Newey

(1994). To do so we need to find the solution to the Riesz representation in equation (4.4) of

Newey (1994). Multiplying and dividing by the marginal density 0() givesZ
()() = [()()] () = ()0()

Here () = 0()
−1() gives the Riesz representation in Proposition 4 of Newey (1994), so

the influence function of the surplus bound is in equation (3.13).

This example shows how the Gateaux derivative formula in equation (3.4) is a direct cal-

culation of the influence function. At no point in the Gateaux derivative calculation did we

need to solve for (). Instead the expression for () emerged from the derivative calculation.

In contrast, to apply Proposition 4 of Newey (1994) we had to find the solution to a Riesz

representation. We will show that the Gateaux derivative is similarly useful in the even more

challenging and novel example of NP2SLS.

We give a precise theoretical justification for the formula in equation (3.4) by assuming that

an estimator is asymptotically linear and then showing that equation (3.4) is satisfied under a

few mild regularity conditions. One of the regularity conditions we use is local regularity of ̂

along the path  

Definition 1: ̂ is locally regular for  if there is a fixed random variable  such that

for any  = (1
√
) and 1   i.i.d. with distribution  

√
[̂ − ()]

−→ 

[12]



Local regularity means that
√
[̂ − ()] has the same limiting distribution under a

sequence of local alternatives as it has when  = 0 for all , i.e. at 0. Recall that the pdf

of  will be  () = 0()[1 + ()] for bounded (). We expect that such a deviation is

so well behaved that ̂ will be locally regular in most settings under sufficient, more primitive

regularity conditions. For these reasons we view local regularity as a mild condition for the

influence function calculation.

The next result shows that the influence function formula (3.4) is valid for 

 as specified

in equation (3.8). It would be straightforward to extend this validity result to more general

classes of 

 but the result we give should suffice for most cases.

Theorem 1: Suppose that i) ̂ is asymptotically linear with influence function () and

for each  is locally regular for the parametric model (1−)0+
; ii)  is a product measure;

iii) (N )  0 for any open set containing ; iv) there is an open set N containing z and a

subset N̄ of N such that a) (N ) = (N̄ ), b) (̃) is continuous at  for ̃ ∈ N̄ ; c) there is
  0 such that (N̄∩{z : f0 (z ) ≥ }) =(N̄ ) Then ( ) exists for  large enough and

satisfies equation (3.4).

The proof of Theorem 1 is given in the Appendix.

We want to emphasize that the purpose of Theorem 1 is quite different than Van der Vaart

(1991, 1998) and other important contributions to the semiparametric efficiency literature. Here

 ( ) is not a parameter of some semiparametric model. Instead ( ) is associated with an

estimator ̂, being the limit of that estimator when  is a distribution that is unrestricted

except for regularity conditions, as formulated in Newey (1994). Our goal is to use ( ) to

calculate the influence function of ̂ under the assumption that ̂ is asymptotically linear. The

purpose of Theorem 1 is to justify this calculation via equation (3.4). In contrast, the goal of

the semiparametric efficiency literature is to find the efficient influence function for a parameter

of interest when  belongs to a family of distributions.

To highlight this contrast, note that the Gateaux derivative limit calculation can be ap-

plied to obtain the influence function under misspecification while efficient influence function

calculations generally impose correct specification. Indeed, the definition of ( ) requires that

misspecification be allowed for, because ( ) is limit of the estimator ̂ under all distributions

 that are unrestricted except for regularity condition. Of course correct specification may lead

to simplifications in the form of the influence function. Such simplifications will be incorpo-

rated automatically when the Gateaux derivative limit is taken at an 0 that satisfies model

restrictions.

Theorem 1 shows that if an estimator is asymptotically linear and locally regular then the

[13]



influence function satisfies equation (3.4), justifying that calculation. This result is like Van

der Vaart (1991) in having differentiability of ( ) as a conclusion. It differs in restricting the

paths to have the form (1− )0 + 

. Such a restriction on the paths actually weakens the

local regularity hypothesis because ̂ only has to be locally regular for a particular kind of path

rather than the general class of paths in Van der Vaart (1991). The conditions of Theorem 1

are stronger than Van der Vaart (1991) in assuming that the influence function is continuous

at  and that the pdf of  is bounded away from zero on a neighborhood of . We view these

as weak restrictions that will be satisfied almost everywhere with respect to the dominating

measure  in many cases. We also note that this result allows for distributions to have a discrete

component because the dominating measure  may have atoms.

The weak nature of the local regularity condition highlights the strength of the asymptotic

linearity hypothesis. Primitive conditions for asymptotic linearity can be quite strong and com-

plicated. For example, it is known that asymptotic linearity of estimators with a nonparametric

first step generally requires some degree of smoothness in the functions being estimated, see

Ritov and Bickel (1990). Our purpose here is to bypass those conditions in order to justify the

Gateaux derivative formula for the influence function. The formula for the influence function

can then be used in all the important ways outlined in the introduction, including as a starting

point for formulating more primitive conditions for asymptotic linearity, which we do below.

4 Nonparametric Two Stage Least Squares

In this Section we derive the influence function for a semiparametric GMM estimator where

the first step 0 is the nonparametric two stage least squares estimator (NP2SLS) of Newey

and Powell (1989, 2003) and Newey (1991), abbreviated NP henceforth. Ai and Chen (2003)

considered a semiparametric version of this estimator, giving conditions for root-n consistency

and asymptotic normality of the finite dimensional component. As with consumer surplus, the

form of the influence function emerges from the calculation of the derivative. Also, we show

that the limit ( ) of the NP2SLS estimator exists and is unique for  6= 0 as is essential

for calculation of the influence function. The uniqueness and existence result depends on the

specification  = (1− )0 + 

. In this way the approach of this paper is important for a

key hypothesis that the limit of the NP2SLS exists and is unique.

We begin with a first step that is based on a linear, nonparametric, instrumental variables

model in NP where

 = 0() +  [|] = 0 (4.14)

where  are right hand side variables that may be correlated with the disturbance  and 
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are instrumental variables. We also first consider the case where the conditional expectations

[∆()|] and [∆̃()|] are both complete as a function of ∆ and ∆̃ respectively. The

identification condition for 0() in this model is completeness of [∆()|] and the other
completeness condition is important for the influence function calculations. If  and  are

continuously distributed with the same dimension and support equal to a rectangle then these

completeness conditions hold generically, as shown by Andrews (2011) and Chen, Chernozhukov,

Lee, and Newey (2014). Genericity justifies our assumption of completeness, although as with

other important generic conditions (e.g. existence of moments), completeness cannot be tested

(see Canay, Santos, Shaikh, 2013).

The NP2SLS estimator minimizes the objective function ̂() =
P

{ − ̂[(·)|]}2
over  ∈ Γ where ̂[·|] is a conditional expectation estimator and Γ imposes restrictions
on , including that  is a linear combination of known functions. We first consider the case

where Γ has a limit Γ that leaves  unrestricted, except for having finite second moment. Let

 [·] denote the expectation under  . For fixed  the limit of the objective function will be

 () =  [{− [()|]}2]. This function  () will also be the limit of other regularized

objective functions such as Darolles, Fan, Florens, and Renault (2011), so we expect that the

corresponding estimators converge to the same object. As usual for an extremum estimator the

limit of the minimizer will be the minimizer of the limit under appropriate regularity conditions.

Therefore the limit  of the NP2SLS estimator will be

 = argmin
∈Γ

 () = argmin
∈Γ

 [{ − [()|]}2]

A problem with this calculation is that we do not know if  exists or is unique when Γ

is unrestricted. This problem occurs because  appears inside a conditional expectation. Our

framework helps. The use of the  we are working with allows us to specify 

 in such a way

that  exists and is unique when  is small enough. For this purpose we modify our choice

of (). Let () be as specified in equation (3.11) except that the product is only taken

over components of () Let ∆() be a bounded function with [∆()] 6= 0 and other

properties discussed below. We then choose  () to be

(̃) = 1(0(̃ ̃|) ≥ 1) [0(̃ ̃|̃)]−1 (̃ ̃)(̃) (̃) = [∆()| = ̃][∆()]

We impose the following condition.

Assumption 1: a) [∆()|] and [∆̃()|] are complete as functions of ∆() and

∆̃() respectively and b) the conditional pdf 0(̃ ̃|̃) of ( ) conditional on  is bounded

away from zero on a neighborhood of () uniformly in 
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The following result shows that for the function (̃) above the minimum  exists for small

enough  and derives the form of  .

Lemma 2: If Assumption 1 is satisfied, ∆() is bounded, and [∆()] 6= 0, for all 

small enough then  = argmin  () exists and is unique and there is () with (0) = 0

and

 () = 0() + ()∆()
()


=

Z
[̃ − 0(̃)](̃ ̃)[∆()]

With this result in place we can derive the influence function for a variety of different

estimators with NP2SLS first step. We begin with a plug in estimator of the form

̂ =

X
=1

()̂() (4.15)

where () is a known function. This ̂ is an estimator of 0 = [()0()]. The limit 

of ̂ under  will be

 =  [() ()]

As shown by Severini and Tripathi (2012), the following condition is necessary for root-n con-

sistent estimability of this  .

Assumption 2: There exists () such that () = [()|] and [()
2] ∞

This assumption and generalizations to follow will be key conditions for the form of the

adjustment term () for first step NP2SLS. To calculate the influence function of ̂ note that

by Assumptions 1 and 2 there is a unique () such that

[()∆()] = [[()|]∆()] = [()∆()] = [()[∆()|]]
= [()()][∆()]

By the chain rule and Lemma 2

( )


=

 [() ()]


(4.16)

= [()0()()] +
()


[()∆()]

=

Z
{(̃)0(̃)− 0}(̃ ̃)+

½Z
[̃ − 0(̃)](̃ ̃)

¾
[() ()]

As  −→∞we will have
R {(̃)0(̃)−0}(̃ ̃) −→ ()0()−0 and

R
[̃−0(̃)](̃ ̃) −→

 − 0() for (̃) and 0(̃) continuous at  by the construction of (̃ ̃). Also, as shown
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in the proof of Theorem 3 below, there will exist bounded ∆() with [∆()] 6= 0 such that
[() ()] −→ () for (̃) and 0(̃) continuous at , so we have

Theorem 3: If Assumptions 1 and 2 are satisfied, 0()  0, and each of (̃) 0(̃) (̃)

and 0(̃) are continuous at ( ) then there is ∆() such that for NP2SLS

lim
−→∞

( )


= () = ()0()− 0 + ()[ − 0()]

Here we find that the influence function of ̂ of equation (4.15) is () of Theorem 3. Like

the consumer surplus example a nonparametric residual −0() emerges in the calculation of
(). Unlike the surplus example the residual is from the structural equation (4.14) rather than

a nonparametric regression. The function () of the instrumental variables is a key component

of the influence function. Here () is defined implicitly rather than having an explicit form.

This implicit form seems inherent to the NP2SLS first step, where existence of () satisfying

Assumption 2 is required for root-n consistency of ̂, as shown by Severini and Tripathi (2012).

Note that () is the solution of a “reverse" structural equation involving an expectation

conditional on the endogenous variable  rather than the instrument . An analogous “re-

verse" structural equation also appears in a linear instrumental variables (IV) setting. Let

̂ = (
P

=1 

 )
−1P

=1  be the linear IV estimator having limit 0 = ([

 ])

−1[]

A linear IV analog of the structural function 0() is 
0 and of parameter 0 is

0 = [()(

 0)].

A corresponding estimator of 0 is ̂ =
P

=1 ()

 ̂ It is straightforward to show that the

influence function of ̂ is

()(0)− 0 + ()[ − 0] () = 
¡
[


 ]
¢−1

[()]

Here () is obtained from “reverse" IV where  is the right hand side variable and  is the

instrumental variable. The function () is a nonparametric analog of () where linear IV is

replaced by the solution to a conditional expectation equation.

Assumption 2 will only be satisfied when () satisfies certain conditions. When[()
2] 

∞ Assumption 2 requires that () have Fourier coefficients, with respect to the singular

value basis corresponding to the operator [·|] (for compact [·|]) that decline fast enough

relative to the inverse of the singular values; see Section 15.4 of Kress (1989). This condition

requires some “smoothness" of () and will rule out some functions, such as indicator functions

of intervals.
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Although asymptotic variances and efficiency bounds have previously been derived by Ai

and Chen (2007, 2012), Santos (2011), and Severini and Tripathi (2012), the influence function

of Theorem 3 appears to be novel. As discussed above, the form of the influence function is

useful for many purposes, such as constructing estimators with improved properties. In this way

the NP2SLS influence function formulae of this paper may be useful even for the well studied

model of conditional moment restrictions that are linear in the first step.

There is a different way of estimating 0 that is analogous to Santos (2011). By Assumption

2 and iterated expectations

0 = [[()|]0()] = [()0()] = [()] (4.17)

Based on the last equality an estimator of 0 could be constructed as ̃ =
P

=1 ̂() where

̂ is an estimator () The influence function for this estimator is the same as in Theorem 3.

This equality of influence functions occurs because equation (4.17) is satisfied for any  where

Assumption 2 holds, i.e. () =  [ ()|] for some  () Therefore equation (4.17) will

hold with  replacing  and  replacing   so that ̃ will have the same limit as ̂ when the

distribution of a single observation is  . Because the influence function is calculated from the

limit of the estimator, equality of the limits will mean that ̃ and ̂ have the same influence

function.

This influence function calculation can be extended beyond the estimator of (4.15) to other

semiparametric GMM-estimators. This extension requires that we specify how [( 0  )]

depends on  , as we do in the following condition:

Assumption 3: There exists () such that for all   [( 0  )] = [() () ]

For (  ) = ()()− Assumption 3 holds with the () in (  ). More gener-
ally the Riesz representation theorem implies that Assumption 3 is equivalent to [( 0  )]

being a mean square continuous functional of  () In addition the Riesz representation

theorem implies equivalence of Assumption 2 with mean square continuity of [( 0  )]

in [ () |]. If Assumption 2 holds then substituting [()|] for () and apply-

ing iterated expectations gives

[()
 ()


] = [[()|]

 ()


] = [ ()[

 ()


|]]

which is a mean square continuous, linear functional of [ () |] Also, mean square
continuity of [() () ] in [ () |] and the Riesz representation theorem
imply that there exists () such that

[()
 ()


] = [ ()[

 ()


|]] = [[()|]

 ()


]
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where the second equality holds by iterated expectations. As  () varies over a mean

square dense set of functions then this equation implies Assumption 2. Similar uses of the Riesz

representation theorem are given in Newey (1994), Ai and Chen (2007), and Ackerberg, Chen,

Hahn, and Liao (2014).

We can use Assumptions 2 and 3 and Lemma 2 to calculate the influence function of a

semiparametric GMM estimator with a NP2SLS first step. Recall from the discussion of equa-

tion (2.2) that the influence function of semiparametric GMM is determined by the correction

term () for the first step and that () is the influence function of
R
(  ̂)0() When

Assumptions 2 and 3 are satisfied it follows exactly as in equation (4.16) that

[( 0 ( ))]


=

[( 0  )]


=

()


[()∆()]

=

½Z
[̃ − 0(̃)](̃ ̃)

¾
[() ()]

Then as for Theorem 3 we have:

Theorem 4: If Assumption 3 and the other hypotheses of Theorem 3 are satisfied then for

the NP2SLS first step

lim
−→∞

[( 0  )]


= () = ()[ − 0()]

An interesting example is the average derivative estimator of Ai and Chen (2007), where

(  ) = ̄()()− for some known ̄(). Let () =−0()−1[̄()0()]

and suppose that Assumption 2 is satisfied for this (). Integration by parts and interchanging

the order of differentiation and integration gives

[( 0  )]


=

[̄() ()]


=

[() ()]


= [()

 ()


]

so that Assumption 3 is satisfied. Then by Theorem 4 the adjustment term is () = ()[ −
0()] It follows by (  ) = ̄()() −  that the influence function of ̂ =

−1
P

=1 ̄()̂() is

() = ̄()
0()



− 0 + ()[ − 0()]

The asymptotic variance associated with this influence function is

[()
2] = [

½
̄()

0()



− 0 + ()[ − 0()]

¾2
] (4.18)

In Appendix B we show that this asymptotic variance formula is identical to that of Ai and

Chen (2007) under their conditions, which includes the requirement that there exists ∆∗()
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such that () = [∆∗()|] We do not need this condition here because we have imposed
correct specification in calculation of the influence function. When misspecification is allowed

it becomes important that such a ∆∗() exists, as in Proposition 6 below and in Ai and Chen

(2007). In this way the results here contribute by showing that one condition Ai and Chen (2007)

impose is not necessary for calculating the influence function. The results also contribute by

providing the form of the influence function, and not just the asymptotic variance.

5 Orthogonality Conditions

The above results can be generalized to a setting where the first step estimation is based on

orthogonality of a possibly nonlinear residual ( ) with a set of instrumental variables, where

 denotes a function of the endogenous variables . In this Section we give this generalization.

We continue to use the structure of  in the derivation but depart from the previous Section in

just assuming that the limit  of the NP2SLS estimator exists and is unique when  is the true

distribution of a single observation. The previous demonstration of existence and uniqueness

motivates our proceeding under those conditions. We expect existence and uniqueness continue

to hold in this more general setting but leave that demonstration to future work.

Let () = (1()  ())
 be a vector of instrumental variables that are functions

of . We will analyze estimators based on the population orthogonality conditions

[()( 0)] = 0 for all  (5.19)

The idea is that as  grows linear combinations of () can approximate any element of

some nonparametric, infinite dimensional set of instrumental variables. The set of instrumental

variables could be all functions of  with finite variance, in which case the orthogonality con-

ditions will be equivalent to the conditional mean zero restriction [( 0)|] = 0. The set
of instrumental variables could also be smaller, such as the set of functions that are additive in

functions of  or depend on only some function of , such as a subvector of . We could define

the orthogonality conditions in terms of the set of instrumental variables, but it actually saves

on notation and detail to formulate orthogonality conditions and define the set of instrumental

variables in terms of ().

These orthogonality conditions motivate estimating 0 by minimizing a quadratic form in

sample cross products of () and ( ). We consider the estimator that uses the inverse

second moment matrix of the instrumental variables as the middle matrix in this quadratic

form. The corresponding objective function is

̂() = −1
X
=1

()( )


Ã
X
=1

()
()



!− X
=1

()( )
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where − denotes a generalized inverse of a matrix . This function can be interpreted as

the average of the squared predictions from regressing ( ) on (). The estimator ̂ we

consider is

̂ = arg min
∈Γ

̂()

where Γ is some set of functions that may impose restrictions on ̂. We continue to refer

to this as NP2SLS because it has the same form as the NP2SLS estimator in NP. We differ

here from NP in allowing () to be restricted in some way and in not necessarily imposing

compactness on Γ.

To describe the limit of ̂ let  = (1 − )0 + 

 as above and  [·] denote the corre-

sponding expectation. For each  close enough to zero define the set of instrumental variables

corresponding to {()}∞=1 and  to be

A = {() :  [()
2] ∞ and ∃ s.t. lim

−→∞
 [(()− ()

 )2] = 0}

By construction A is linear and closed in mean square. Also, A = A0 by equation (3.9).
Consider the Hilbert space H of functions of  that have finite second moment at  and

inner product  [()()]. For () ∈ H let  (() ) and  ( ) denote the orthogonal

projection of ( ) and () on A when the true distribution is   It follows exactly as in

Newey (1991) that the limit of the NP2SLS objective function will be

 () =  [ (() )
2]

Suppose that there is a set Γ that is linear and closed in H0 contains each Γ and that for all
∆ ∈ Γ there exists ∆ ∈ Γ with ∆ −→ ∆ in H0. For example, Γ might be the closure in H0
of additive functions of some subvectors of . Also, it follows by () bounded that closed sets

in H0 are also closed in H . It then follows as in Newey (1991) that the limit of the NP2SLS

estimator will be

 = argmin
∈Γ

 ()

We will use first order conditions for  to characterize the adjustment term () for NP2SLS

in this setting. To do so it is helpful to introduce some additional objects and be more specific

about the structure. Let  denote a scalar and ∆() some function of the endogenous variables

 with finite variance such that ∆() ∈ Γ Then we have  () + ∆() ∈ Γ for any  by Γ
linear. We will assume that there is  ( ) such that for ∆ () =  ()

 (( + ∆) )



¯̄̄̄
=0

=  (∆ )
0(( ) )


= 0(0∆  ) (5.20)
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Let

A = {0(0∆ ) : ∆ ∈ Γ} Ā equal the closure of A in H0
∗( ) equal the projection of () on Γ in H0.

The following condition will be used to characterize the adjustment term () for ̂.

Assumption 4: a) () ∈  for all K ,  ≤  and each  ; b) there is  ( ) such

that for all  small enough and any ∆ ∈ Γ,  ((+∆) ) and 0(( ) ) satisfy equation

(5.20); c) Assumption 3 is satisfied for some () and for the projection ∗() of () on

Γ in H0 there exists () ∈ A0 such that ∗() = −∗(0)

Assumption 4 a) requires that the functions () are nested in the sense that for every

fixed ̄ and ̄ the function ̄̄() can be approximated in mean square by ()  as 

grows for some  . It will automatically hold when () does not depend on , e.g. as for

power series, and will also hold for regression splines. Assumption 4 b) adds structure that is

useful when ( ) is nonlinear in 

As an example consider 0 = [()0()] with a linear residual ( ) =  − ()

() = 1(1) + 2(2) restricted to be additive in distinct components of  = (1 2) and

the set of instrumental variables is all functions of  with finite mean-square. Here 0 = −1 Γ
will be the mean-square closure of the set of additive functions of the form 1(1)+2(2) and

the instrument orthogonality condition is [−0()|] = 0. Then Ā = {0(∆ ) : ∆ ∈ Γ}
is the closure of the set of conditional expectations of additive functions. For Assumption 4 c)

to hold in this example it is sufficient that there is () such that () = [()|] because

by iterated projections, it will follow that ∗() = ∗([|] ) = ∗()

As a second example consider the endogenous quantile model of Chernozhukov and Hansen

(2004) and Chernozhukov, Imbens, and Newey (2007) where ( ) = 1(  ()) −  for a

scalar  with 0    1. Suppose that for  small enough the distribution of  conditional on

( ) is continuous in a neighborhood of  () with conditional pdf  (| ) Let derivatives
with respect to  be evaluated at  = 0. Then

 [(  + ∆)| ]


=  ( )∆() (5.21)

 ( ) =  ( ()| )

Assuming that the order of differentiation and projection can be interchanged, it follows by

iterated projections that

 (( + ∆) )


= 

µ
[(  + ∆)| ]


 

¶
=  (∆ )
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giving the first equation of Assumption 4 b). The second equation of Assumption 4 b) follows

similarly. More generally Assumption 4 b) will hold if ( ) = ( ()) with  ( ) =

[(  () + )| ]|=0.
Assumption 4 c) generalizes Assumption 2 to nonlinear residuals. Similarly to Assumptions

2 and 3, the existence of () can be shown to be equivalent to other conditions using the Riesz

representation theorem. If the function [()∆()] is a mean square continuous functional

of 0(0∆ ) over all ∆ ∈ Γ then Assumption 4 c) follows by the Riesz representation theorem.
We use Assumption 4 to obtain first order conditions for   By calculus of variations and

Assumption 4 the first order conditions for  are that

0 =  [ (( ) )
 (( + ∆) )


] =  [ (( ) ) (∆ )]

for all ∆ ∈ Γ. This equation is an identity in  . Differentiating in  at  = 0 and applying the

chain rule it follows that for all ∆ ∈ Γ

0 = [0(0∆ )0(0∆
0 )] +[0((0) )0(0∆ )()] (5.22)

+[0(0∆ )
 ((0) )


] +[0((0) )

 (0∆ )


]

+[0((0) )
0(∆ )


]

The following result gives alternative expressions for the third and fourth terms in this equation.

Lemma 5: A0 = A and for any () ∈ A0 and () with [()
2] ∞,

[() (|)]


= [(){()− 0(|)}()]

By applying Lemma 5 to the third and fourth terms of equation (5.22) and solving for the

first term we see that

[0(0∆ )0(0∆
0 )] = [∆()()]−[0((0) )

0(∆ )


] (5.23)

∆() = −0(0∆ )[( 0)− 0((0) )]− 0((0) )[0( )∆()− 0(0∆ )]

−0((0) )0(0∆ ) +[0((0) )0(∆ )]

This formula can be combined with Assumption 4 to obtain the adjustment term when the first

step is the NP2SLS estimator. We state the result as a Proposition, similarly to the Propositions

of Newey (1994), where derivations use formal calculations without specifying a complete set

of regularity conditions.
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Proposition 6: Suppose that Assumption 4 is satisfied and the pdf of  is bounded away

from zero in a neighborhood of . Let ∗() be the projection of () on Ā. If 0((0) ) =

0 and ∗(̃) and (̃ 0) are continuous at  then the adjustment term is

() = ∗()( 0)

If 0((0) ) 6= 0 0(∆ ) = 0 for all ∆ ∈ Γ there exists ∆∗ ∈ Γ such that
∗() = −0(0∆∗ ) and ∆∗(̃) from equation (8.31) is continuous at  then the adjustment

term is ∆∗()

We prove Proposition 6 in the Appendix. One important case where 0((0) ) = 0 holds

is where the orthogonality condition (5.19) is satisfied. This is the correctly specified case.

Another important case where 0((0) ) = 0 is where a solution to 0(() ) = 0 exists

even when the model is misspecified. We might think of this as an “exactly identified" case,

similarly to Chen and Santos (2015).

In the misspecified case where 0((0) ) 6= 0 Proposition 6 assumes that 0(∆ ) =
0. We do not know if an influence function exists when 0((0) ) 6= 0 and 0(∆ ) 6=
0. The problem is that  may be a nonparametric object evaluated at a point and hence

0(∆ ) may not have a representation as an expected product with the score. In

such cases
√
 consistent estimation may not be possible. For example, for quantile IV,

 ( ) =  ( ()| ) This is a nonparametric conditional density evaluated at a point,

which is not root-n consistently estimable. In the misspecified case (  ) may depend on

the value of this density at a point so that it may not be possible to root-n consistently estimate

. We leave analysis of this question to future work.

Under first step misspecification where 0((0) ) 6= 0 we also require that there exists

∆∗ () with ∗() = −0(0∆∗ ) This condition will impose additional smoothness condi-
tions on ∗() and hence on ∗(). It requires 

∗() be smooth like Assumption 3 requires that

() be smooth. In addition, it may be that the existence of ∆∗() with ∗() = 0(0∆
∗ )

is necessary for root-n consistency when 0((0) ) 6= 0 The existence of ∆∗() is like As-
sumption 3 for () that Severini and Tripathi (2012) showed is necessary condition for root-n

consistency under correct specification. We leave analysis of this question to future work also.

We illustrate by giving the adjustment term when the residual is linear in an addditive

function. As discussed earlier, () is a function such that () = [()|]. Then ∗()

is the projection of () on the closure of the set of conditional expectations of additive

functions conditional on . It follows that the adjustment term is

() = ∗()[ − 10(1)− 20(2)
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Another illustration is the adjustment term for the average derivative of an endogenous

quantile model where linear restrictions, such as additivity, may be imposed on the structural

function. Here (  ) = ̄()() −  as before, for some known weight function

̄() As before let () = −0()−1[̄()0()]  Let ( ) = 1(  ()) −  and

A0 be the set of all functions of  with finite variance. In this case 0( ) = [()|] and
the orthogonality conditions of equation (5.19) is [( 0)|] = 0, the endogenous quantile
model. As noted above we here have 0( ) = 0(0()| ). Assumption 4 c) says that

there must exist () such that for the projection ∗() of () on Γ,

∗() = −[0( )()|]

Similar to Assumption 3, existence of such a () places some “smoothness" restrictions on

(). Let 
∗() be the projection of () on Ā inH0. Proposition 6 then gives the adjustment

term

() = ∗()[1(  0())− ]

The function ∗() is central to the form of the correction term in Proposition 6. This

function quantifies how the instruments affects the influence function. Here ∗() is constrained

to be an element of Ā because NP2SLS projects functions of  on the instruments, just as

parametric 2SLS does. By choosing the orthogonality conditions it is possible to also vary ∗()

because the projection of functions of  on Ā will change. In fact, by choosing the orthogonality

conditions it appears possible to have ∗() to be equal to any function satisfying Assumption

4 c). Let () be any function satisfying Assumption 4 c) and consider () = (() ̃())

that is just identifying, in the sense of Chen and Santos (2015), meaning that

Ā = {(()) : [(())2] ∞}

In this case the projection of () on Ā is just (), so the correction term is ()( 0)

By choosing the orthogonality conditions in this way the correction term for the NP2SLS

estimator can vary over all functions satisfying Assumption 4 c). This result is analogous to a

parametric linear model, where 2SLS can be made to vary over all IV estimators by choosing

the instruments to vary over all linear combinations of instrumental variables.

6 Sufficient Conditions for Asymptotic Linearity

One of the important uses of the influence function is to help specify regularity conditions for

asymptotic linearity. The idea is that once we know both () and ̂ we know the remainder
√
(̂−0)−

P
=1 ()

√
 that must converge in probability to zero for ̂ to be asymptotically
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linear. This remainder term can then be analyzed to find conditions for it to be small. A

decomposition of this remainder is often useful in the analysis. We consider here a remainder

decomposition like Newey (1994), except that we impose stochastic equicontinuity on ̂(0)

before linearizing and allow for weaker convergence conditions for other remainders. These

conditions differ from the previous literature in requiring weaker hypotheses in one respect, as

detailed below. We also provide primitive conditions for the linear remainder term for first step

series regression. These conditions are sufficient for asymptotic linearity of a linear functional

of a series regression. They improve upon previous results by combining conditions from Newey

(1994) and Belloni, Chernozhukov, Chetverikov, and Kato (2015).

We focus on the key condition that
√
̂(0) is asymptotically linear. Let () =

R
( 0 )0()

and () be a linear functional that will be a Frechet derivative of () with respect to  at

0. Consider the decomposition

√
̂(0)−

1√


X
=1

[( 0 0) + ()] = ̂1 + ̂2 + ̂3

̂1 =
√
[̂(0)−

1



X
=1

( 0 0)− (̂)] ̂2 =
√
 [(̂)−(̂ − 0)] 

̂3 =
√
(̂ − 0)−

1√


X
=1

()

The term ̂1 is a stochastic equicontinuity remainder of the type considered by Andrews (1994)

and Van der Vaart and Wellner (1996). Extensive conditions for ̂1
−→ 0 can be found there.

These conditions can allow for ( 0 ) to not be smooth in  Many of these conditions

involve boundedness of derivatives of ̂ with respect to its arguments. When sample splitting

is used, where ̂ is estimated from different observations than in the average ̂(0), ̂1
−→ 0

will hold under much less stringent conditions on ̂; see Chernozhukov et. al. (2016a,b).

The term ̂2 is a linearization remainder from approximating (̂) by the linear functional

(̂ − 0). It will converge to zero if there is a pseudo norm k·k such that:

Assumption 5: For some 1   ≤ 2 () = ( − 0) + (k − 0k) and k̂ − 0k =
(

−12).

This condition separates nicely into two parts, one about the properties of the functional

() and another about a convergence rate for ̂. By virtue of the fact that () does not

depend on the data the () condition of Assumption 5 will often be satisfied when k − 0k is
an  norm with  ∞. This () condition is somewhat stronger than Frechet differentiability.
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Frechet differentiability would require that ()−(−0) = (k − 0k) whereas Assumption
5 requires () − ( − 0) = (k − 0k). When () is twice Frechet differentiable with

continuous second derivative the () condition will hold with  = 2 The ̂ condition requires

that ̂ converge to 0 at a rate that depends on . When  = 2 the ̂ hypothesis becomes

k̂ − 0k = (
−14) a −14 consistency condition like that previously used by Ait-Sahalia

(1991), Andrews (1994), Newey (1994), Newey and McFadden (1994), Chen and Shen (1997),

Chen, Linton, and van Keilegom (2003), Ichimura and Lee (2010), and others. Assumption 5

allows for   2 at the price of a faster convergence rate for ̂, similarly to Chen (2007) and

Ichimura and Lee (2010).

The condition that ̂3
−→ 0 is equivalent to the statement that (̂−0) is asymptotically

linear with influence function (). Here () is the correction term discussed earlier in the

paper. This specification of () will coincide with the earlier definition of () as the influence

function of
R
( 0 ̂)0() because it is the linear term in the expansion that determines

the influence function. As is discussed in Newey (1994) and Newey and McFadden (1994),

(̂ − 0) being asymptotically linear requires that ( − 0) be a mean square continuous

functional of . When  is a conditional expectation this means that there is () such that

( − 0) = [(){()− 0()}] (6.24)

When  is a pdf of  this means that

( − 0) =

Z
()[()− 0()]

The remainder ̂3 often has an important expectation component that is related to the bias

of ̂(0). Let  be some conditioning set (sigma algebra) such that [()|] = 0. Here

 may be constant, in which case the conditional expectation is the unconditional expectation

and [()|] = 0 is automatically satisfied because () has mean zero. For first stage

series regression estimators a convenient choice of  is the observations on the regressors. In

general,  can be chosen in a way that is convenient for a particular estimator. Assuming that

the expectation of the linear functional (̂) is the functional of the expectation,

[̂3|] =
√
[(̂ − 0)|] =

√
([̂|]− 0)

Often ̂ can be thought of as the result of some smoothing operation applied to the empirical

distribution. A corresponding interpretation of ([̂|] − 0) is smoothing bias in a linear

approximation to the moment conditions as a function of . Consequently, requiring that

̂3
−→ 0 will include a requirement that

√
 times this smoothing bias goes to zero. Also

̂3 − [̂3|] will need to go zero in order for ̂3
−→ 0. The term ̂3 − [̂3|] will
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generally be a stochastic equicontinuity remainder, which is bounded in probability for fixed 

and converges to zero as  approaches 0. In examples this part of the remainder goes to zero

under quite weak conditions, while the bias term going to zero requires important smoothness

conditions, as discussed below.

A condition that controls both the bias and stochastic equicontinuity terms in ̂3 is

Assumption 6: [()] = 0 [k()k2] ∞ and there is a sigma algebra  such that

[̂3|]
−→ 0 and ̂3 −[̂3|]

−→ 0

Assumptions 5 and 6 can be combined with stochastic equicontinuity and a few uniform

convergence conditions to give a precise result for semiparametric GMM.

Theorem 7: If ̂
−→ 0, ̂

−→ , 0 is in the interior of the parameter set, ̂() is con-

tinuously differentiable in a neighborhood of 0 with probability approaching 1 for any ̄
−→ 0

we have ̂(̄)
−→  is nonsingular, ̂1

−→ 0 and Assumptions 5 and 6 are sat-

isfied then ̂ is asymptotically linear with influence function −()−1 [( 0 0)+

()].

This result differs from those of Newey (1994), Newey and McFadden (1994), Chen, Lin-

ton, and van Keilegom (2003), and Ichimura and Lee (2010) in the separation into bias and

stochastic equicontinuity terms in Assumption 6. For simplicity we have assumed that ̂() is

differentiable in  but it would be straightforward to extend the results to allow ̂() to not

be smooth in , using results as in Chen, Linton, and Van Keilegom (2003) and Ichimura and

Lee (2010).

These conditions for asymptotic linearity of semiparametric estimators are more complicated

than the functional delta method outlined in Reeds (1976), Gill (1989), and Van der Vaart and

Wellner (1996). The functional delta method gives asymptotic normality of a functional of the

empirical distribution or other root-n consistent function estimator under just two conditions,

Hadamard differentiability of the functional and weak convergence of the empirical process.

That approach is based on a nice separation of conditions into smoothness conditions on the

functional and statistical conditions on the estimated distribution. It does not appear to be

best to use that approach for semiparametric estimators, where the first step often involves

nonparametric estimation of a conditional expectation or pdf. Even when the estimator is

Hadamard differentiable in the first step, the smoothing bias induced by a nonparametric first

step depends on the smoothness of the influence function, e.g. as in the series estimators

of Newey (1994). This feature of semiparametric estimators makes it important to explicitly

account for remainders like the [̂3|] of Assumption 6.
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A key step in using the remainder decomposition here to obtain asymptotic linearity is show-

ing that Assumption 6 is satisfied. Specifying primitive conditions for Assumption 6 requires

the most work because there are well known conditions for Assumptions 4 and 5 to be satisfied.

We illustrate how this can be done by giving conditions when  is a conditional expectation

and ̂ is a series estimator. For  a conditional expectation Proposition 4 of Newey (1994) gives

() = ()[ − 0()]

where () is from the Riesz representation in equation (6.24). The result we obtain below may

be of independent interest the size of the remainder term turns out to be as small as known to

be possible when the regression function is smooth enough.

To describe a series estimator of a conditional expectation let the true first step be 0() =

[|]. A series estimator ̂() of 0() can be formed as the predicted value at  of a series
regression of  on () where 

() = (1()  ())
 is a vector of approximating

functions. Here

̂() = () Σ̂−1̂ ̂ =
1



X
=1

() Σ̂ =
1



X
=1

()
()

 .

Conditions for the stochastic equicontinuity condition ̂1
−→ 0 from Andrews (1994) will

require that ̂ () have bounded derivatives of sufficiently high order in large samples. Primitive

conditions for such properties as well as for Assumption 5 could be obtained by applying the

results of Belloni, Chernozhukov, Chetverikov, and Kato (2015). Alternatively, much weaker

conditions for stochastic equicontinuity will suffice when sample splitting is used as in Cher-

nozhukov et. al. (2016a,b). Also, conditions for Assumption 5 may be obtained using mean-

square convergence rates of Newey (1997) or uniform rates of Belloni et. al. (2015). Specifics

will depend on the form of ()

Turning next to Assumption 6, note that as discussed above, root-n consistency requires

that there is () with ( − 0) = [(){()− 0()}]. Let  = [()
()], ̃() =

 Σ̂−1()  =
¡
[()

()
 ]
¢−1

[()0()] and () = ()  Note thatZ
()̂()0() =

1√


X
=1

̃()
1√


X
=1

̃()() =
√
0 =

√
[()()]

Then adding and subtracting terms gives, observing that () = ()[ − 0()],

̂3 =
1√


X


̃() −
√
[()0()]−

1√


X
=1

() = ̂31 + ̂32 + ̂33

̂31 =
√
[(){()− 0()}] ̂32 =  Σ̂−1

1√


X


()[0()− ()]

̂33 =
1√


X


[̃()− ()][ − 0()]
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Let  be the sigma algebra generated by {1  } Then since ̃() depends only on
{1  } and [ − 0()|] = 0,

[̂3|] = ̂31 + ̂32 ̂3 −[̂3|] = ̂33

We consider first ̂31 For Σ = [()()
 ] let  = Σ

−1 be the coefficients of the

population projection of () on () and () = ()  Then by 0() − ()

being orthogonal to () in the population,

̂31 = [(){()− 0()}] = −[{()− ()}{0()− ()}]

As pointed out in Newey (1994), the size of this bias term is determined by the product of

series approximation errors to () and to 0(). Thus, the bias of a series semiparametric

estimator will generally be smaller than the nonparametric bias for a series estimate of 0()

For example, for splines of order , if 0() and () are continuously differentiable of order

 and  respectively,  is r-dimensional, and the support of  is compact then by standard

approximation theory, for ̄ = min{ + 1} and ̄ = min{ + 1}

|[{()− ()}{0()− ()}]| ≤ −(̄+̄)

Turning now to ̂32 note that [
(){0()−()}] = 0 Also, () is the minimum

mean square error approximation to 0() so that () will get close to 0() as  grows.

Then ̂32 is a stochastic bias term that can be dealt with using the results of Belloni et. al.

(2015).

We see that the term ̂33 is a stochastic equicontinuity term that will be (1) as ̃() gets

close to (). In particular, since ̃() depends only on 1  ,

[̂233|] =
1



X
=1

[̃()− ()]
2 (|)

which will be small when  (|) is bounded and ̃()− () is small.

Turning now to the regularity conditions for asymptotic linearity, we follow Belloni et. al.

(2015) and impose the following assumption:

Assumption 7:  (|) is bounded, [()2] ∞ the eigenvalues of Σ = [()
()

 ]

are bounded and bounded away from zero uniformly in , there is a set  with Pr( ∈ ) = 1

and  −→ 0 and  such that
p
[{0()− ()}2] ≤   sup∈ |0()−()| ≤  

and for  = sup∈
°°()°°  2 (ln)  −→ 0

We also make use of a bound on the error from a series approximation of ().
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Assumption 8:
p
[{()− () }2] ≤  

Belloni et. al. (2015) give an extensive discussion of the size of   

 ,  , and  for

various kinds of series approximations and distributions for . For power series,  continuously

distributed on a rectangular bounded support in <, 0() and () continuously differentiable

of order  and  respectively, Assumptions 7 and 8 are satisfied with  = −  =

− and  = ,  =  and 2 (ln)  −→ 0. For tensor product splines of

order  ̄ = min{  + 1} and ̄ = min{  + 1} Assumptions 7 and 8 are satisfied with
 = −̄  = −̄  = ,  =

√
 and  (ln)  −→ 0

Theorem 8: If ( − 0) =
R
()[() − 0()]0() and Assumptions 7 and 8 are

satisfied then for () = ()[ − 0()],

√
(̂ − 0) =

X
=1

()
√
+(

√



 +  +  +

s
2 ln()


(1 +

√
))

Applying the previous discussion about regression splines to the remainder in Theorem 8

gives the following result on asymptotic linearity of (̂−0) when ̂ is a spline nonparametric
regression.

Corollary 9: If the hypotheses of Theorem 8 are satisfied, () are regression splines,

the minimum knot width is bounded below by  for a constant  and the support of  is

[0 1] then for () = ()[ − 0()]

√
(̂−0) =

X
=1

()
√
+(

√
−(̄+̄)+−̄+−̄+

r
 ln()


(1+(12)−(̄)))

Here we see that
√
(̂ − 0) will be asymptotically linear when

√
−(̄+̄) −→ 0

r
 ln()


(1 +(12)−(̄)) −→ 0 (6.25)

We have motivated these series estimation results as conditions for an important remainder

in an asymptotically linear representation to be small. Theorem 8 and Corollary 9 apply directly

to show asymptotic linearity of linear functionals ̂ = (̂) of a series regression as estimators

of 0 = (0), where
√
(̂ − 0) =

√
(̂ − 0) For example consider the average surplus

bound estimator ̂ =
R
()̂(). Here () = ()0(1|2) which will be discontinuous at

the upper and lower prices and at a pair of income values when 2(2) is an indicator function
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for an interval. If we assume that () is Lipschitz where it is nonzero then ̄ = 1 Since  = 2

in this example, the conditions for asymptotic linearity are

√
−(̄+1)2 −→ 0

r
 ln()


(1 +(1−̄)2)

There will exist  =  such that this condition holds if and only if ̄  12 This is a mild

smoothness condition that will be satisfied if () is also Lipschitz in between a finite number

of discontinuity points. More generally there will exist  satisfying equation (6.25) for certain

combinations of smoothness conditions on () and 0() as further discussed below.

The conditions of Theorem 8 and Corollary 9 improve significantly on those of Theorem 6.1

of Newey (1994) for linear functionals of series estimators. For example, for splines Assumption

6.6 of Newey (1994) requires that 3 −→ 0 which is stronger than the condition that

−2̄2 ln() −→ 0 in Corollary 9.

It is interesting to ask how small the remainder bounds in Corollary 9 are relative to any

known remainder bounds for series estimators of a functional. We restrict attention to es-

timators where some unknown function must be consistently estimated in order for ̂ to be

consistent. For example we do not consider optimal instrumental variables estimation. The

smallest known bounds are for a series estimator ̂ of 0 in the partially linear regression

[| ] = 
 0 + 0() Donald and Newey (1994) show that

√
(̂ − 0) =

1√


X
=1

() +(
√
−(̄+̄) +−̄ +−̄ +

r



) (6.26)

under weaker regularity conditions than those for Corollary 9 (that allow [()()
 ] to

be singular), where the form of ̂ and () are given in Donald and Newey (1994), ̄ =

min{  + 1} and  is the Holder smoothness of () = [|] The last term in the

remainder bound in Corollary 9 is larger for two reasons. One reason is the presence of ln().

The presence of ln() will not increase the remainder much because it grows slowly with .

The second reason is the presence of (12)−(̄) When ̄ ≥ 2 the (12)−(̄) term will

be bounded, so that the conclusion of Corollary 9 becomes

√
(̂ − 0) =

1√


X
=1

() +(
√
−(̄+̄) +−̄ +−̄ +

r
 ln()


)

Here the remainder term is the same size as Donald and Newey (1994), except for the (relatively

small) ln() term. In this sense Corollary 9 has a remainder that is nearly as small as known

possible when 0() is smooth enough. It is true that when ̄  2 the remainder in Corollary

9, will be larger, but the small size of the remainder when when ̄ ≥ 2 is an important

improvement on existing results.
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The additional term (12)−(̄) will be important for the minimal conditions for root-n

consistency allowed by Corollary 9. A linear combination of ̄ and ̄ must be large enough

in order that there exist  where the remainder term in Corollary 9 goes to zero. Ignoring the

ln() term a choice of with 
−2(̄+̄)
 proportional to

−2̄
 2

 will asymptotically

maximize the rate at which the remainder in Corollary 9 goes to zero when ̄ ≤ 2 Such a

 is given by  = (+̄) Note that ()
−2(̄+̄) = 1−2(̄+̄)(+̄) which goes to

zero if and only if

2̄ + ̄   (6.27)

Note also that this condition is automatically satisfied when ̄  2 Thus this is the min-

imal smoothness condition for existence of  such that the remainder term of Corollary 9

vanishes asymptotically. These necessary smoothness conditions are slightly stronger than the

corresponding conditions from Donald and Newey (1994), which are 2̄ + 2̄   Conditions

exactly analogous to 2 + 2   are known to be a minimal smoothness condition for exis-

tence of any root-n consistent estimators in some related settings, see Ritov and Bickel (1988)

and Robins et. al. (2009).

The estimator ̂ = (̂) may be asymptotically linear when  is chosen to maximize the

rate at which the mean square error of ̂0() goes to zero. Setting 
−2̄ proportional to 

is such a choice of , giving  = (+2̄) In this case Corollary 9 gives

√
(̂ − 0) =

1√


X
=1

() +(
(12)−(̄+̄)(+2̄) + (1−̄)(+2̄)−(12))

Here the remainder term goes to zero for ̄  2(1 + ) and ̄  2 a stronger condition

for ̄ and the same condition for ̄ as in Donald and Newey (1994).

7 Conclusion

In this paper we have introduced a Gateaux derivative limit formula for the influence function

and used it to characterize the influence function of M and GMM estimators. We found that this

approach is very useful for NP2SLS where we have derived the adjustment term for first step

estimation. We also used the formula and the remainder that it implies to specify regularity

conditions for asymptotic linearity. These included conditions for first step series regression

that are nearly as weak as known to be possible when the regression function is smooth enough.

In further work we have used the influence function to construct estimators with small bias,

see Chernozhukov, Escanciano, Ichimura, and Newey (2016). For this and other purposes it
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would be interesting to develop additional methods for estimating the influence function. We

leave this topic to future work.

8 Appendix A: Proofs

We first give the formulas for the marginal pdf  (̃) of a measurable function () conditional

expectation  [()|()] when the expectation is  [()] = [(){1 + ()}]

Lemma A1: For  (̃) = 0(̃)[1 −  + ()] and () = () − 1 the marginal pdf of
any measurable function () is  (̃) = 0(̃){1+ [()|() = ̃]} and for any () with

[|()|] ∞,
 [()|()] = [()|()] + [()()|()]

1 + [()|()] 

Proof: Let 1 = 1(() ∈ A) for any measurable set A. By iterated expectations,Z
1(̃ ∈ A) (̃) = [1] + [1[()|]] = [1] + [1()] =  [1]

 [1 • [()|()] + [()()|()]
1 + [()|()] ]

= [1{[()|()] + [()()|()]}] = [1()] + [1()()]

= [1(){1 + ()}] =  [1()] 

Proof of Theorem 1: Note that by (̃) bounded there is an open set  containing

zero such that for all  ∈  1 + (̃) is positive, bounded away from zero, and  (̃)
12 =

0(̃)
12[1 + (̃)]12 is continuously differentiable in  with

 (̃) =



0(̃)

12[1 + (̃)]12 =
1

2

0(̃)
12(̃)

[1 + (̃)]12
≤ 0(̃)

12(̃)

By (̃) bounded,
R £

0(̃)
12(̃)

¤2
  ∞ Then by the dominated convergence theorem

0(̃)
12[1+ (̃)]12 is mean-square differentiable and () =

R
 (̃)

2 is continuous in  on

a neighborhood of zero. Next, consider (̃) as specified in eq. (3.12). Take  large enough so

() is equal to zero with positive probability and () are both nonzero on a neighborhood of

, so that () is not constant. Then () is not zero so that ()  0. Then by Theorem 7.2

and Example 6.5 of Van der Vaart (1998) it follows that for any  = (1
√
) a vector of 

observations (1  ) that is i.i.d. with pdf (̃) is contiguous to a vector of  observations

with pdf 0(̃). Therefore,

√
(̂ − 0) =

1√


X
=1

() + (1)
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holds when (1  ) are i.i.d. with pdf (̃).

Next define 

 = [()()] = [()()] Then by [()] = 0,

 [()] = 

Suppose (1  ) are i.i.d. with pdf (̃) Let () = ((1− )0 + 

)  = (), and

̆() = ()− 

 Adding and subtracting terms,

√

³
̂ − 

´
=
√
(̂ − 0)−

√
( − 0) =

1√


X
=1

() + (1)−
√
( − 0)

=
1√


X
=1

̆() + (1) +
√



 −
√
( − 0)

Note that  [̆()] = 0. Also, by  bounded,

 [1(
°°°̆()

°°° ≥ )
°°°̆()

°°°2] ≤ [1(
°°°̆()

°°° ≥)
°°°̆()

°°°2]
≤ [1(

°°°̆()
°°° ≥)(k()k2 + )]

≤ [1(k()k ≥ − )(k()k2 + )] −→ 0

as  −→ ∞, so the Lindbergh-Feller condition for a central limit theorem is satisfied. Fur-

thermore, it follows by similar calculations that  [̆()̆()
 ] −→  Therefore, by the

Lindbergh-Feller central limit theorem,
P

=1 ̆()
√


−→ (0  ). Then
√
(̂ − )

−→
(0  ) implies that

√



 −
√
( − 0) −→ 0 (8.28)

Next, we follow the proof of Theorem 2.1 of Van der Vaart (1991). The above argument

shows that local regularity implies that eq. (8.28) holds for all  = (1
√
) Consider any

sequence  −→ 0. Let  be the subsequence such that

(1 + )
−12   ≤ −12 

Let  =  for  =  and  = −12 for  ∈ {1 2 } By construction,  = (1
√
)

so that eq (8.28) holds. Therefore it also holds along the subsequence , so that

√


½
 −

()− 0


¾
=
√



 −
√
[()− 0] −→ 0

By construction
√
 is bounded away from zero, so that  − [()− 0]  −→ 0.

Since  is any sequence converging to zero it follows that () is differentiable at  = 0 with

derivative 

.
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Next note that by the construction of (̃) for large enough  the function (̃) will be zero

outside the neighborhood N in the statement of Theorem 1 and 1   For such large ,

 = [()()] =

Z
N
(̃)(̃)0(̃) =

Z
N̄
(̃)(̃)

Consider any   0. By continuity of (̃) at  on N̄ and the construction of (̃), for large

enough  we will have k(̃)− ()k   for all ̃ ∈ N̄ where (̃)  0. Then by
R
N̄ (̃) = 1°° − ()

°° = k[()()]− ()k =
°°°°ZN̄ [(̃)− ()](̃)

°°°° ≤ ZN̄ k(̃)− ()k (̃) ≤ 

Therefore lim−→∞ 

 = () 

Proof of Lemma 2: Define ∆̄ = [∆()] (̃) = [∆()| = ̃]∆̄  and ∆̆ =R
∆()() By Assumption 1 b) we have (|) ≥ 1 for all ( ) with ()  0

when  is large enough. For all such 

(̃) = (̃ ̃|̃)−1(̃ ̃)(̃)

Note that () is bounded by condition b) and by ∆() bounded. Also

[()∆()|] = ∆̆()

We will first prove that for  large enough  [∆()|] is complete as a function of ∆()

for all  small enough. Consider   ̄ where ̄ is chosen so that ∆̄ + (∆̆ − ∆̄) 6= 0 for any
  ̄  Consider ∆() with [∆()

2] ∞ and  [∆()|] = 0 Note that [∆()()|]
is finite with probability one by () bounded and

[∆()()|] = ∆̆() ∆̆ =
Z
∆(̃)(̃ ̃)

so that ∆̆ exists. Then by eq. (3.10),

0 = (1− ) [∆()|] + ∆̆() (8.29)

If ∆̆ = 0 note that (1− )[∆()|] = 0 implying ∆() = 0 by Assumption 1 a). Suppose

∆̆ 6= 0 Then dividing through eq. (8.29) by (1− ) and choosing  = ∆̆[(1− )∆̄ ] we have,

by the definition of ()

0 = [∆()|] + [∆()|] = [∆() + ∆()|]

Assumption 1 a) then implies ∆() = −∆() Then  [∆()|] = 0 and  6= 0 implies
 [∆()|] = 0 which together with eq. (3.10) implies

0 = (1− )[∆()|] + ∆̆() = [(1− )∆̄ + ∆̆ ]()
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by the definition of () Since ∆̄ 6= 0 we must have ∆() 6= 0 and hence () 6= 0 by

Assumption 1 a). Then the previous equation implies

0 = (1− )∆̄ + ∆̆ = ∆̄ + (∆̆ − ∆̄)

contradicting the choice of   Therefore we have contradicted ∆̆ 6= 0, so that we must have

∆̆ = 0 and hence ∆() = 0

Next consider ( ) = 0() + ∆() for another constant . Note that for ̄ =R
̃(̃ ̃) and ̄ =

R
0(̃)(̃ ̃)

[()|] = ̄() [()0()|] = ̄()

By completeness of  [∆()|] as a function of ∆ and eq. (3.10),  [|] =  [( )|]
if and only if

(1− )[|] +  ̄() = (1− )[|] + [()|]
= (1− )[( )|] + [()( )|]
= (1− )[0()|] + (1− )∆̄() +  ̄() + ∆̆()

Noting that [|] = [0()|] and () 6= 0, this equation holds if any only if

 ̄ = (1− )∆̄+  ̄ + ∆̆ = 0

We can solve this equation for  = () to obtain

() = (̄ − ̄)[(1− )∆̄ + ∆̆ ]
()


= (̄ − ̄) ∆̄ 

Finally, let  (̃) = 0(̃) + ()∆(̃) We have  [ −  ()|] = 0 by construction
and  [ − ()|] 6= 0 for () 6=  () by completeness of  [∆()|] It therefore
follows as in NP that  () has a unique minimum at  . 

Proof of Theorem 3: By (̃) continuous at  and 0(̃)  0 positive in a neighborhood

of , there are bounded functions () such that [()] = 1 and [()()] −→ () By

completeness of [∆̃()|] the mean square closure of the range of [∆()|] is all functions
of  with finite mean square. Because the set of bounded functions is mean square dense, for

each  there exists bounded ∆() such that [{() − ()}}2] −→ 0 so that by the

triangle and Cauchy-Schwartz inequalities

|()−[()()]| ≤ |()−[()()]|+ |[(){()− ()}]| −→ 0

The proof then follows as in the text. 
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Proof of Lemma 5: Note that for any () ≥ 0 we have  [()] = (1 − ) [()] +

 [()()] so that

(1− ) [()] ≤  [()] ≤ [(1− ) + ] [()]

Apply this inequality to () =
£
()− ()

¤2
for each  to get A0 = A . Next, note

that for any () ∈ A = A0

 [() {()−  ( )}] = 0 =  [() {()−  ( )}]+ [() {()−  ( )}()] 

It follows that

 [() {0( )−  ( )}] =  [() {()−  ( )}] = − [() {()−  ( )}()]

Plugging in () = 0( ) −  ( ) = ∆ () ∈ A0 it follows from the Cauchy Schwartz

inequality and () bounded that


£
∆ ()

2
¤
= − [∆ () {()−  ( )}()] ≤ 

©

£
∆ ()

2
¤ª12


h
{()−  ( )}2

i


Dividing through by
n

h
∆ ()

2
io12

it follows that 
h
∆ ()

2
i
−→ 0 as  −→ 0 Therefore,

as  −→ 0

 [() ( )]− [()0( )]


=  [() {()−  ( )}()]
=  [() {()− 0 ( )}()] + (1)

Proof of Proposition 6: Note first that by Γ linear we have ∆0 ∈ Γ Then by Assumption
4 c)

[( 0  )]


= [()∆

0()] = [∗()∆
0()] = −[∗(0)∆

0()](8.30)

= −[0( )()∆
0()] = −[()0(0∆0 )]

= −[∗()0(0∆0 )]

where the first equality follows by Assumption 3, the second by ∆0 ∈ Γ and ∗ being the

projection of  on Γ the third by Assumption 4 c), the fourth by ∆0 ∈ Γ and ∗ being the

projection on Γ, the fifth by  ∈ A0 and 0 being the projection on A0, and the sixth by
0(0∆

0 ) ∈ Ā and ∗() being the projection of () on Ā. By ∗() ∈ Ā there is ∆

such that 0(0∆
 ) −→ ∗() in H0 Then by () bounded

[0(0∆
 )( 0)()] −→ [∗()( 0)()]

[0(0∆
 )0(0∆

0 )] −→ [∗()0(0∆0 )]
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Then for ((0) ) = 0 equation (5.23) gives[
∗()0(0∆0 )] = −[∗()( 0)()].

Combining this result with equation (8.30) we obtain

[( 0  )]


= [∗()( 0)()]

Taking limits as  −→∞we find that for for ((0) ) = 0 the correction term is 
∗()( 0)

Next consider the case where ((0) ) 6= 0 but 0(∆ ) = 0 and there exists

∆∗() with ∗() = −0(0∆∗ ) Then combining equations (5.23) and (8.30)
[( 0  )]


= [()()] (8.31)

() = ∗()[( 0)− 0((0) )]− 0((0) )[0( )∆
∗() + ∗()]

+∗()0((0) )−[∗()0((0) )]

Proof of Theorem 7: Consistency of ̂ for 0 in the interior of the parameter space

implies that with probability approaching one (w.p.a.1) ̂ will satisfy the first-order condition

0 = ̂(̂) ̂̂(̂)

For any ̄
−→ 0 we will have ̂(̂)

−→  = [(  0]|=0  ̂(̄)
−→  and

̂
−→  so ̂(̂) ̂̂(̄)

−→  Nonsingularity of  will then imply that

̂(̂) ̂̂(̄) is nonsingular w.p.a.1 and [̂(̂) ̂̂(̄)]−1
−→ ()−1 By ̂1

−→ 0

and Assumptions 5 and 6, the data i.i.d., and the Markov inequality we have

√
̂(0) =

1√


X
=1

[( 0 0) + ()] + (1) = (1)

Expanding ̂(̂) in  around 0 and solving the first-order condition for
√
(̂ − 0) gives

√
(̂ − 0) = −[̂(̂) ̂̂(̄)]−1̂(̂) ̂

√
̂(0) (8.32)

= −()−1
√
̂(0) =

1√


X
=1

() + (1)

() = −()−1 [( 0 0) + ()]

where ̄ is an intermediate value that lies on the line joining ̂ and 0 (and so is consistent for

0) and actually differs from row-to-row of ̂(). Q.E.D.

Proof of Theorem 8: It follows by Assumption 8 and Cauchy-Schwartz that¯̄̄
̂31

¯̄̄
≤ √ 
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Next, by 2 ln() −→ 0 it follows as in Belloni et. al. (2015) that Σ̂ is nonsingular

with probability approaching one. Then since everything in ̂31 and ̂32 is invariant to non-

singular linear transformations of () it can be assumed without loss of generality that

Σ = [()
()

 ] =  Note that ̂32 = ̂321 + ̂322 where

̂321 = 
X
=1

()[0()− ()]
√
 =

X
=1

()[0()− ()]
√


̂322 =  (Σ̂−1 − )

X
=1

()[0()− ()]
√


Note that [() {0()− ()}] = 0 and that

[()
2 {0()− ()}2] ≤ 2

2
[()

2] ≤ 2
2


Therefore we have

̂321 = ()

Also, note that   = [()
2] ≤ [()

2] and that

[

°°°°°
X
=1

()[0()− ()]
√


°°°°°
2

] ≤ [()
(){0()− ()}2] ≤ 2

2
 

Then it follows similarly to eqs. (4.12) and (4.14) of Lemma 4.1 of Belloni et. al. (2015) that

̂322 = (

s
2 ln()



√
)

Next, by Assumption 8, [{() − ()}2] = ([ ]
2) Then by  (|) bounded and

the Markov inequality,

X
=1

{̃()− ()}2 (|) ≤ 

X
=1

{̃()− ()}2

≤ 

X
=1

{()− ()}2+ 

X
=1

{ (Σ̂−1 − )()}2

= ([

 ]
2) +  (Σ̂−1 − )Σ̂(Σ̂−1 − ) = ([


 ]
2 +

2 ln()


)

where the last equality follows as in Step 1 of the proof of Lemma 4.1 of Belloni et. al. (2015).

The conclusion now follows by the triangle inequality which gives

̂3 = (
√
 +  +  +

s
2 ln()


(1 +

√
))
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9 Appendix B: Comparison of the Average Derivative Variance

with Ai and Chen (2007).

In this Appendix we show that if [∆̃()|] is complete as a function of ∆̃, as holds generically

in the setting of Section 4, then the asymptotic variance for the average derivative in equation

(4.18) is the same as on p. 25 of Ai and Chen (2007). The asymptotic variance corresponding

to the influence function of the average derivative in Section 4 is

[()
2] = [

½
̄()

0()



− 0 + ()[ − 0()]

¾2
]

The Ai and Chen (2007) expression for the variance of the average derivative estimator is given

on their p. 25 as

Ω∗2 = [{∗ − (2)∇∗(2) + −1[∗(2)|1](1 − ∗(2))}2]
 = 1 +[(2)∇∗(2)]

This expression is identical to [()
2] if

 = 1  = 21 =  
∗ = 0 (2) = ̄()∇∗(2) =

0()




0() = ∗(2) () = −−1[∗(2)|1]

All of these equalities except the last one hold by the respective definitions in the papers.

To show the last equality let ̃(2) = −−1∗(2) Consider equation (20) in Ai and Chen
(2007). Divide through by − and integrate the last expectation in equation (20) by parts

with ∇ =  to get

0 = [[̃(2)|1][(2)|1]]−[(2)(2)] = [[̃(2)|1](2)]−[(2)(2)]

= [{[[̃(2)|1]|2]− (2)}(2)]

for all (2) with finite second moment. This equation can only hold if

[[̃(2)|1]|2] = (2)

Since also [(1)|2] = (2) it follows by completeness that (1) = [̃(2)|1] and

hence the variance expressions are equal to each other.

As noted in Section 4 above the condition that (1) = [̃(2)|1] means that (1) is

restricted to be smooth in a way similar to () being restricted to be smooth.
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