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ON FREQUENTIST COVERAGE ERRORS OF BAYESIAN CREDIBLE SETS

IN HIGH DIMENSIONS

KEISUKE YANO AND KENGO KATO

Abstract. In this paper, we study frequentist coverage errors of Bayesian credible sets for an

approximately linear regression model with (moderately) high dimensional regressors, where the

dimension of the regressors may increase with but is smaller than the sample size. Specifically, we

consider Bayesian inference on the slope vector by fitting a Gaussian distribution on the error term

and putting priors on the slope vector together with the error variance. The Gaussian specification

on the error distribution may be incorrect, so that we work with quasi-likelihoods. Under this

setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles.

Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distribu-

tions and recent results on high-dimensional CLT on hyper-rectangles. We use this general result to

quantify coverage errors of Castillo–Nickl and L∞-credible bands for Gaussian white noise models,

linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In partic-

ular, we show that Bayesian credible bands for those nonparametric models have coverage errors

decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over

confidence bands based on extreme value theory.

1. Introduction

Bayesian inference for high or nonparametric statistical models is an active research area in

the recent statistics literature. Posterior distributions provide not only point estimates but also

credible sets. In a classical regular statistical model with a fixed finite dimensional parameter

space, it is well known that the Bernstein–von Mises (BvM) theorem holds under mild conditions

and the posterior distribution can be approximated (under the total variation distance) by a normal

distribution centered at an efficient estimator (e.g. MLE) and with covariance matrix identical to

the inverse of the Fisher information matrix as the sample size increases. The BvM theorem implies

that a Bayesian credible set is typically a valid confidence set in the frequentist sense, namely, the

coverage probability of a (1 − α)-Bayesian credible set evaluated under the true parameter value

is approaching (1 − α) as the sample size increases. There exists a literature on the frequentist

behavior of Bayesian credible sets in a nonparametric statistical model. Freedman [22] gave the

negative result for the BvM theorem in infinite Gaussian sequence models with Gaussian priors;

Johnstone [31], Leahu [33], and Bontemps [7] discovered the conditions under which the BvM

theorem holds when using Gaussian priors. Recently, Castillo and Nickl [9] and [10] established the

BvM theorem using weaker topologies than ℓ2.
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This paper aims at studying frequentist coverage errors of Bayesian credible rectangles in an

approximately linear regression model with an increasing number of regressors. We provide finite

sample bounds on frequentist coverage errors of (quasi-)Bayesian credible rectangles based on sieve

priors, where the model includes a unknown bias term, the error variance is also unknown, and

the distribution of the error term may not be Gaussian. Sieve priors are prior distributions on the

slope vectors where the dimension of the regressors may increase. We allow sieve priors to be non-

Gaussian or not to be an independent product. We go through “quasi-Bayesian” approach because

we fit a Gaussian distribution on the error term but we do not specify Gaussian distributions as

the distribution of the error term. The resulting posterior distribution is called “quasi-posterior.”

An important application of our results is finite sample quantification of Bayesian nonparametric

credible bands based on sieve priors. We presents finite sample bounds of Castillo–Nickl and L∞-

credible bands 1 in Gaussian white noise models, in linear inverse problems, and in (possibly non-

Gaussian) nonparametric regression models. There is a literature on nonparametric credible bands.

Studies of frequentist approaches go back to Bickel, Rosenblatt, and Smirnov [6, 42]. More recent

studies are available in [13, 18, 26]. Studies of Bayesian approaches are relatively few. In particular,

there is a limited literature on quantification of frequentist coverage errors of nonparametric credible

bands. Castillo and Nickl [10] showed that for Gaussian white noise models Castillo–Nickl credible

bands based on product priors have asymptotically optimal frequentist coverage. See also [39] for

adaptive Castillo–Nickl credible bands based on a spike and slab prior. Yoo and Ghosal [49] showed

that Castillo–Nickl credible bands based on Gaussian series priors have the asymptotically optimal

frequentist coverage in (possibly sub-Gaussian) nonparametric regression models. All there work

built upon asymptotic results. Recently, Yang et al. [48] obtained a non-asymptotic result using

Gaussian process priors. Yet, quantification of frequentist coverage errors of nonparametric credible

bands based on general priors had been limited.

Our results have an implication supporting Bayesian approach to constructing nonparametric

confidence bands. In the literature on nonparametric confidence bands, it is known that confidence

bands based on extreme value theory are not satisfactory due to the slow convergence of Gaussian

maxima. Hall [28] showed that bootstrap confidence bands have coverage errors decalying polyno-

mially fast in the sample size. A more general discussion on the fast convergence of coverage errors

of bootstrap confidence bands is available in [13]. An alternative to bootstrap approach is Bayesian

approach. Castillo and Nickl [10] vaguely discussed the advantage of Bayesian credible bands over

confidence bands based on extreme value theory. Our result shows that Bayesian credible bands

have also coverage errors comparable to bootstrap confidence bands, yielding the advantage over

confidence bands based on extreme value theory. See Remark 3.2.

The main ingredients of the derivation are (i) a novel Berry–Esseen type bound for the BvM

theorem in case with sieve priors, that is, a finite sample bound on the total variation distance

between the quasi-posterior distribution based on sieve priors and the Gaussian distribution and

(ii) recent results on high dimensional CLT on hyper-rectangles. Our Berry–Esseen type bound

1In the present paper, a nonparametric credible band whose L∞-diameter is bounded both below and above is

called an L∞-credible band. A nonparametric credible band whose L∞-diameter is bounded only above is called a

Castillo–Nickl-credible band.
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opens the door to non-asymptotic treatment of posteriors going beyond conjugate analyses. The

high dimensional CLT on hyper-rectangles is developed by Chernozhukov et al. [12, 16] and is used

to approximate in hyper-rectangle regions the sampling distribution by the Gaussian distribution.

This enables us to get rid of any assumption on the error distribution except assumptions on the

moment of the error distribution.

1.1. Literature review and contributions. Closely related are [48, 49]. For nonparametric

regression model, Yang et al. [48] obtained finite sample bounds on frequentist coverage errors of

Bayesian credible bands based on Gaussian process priors. They worked with (a) Gaussian process

priors, (b) the assumption that the error terms follows a sub-Gaussian distribution, and (c) the

assumption that the error variance is known. The present paper differs from [48] in that

• we work with possibly non-Gaussian priors;

• we allow a more flexible assumption on the distribution of the error terms;

• we allow the error variance to be unknown.

To deal with non-Gaussian priors, we develop novel Berry–Esseen type bounds on quasi-posterior

distributions. To weaken the moment assumption on error terms, we introduce a recently-developed

probabilistic tool “high-dimensional CLT on hyper rectangles.” In the case with the unknown error

variance, the quasi-posterior contraction for a prior on a variance affects on the coverage error and

thus a more careful treatment is conducted. Yoo and Ghosal [49] worked with (a) Gaussian series

priors, (b) the assumption that the error terms follows a sub-Gaussian distribution, and (d) the

requirement that the nominal coverage level (1 − α) tends to 1 as the sample size grows. The

requirement (d) indicates that their result is available only in the large sample asymptotics.

The present paper works with the BvM theorem in nonparametric statistics. There exists a vast

literature on the BvM theorem. The BvM theorem in Gaussian white noise model is studied by

[9, 10, 22, 31, 33, 39]. The BvM theorem in linear regression with high dimensional regressors is

studies by [7, 24]. The BvM theorem in nonparametric regression with Gaussian process prior is

studies by [48, 49]. For the BvM theorem in the other nonparametric models, see also [8, 11, 23, 25,

40]. The present paper goes through quasi-Bayesian approach because we do not use the Gaussian

assumption on error terms. The BvM theorem for quasi-posterior distribution was developed by

[3, 17, 21, 32, 34].

Importantly, our Berry–Esseen type bound produces a substantially better result in a critical

dimension under which the BvM theorem holds. Ghosal [24], Bontemps [7], and Spokoiny [43]

investigated critical dimensions when using sieve priors. The result in Bontemps [7] did not cover

the case with an unknown error variance; the results in [24, 43] covered the case with the unknown

error variance. Our result is consistent to the result in [7] in the case with the known error variance.

Our result substantially improves the results in [24, 43] in the case with the unknown error variance.

The results in [24, 43] typically indicated that the critical dimension is p3 = o(n) in the case with the

unknown error variance, while our result indicates that the critical dimension is p2(log n)3 = o(n),

where p is the number of the regressor and n is the sample size. For the detailed comparison, see

Remark 2.2. Our obtained critical dimension is sufficient for the use in nonparametric regression

model with the unknown error variance; see Section 3.3.
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1.2. Organization and notation. Let ∥ · ∥ denote the Euclidean norm. Let ∥ · ∥∞ denote the

max or supremum norm for vectors and functions. For a set S of vectors or functions , let ∥S∥∞
denote the supremum of the max or supremum norms of differences between any two elements in

S. Let N (µ,Σ) denote the Gaussian distribution with mean vector µ and covariance matrix Σ. For

any x ∈ R, let x+ = max{x, 0}. For two sequences {an} and {bn} depending on n, the notation

an ≲ bn signifies that an ⩽ cbn for some universal constant c > 0. The notation an ∼ bn signifies

that an ≲ bn and bn ≲ an. For any positive semi-definite matrices A and B, the notation A ⪯ B

signifies that B − A is positive semi-definite. Throughout the paper, constants c1, c2, . . ., c, and

c̃1, c̃2 do not depend on sample size n and dimension p. The values of c1, c2, . . ., c, and c̃1, c̃2 are

different in each theorem, proposition, and proof.

2. Bayesian credible rectangles in high dimensions

Consider an approximately linear regression model

Y = Xβ0 + r + ε, (1)

where Y = (Y1, . . . , Yn)
⊤ ∈ Rn is a vector of outcome variables, X is an n × p design matrix,

β0 ∈ Rp is an unknown coefficient vector, r = (r1, . . . , rn)
⊤ ∈ Rn is a deterministic (i.e., non-

random) bias term, and ε = (ε1, . . . , εn)
⊤ ∈ Rn is a vector of i.i.d. error terms with mean zero and

variance 0 < σ20 <∞. We are primarily interested in the situation where the number of regressors p

increases with the sample size n, i.e., p = pn → ∞ as n→ ∞, but we often suppress the dependence

on n for the sake of notational simplicity. In addition, we allow the error variance σ20 to depend

on n, i.e., σ20 = σ20,n, which allows us to include Gaussian white noise models in the subsequent

analysis as a special case. In the general setting, the error variance σ20 is also unknown. In the

present paper, we work with the dense model with moderately high-dimensional regressors where

β0 need not be sparse and p = pn may increase with the sample size n but p < n. To be precise,

we will maintain the assumption that the design matrix X is of full column rank, i.e., rankX = p.

The approximately linear model (1) is flexible enough to cover various nonparametric models such

as Gaussian white noise models, linear inverse problems, and nonparametric regression models, via

series expansions of functions of interest in those nonparametric models; see Section 3.

We consider Bayesian inference on the slope vector β0. To this end, we fit a Gaussian distribution

on the error ε, but we allow the Gaussian specification on the error distribution to be incorrect.

Namely, we work with the quasi -likelihood of the form

(β, σ2) 7→ (2πσ2)−n/2e−∥Y−Xβ∥2/(2σ2).

We assume independent priors on β and σ2, i.e.,

β ∼ Πβ, σ
2 ∼ Πσ2 , β⊥⊥σ2, (2)

where we assume that Πβ is absolutely continuous with density π, i.e., Πβ(dβ) = π(β)dβ, and Πσ2

is supported in (0,∞). Then the resulting quasi-posterior distribution for (β, σ2) is

Π(d(β, σ2) | Y ) ∝ (2πσ2)−n/2e−∥Y−Xβ∥2/(2σ2)π(β)dβΠσ2(dσ2),
4



and the marginal quasi-posterior distribution for β is Πβ(dβ | Y ) = π(β | Y )dβ, where

π(β | Y ) = π(β)

∫
e−∥Y−Xβ∥2/(2σ2)∫

e−∥Y−Xβ̃∥2/(2σ2)π(β̃)dβ̃
Πσ2(dσ2 | Y ),

and Πσ2(dσ2 | Y ) denotes the quasi-posterior distribution for σ2. We will assume that Πσ2 may be

data-dependent, e.g., Πσ2 = δσ̂2 for some estimator σ̂2 of σ2 (in that case, Πσ2(· | Y ) = δσ̂2), but

Πβ is data-independent.

We will derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles

for the approximately linear model (1) under a prior of the form (2). For given c = (c1, . . . , cp)
⊤ ∈

Rp, R > 0, and positive sequence {wj}pj=1, let I(c,R) denote the hyper-rectangle of the form

I(c,R) :=

{
β = (β1, . . . , βp)

⊤ ∈ Rp :
|βj − cj |
wj

⩽ R, 1 ⩽ ∀j ⩽ p

}
.

Let β̂ denote the OLS estimator for β0, i.e., β̂ = β̂(Y ) = (X⊤X)−1X⊤Y . For given α ∈ (0, 1), we

consider a (1− α)-credible rectangle of the form I(β̂, R̂α), where the radius R̂α is chosen in such a

way that the posterior probability of the set I(β̂, R̂α) is 1− α, i.e., Πβ{I(β̂, R̂α) | Y } = 1− α.

We make the following conditions on Πβ and Πσ2 . For R > 0, let

B(R) := {β ∈ Rp : ∥X(β − β0)∥ ⩽ Rσ0} and ϕΠβ
(R) := 1− inf

β,β̃∈B(R)
{π(β̃)/π(β)}. (3)

Condition 2.1. There exists a positive constant C1 such that

π(β0) ⩾ σ−p
0

√
det(X⊤X)e−C1p logn.

Condition 2.2. There exist non-negative constants δ1, δ2, δ3 ∈ [0, 1) such that with probability at

least 1− δ3, Πσ2

({
σ2 :

∣∣σ2/σ20 − 1
∣∣ > δ1

}
| Y
)
⩽ δ2.

Condition 2.3. The inequality ϕΠβ
(1/

√
n) ⩽ 1/2 holds.

Condition 2.1 imposes Πβ to put a sufficient mass around β0. Condition 2.2 is a marginal

posterior contraction of Πσ2 . Condition 2.3 is a preliminary flatness condition on Πβ. The detailed

discussion on these conditions are provided after the main theorem.

We also make the assumptions on the model.

Assumption 2.1. There exists a positive constant C2 such that ∥X(X⊤X)−1X⊤r∥ ⩽ C2σ0
√
p log n.

Assumption 2.2. There exists a positive constant C3 for which either one of the following condi-

tions holds.

(a) E[|ε1/(σ0C3)|q] ⩽ 2 for some integer q ⩾ 2;

(b) E[exp{ε21/(σ0C3)
2}] ⩽ 2.

Assumption 2.1 controls the norm of the bias term. Assumption 2.2 is a moment assumption

on the error terms. These assumptions are substantially weak and satisfied in all applications we

present.
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The following theorem, which is the main result of this section, provides bounds on frequentist

coverage errors of the Bayesian credible rectangle I(β̂, R̂α) together with bounds on the max-

diameter of I(β̂, R̂α). In what follows, let λ and λ denote the maximum and minimum eigenvalues

of (X⊤X)−1, respectively, and let w := max{w1, . . . , wp} and w := min{w1, . . . , wp}.

Theorem 2.1 (Coverage errors of credible rectangles). Suppose that Conditions 2.1–2.3, Assump-

tion 2.1, and either of Assumption 2.2 (a) or (b) hold. Then, there exist positive constants c1, . . . , c4

depending only on C1, C2, C3 and q appearing in Condition 2.1 and Assumptions 2.1 and 2.2 (a)

such that the following hold. For every n ⩾ 2, we have that∣∣∣∣P{β0 ∈ I(β̂, R̂α)
}
− (1− α)

∣∣∣∣
⩽ ϕΠβ

(
c1
√
p logn

)
+ c1

(
δ1p log n+ δ2 + δ3 +

τ

σ0λ
1/2

√
log p+ ωn

) (4)

where τ := ∥(X⊤X)−1X⊤r∥∞ and

ωn =


p1−q/2(log n)−q/2 +

(
λ
λ
p log7(pn)

n

)1/6
+
(
λ
λ
p log3(pn)

n1−2/q

)1/3
under Assumption 2.2 (a),

e−c2p logn +
(
λ
λ
p log7(pn)

n

)1/6
under Assumption 2.2 (b),

e−c2p logn if εi’s are Gaussian;

In addition, provided that the right hand side on (4) is smaller than α/2, for sufficiently large p

depending only on α, the max-diameter of I(β̂, R̂α) is bounded as

c3σ0λ
1/2w

√
log p ⩽ |I(β̂, R̂α)|∞ ⩽ c4σ0λ

1/2
w
√

log p

with probability at least1− c1p
1−q/2(log n)−q/2 − δ3 under Assumption 2.2 (a),

1− c1e
−c2p logn − δ3 under Assumption 2.2 (b).

Theorem 2.1 indicates that the frequentist coverage error of the Bayesian credible rectangle is

controlled by the flatness function ϕΠβ
up to terms depending on the prior Πβ on β. The discussions

below provide a typical bound on ϕΠβ
.

2.1. Discussions on conditions. First, we verify that a locally log-Lipschitz prior meets Condi-

tions 2.1 and 2.3, providing an upper bound of ϕΠβ
.

Definition 2.1. A locally log-Lipschitz prior is defined as a prior distribution on β that there

exists L = Ln > 0 for which the inequality | log π(β)− log π(β0)| ⩽ L∥β−β0∥ holds for β such that

∥β − β0∥ ⩽ σ0λ
1/2√

p log n.

The following proposition shows that a locally log-Lipschitz prior meets Condition 2.3. It also

provides an upper bound of ϕΠβ
with a locally log-Lipschitz prior.

Proposition 2.1. For a locally log-Lipschitz prior Πβ with a log-Lipschitz constant L, the inequality

ϕΠβ
(c
√
p log n) ⩽ cLσ0λ

1/2√
p log n holds for any c > 0. Further, the prior Πβ satisfies Condition

2.3 provided that σ0Lλ
1/2
/
√
n ⩽ 1/2.
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For the verification of Condition 2.1, we focus on the following two subclasses of locally log-

Lipschitz priors. Let B := ∥β0∥.
(Isotropic prior) An isotropic prior is a prior of the form π(β) = ρ(∥β∥)/

∫
ρ(∥β∥)dβ with a proba-

bility density ρ on R+ such that ρ is strictly positive on [0, B+σ0λ
1/2√

p log n] and

continuously differentiable on [0, B + σ0λ
1/2√

p log n], and such that there exists a

positive constant m for which
∫∞
0 xkρ(x)dx is bounded above by emk log k for any

k ∈ N;
(Product prior) A product prior of log-Lipschitz priors is of the form π(β) =

∏p
i=1 πi(βi) of which

log πi for each i is strictly positive on [0, B + σ0λ
1/2√

p log n] and L̃-Lipschitz for

some L̃ > 0.

For expositional simplicity, we use the following assumption to verify that isotropic or product

priors meet Condition 2.1.

Assumption 2.3. There exists a universal positive constant c for which we have, for every n ⩾ 2,

log{
√
det(X⊤X)/σp0} ⩽ c log n.

This assumption ensures that X⊤X/σ20 is not much expanded in n. The assumption is satisfied

in case that the column vectors of X/σ0 are nearly orthonormal in Rp. The assumption is also

satisfied in all applications we present.

The following proposition ensures that isotropic or product priors are locally log-Lipschitz priors

satisfying Condition 2.1.

Proposition 2.2. Under Assumption 2.3, an isotropic prior and a product prior of log-Lipschitz

priors satisfy Condition 2.1. An isotropic prior is a locally log-Lipschitz prior with locally log-

Lipschitz constant L such that

L ⩽ c1B max
x:0⩽x⩽B+σ0λ

1/2√
p logn

|d log ρ/dx(x)|

for some positive constant c1 depending only on m and c appearing in the definition of ρ and

Assumption 2.3. In particular, for a standard Gaussian distribution, L ⩽ c1B
2. A product prior of

log-Lipschitz priors with a log-Lipschitz constant L̃ is a locally log-Lipschitz with L = L̃p1/2.

Next, we provide discussions on Condition 2.2. We consider following two cases:

(Plug-in) Πσ2 = Πσ̂2
u
with σ̂2u(Y ) := ∥Y −X(X⊤X)−1X⊤Y ∥2/(n− p);

(Full Bayes) Πβ is a standard Gaussian distribution and Πσ2 is the inverse Gamma distribution

IG(µ1, µ2) with shape parameter µ1 > 1/2 and scale parameter µ2 > 1/2.

The following two propositions provide possible choices of δ1, δ2, and δ3. For simplicity, we

assume that σ0 is a constant independent of n. Let δ̃1 := δ1 − 2∥r∥2/{σ20(n− p)} − 1/(n− p) > 0.

Proposition 2.3. Suppose that n ⩾ cp for some c > 1. Then, there exist positive constants c1 and

c2 depending only on c, C3 and q appearing in Assumption 2.2 such that

P
(
|σ̂2u/σ20 − 1| ⩾ δ1

)
⩽

c1max{n−4/qδ
−q/2
1 , n1−q/2δ̃−q

1 } under Assumption 2.2 (a),

c1 exp(−c2nmax{δ21, δ̃21}) under Assumption 2.2 (b).
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Proposition 2.4. Suppose that n ⩾ cp for some c > 1. Then, there exist positive constants c1 and

c2 depending only on c, µ1, µ2, C3 and q appearing in Assumption 2.2 such that the inequality

Πσ2(σ2 : |σ2/σ20 − 1| > δ1 | Y ) ⩽ c1(nδ̃1)
−1

holds with probability at least1− c1max{n−4/qδ
−q/2
1 , n1−q/2δ̃−q

1 } under Assumption 2.2 (a),

1− c1 exp{−c2nmax{δ21, δ̃21}} under Assumption 2.2 (b).

For a better understanding, Table 1 summarizes the results using the asymptotics in n in both

cases when n ⩾ cp for some c > 0 and ∥r∥2/n = o(n−1/2).

Table 1. Possible orders of δ1, δ2, δ3 with respect to n: κ is arbitrary

Assumption 2.2 and prior δ1 δ2 δ3

(a) and plug-in n−1/2+κ/q 0 max{n−κ/2, n1−κ}
(a) and full Bayes n−1/2+κ/q n−1/2−κ/q max{n−κ/2, n1−κ}
(b) and plug-in n−1/2

√
log n 0 n−1

(b) and full Bayes n−1/2
√
log n n−1/2(log n)−1/2 n−1

Remark 2.1 (Compatibility with the result in [49]). In the case with the Gaussian prior for β and

a sub-Gaussian distributon for ε, the possible covergence rate of δ1 was investigated by Yoo and

Ghosal [49]; See Proposition 4.1 in [49]. For the choice of δ1, our results in Propositions 2.3 and

2.4 are compatible with their result up to a logarithmic factor.

2.2. Berry–Esseen type bounds on posterior distributions. Before providing several ap-

plications of the main theorem, we present an important ingredient for the proof of Theorem 2.1,

namely, the Berry–Esseen type bound on posterior distributions. This bound substantially improves

on the previous work related to the BvM theorem, as discussed below. For R > 0, let

H(R) :=

{
Y ∈ Rn : ∥X(β̂(Y )− β0)∥ ⩽ R

√
p log nσ0

4

}
∩ {Y ∈ Rn : Πσ2(|σ2/σ20 − 1| ⩾ δ1 | Y ) ⩽ δ2}.

For two probability measures P and Q, ∥P −Q∥TV denotes the total variation between P and Q.

Proposition 2.5 (Berry–Esseen type bounds on posterior distributions). Under Conditions 2.1–

2.3, there exist positive constants c1 and c2 depending only on C1, C2, C3 such that for every n ⩾ 2

and for Y ∈ H(c1), the inequality∥∥∥Πβ(· | Y )−N (β̂, σ20(X
⊤X)−1)

∥∥∥
TV

⩽ ϕΠβ

(
c1
√
p log n

)
+ c1(δ1p log n+ δ2 + e−c2p logn)

holds.

Proposition 2.6. Assume that Assumption 2.1 holds. Then, there exist positive constants c1 and

c2 depending only on C2, C3, and q appearing in Assumptions 2.1-2.2 such that

P(Y /∈ H(c1)) ⩽

c1p1−q/2(log n)−q/2 + δ3 under Assumption 2.2 (a),

c1 exp(−c2p logn) + δ3 under Assumption 2.2 (b).
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Remark 2.2 (Critical dimension of the Bernstein–von Mises theorem). The previous propositions

clarify the critical dimension under which the BvM theorem holds. We compare our result with

the results on the critical dimension by [7, 25, 43]. In the case that ∥β0∥ is independent of n and

σ0λ
1/2 ∼ n−1/2, the comparison is demonstrated using a locally log-Lipschitz prior with locally

log-Lipschitz constant L independent of n. The followings are the summary of the previous works:

• Ghosal [25] showed that when the distribution of i.i.d. error terms εis has a smooth density

function with known variance, the BvM theorem holds if p4 log p = o(n) and some additional

assumptions hold;

• Bontemps [7] showed that when the distribution of i.i.d. error terms is Gaussian with known

variance, the BvM theorem holds if p log n = o(n) 2;

• Spokoiny [43] showed that when the high-dimensional local asymptotic normality holds, the

BvM theorem holds if p3 = o(n). See also [37].

Our result (Propositions 2.1, 2.3, 2.5, and 2.6) improves the previous work from the following

viewpoints:

• In the case with known variance, our result shows that when the distribution of i.i.d. error

terms has the third order moment, the BvM theorem (for quasi-posterior distributions)

holds if p log n = o(n). Comparing our result with [25] indicates that borrowing the Gauss-

ian likelihood conducts a substantial improvement on the critical dimension. When the

distribution of error terms is Gaussian, our result is consistent to [7];

• Our result covers the case with unknown variance. This makes the substantial difference

between our result and [7]. Taking the care of the case with unknown variance is important

in application including nonparametric regression models. In the case with unknown vari-

ance, our result shows that when the distribution of i.i.d. error terms is sub–Gaussian, the

BvM theorem holds for β if p2(log n)3 = o(n). Comparing our result with [43], our result

provides a substantial improvement on the critical dimension.

3. Applications

In this section, we consider applications of the general results developed in the previous sections

to quantifying coverage errors of Bayesian credible sets in Gaussian white noise models, linear

inverse problems, and (possibly non-Gaussian) nonparametric regression models.

3.1. Gaussian white noise model. We first consider a Gaussian white noise model and analyze

coverage errors of Castillo-Nickl and L∞-credible bands. Consider a Gaussian white noise model

dY (t) = f0(t)dt+
1√
n
dW (t), t ∈ [0, 1],

where dW is a canonical white noise and f0 is an unknown function. We assume that f0 is in the

Hölder–Zygmund space Bs
∞,∞ with smoothness level s for some s > 0. It will be convenient to

2Bontemps [7] uses the condition that there exists Mn such that Mn = O(n) and p log p = o(Mn) and it seems to

exclude the setting that p logn = o(n) if p is of polynomial order with respect to n because we cannot set Mn = p logn.

However, replacing the asymptotic evaluation at the final step in the proof of Proposition 9 in [7] by the finite sample

evaluation and multiplying Mn by a sufficiently large positive constant, the setting that p logn = o(n) is allowed.
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define the Hölder–Zygmund space Bs
∞,∞ using a wavelet basis. Let S > s be an integer and fix

sufficiently large J0 = J0(S). Let {ϕJ0,k : 0 ⩽ k ⩽ 2J0 − 1} ∪ {ψl,k : J0 ⩽ l, 0 ⩽ k ⩽ 2l − 1} be

an S-regular Cohen–Daubechies–Vial (CDV) wavelet basis of L2[0, 1]. Then the Hölder–Zygmund

space Bs
∞,∞ is defined by

Bs
∞,∞ =

{
f : ∥f∥Bs

∞,∞ := max
0⩽k⩽2J0−1

|⟨ϕJ0,k, f⟩|+ sup
J0⩽l<∞,0⩽k⩽2l−1

2l(s+1/2)|⟨ψl,k, f⟩| <∞

}
,

where ⟨·, ·⟩ denotes the L2[0, 1] inner product, i.e., ⟨f, g⟩ :=
∫
[0,1] f(t)g(t)dt. For the notational

convention, let ψJ0−1,k := ϕJ0,k for 0 ⩽ k ⩽ 2J0 − 1 and let I(J) := {(l, k) : J0 ⩽ l ⩽ J − 1, 0 ⩽ k ⩽
2l − 1} ∪ {(l, k) : l = J0 − 1, 0 ⩽ k ⩽ 2J0 − 1} for J > J0.

3.1.1. Castillo–Nickl credible bands. The Castillo–Nickl credible band is defined as

C(f̂ , R) :=

{
f : max

(l,k)∈I(J)

|⟨f − f̂ , ψl,k⟩|√
l

⩽ R

}
for R > 0,

where J = Jn > J0 is taken in such a way that 2Jn = (n/ log n)1/(2s+1)un for a divergent sequence un

and f̂ :=
∑

(l,k)∈I(J) ψl,k

∫
ψl,kdY. For a given prior Πf on f , we call C(f̂ , R̂α) the (1−α)-Castillo–

Nickl credible band, where the radius R̂α is chosen in such a way that Πf{C(f̂ , R̂α) | Y } = 1− α.

We consider a sieve prior Πf on L∞[0, 1] induced from a prior Πβ on R2J via the map

(βJ0,0, βJ0,1, . . . , βJ−1,2J−1−1) 7→
∑

(l,k)∈I(J)

ψl,k(·)βl,k.

The following theorem establishes bounds on coverage errors of Castillo–Nickl credible bands.

Let τ∞ := ∥f0 −
∑

(l,k)∈I(J) ψl,kβ0,lk∥∞ with β0,lk = ⟨f0, ψl,k⟩ for (l, k) ∈ I(J).

Proposition 3.1. Under Conditions 2.1 and 2.3 for Πβ that corresponds to Πf and under the

assumption that τ∞ ⩽ C ′
2

√
2J(log n)/n for some C ′

2 > 0, there exist positive constants c1, c2, c3

depending only on C1 appearing in Condition 2.1 and C ′
2 such that the following hold: For n ⩾ 2

satisfying ∥f0∥Bs
∞,∞ ⩽ un, we have

|P{f0 ∈ C(f̂ , R̂α)} − (1− α)| ⩽ ϕΠβ
(c1
√

2J log n) + c1

(√
nτ∞

2J/2
J1/2 + e−c22J logn

)
.

In addition, provided that the right hand side above is smaller than α/2, for sufficiently large n

depending only on α and un, the L
∞-diameter of C(f̂ , R̂α) is bounded above as

∥C(f̂ , R̂α)∥∞ := sup
f,g∈C(f̂ ,R̂α)

∥f − g∥∞ ⩽ c3

√
2J(log n)/n

with probability at least 1− c1 exp(−c22J log n).

Remark 3.1 (Rate of convergence). We discuss asymptotic forms of the result using a locally

log-Lipschitz prior with locally log-Lipschitz constant L = Ln. Since
∑

(l,k)∈I(J) |β0,lk|2 ≲ u2n and

τ∞ ≲
∑

l⩾J 2
−ls supk 2

l(s+1/2)|β0,lk| ≲ 2−Jsun, we have

|P{f0 ∈ C(f̂ , R̂α)} − (1− α)| ≲ Ln

(
n

log n

)−s/(2s+1)

u1/2n +
logn

u
s+1/2
n

. (5)
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In particular, for the standard Gaussian prior, we have

|P{f0 ∈ C(f̂ , R̂α)} − (1− α)| ≲
(

n

log n

)−s/(2s+1)

u3/2n +
log n

u
s+1/2
n

,

since Ln ≲ un from Proposition 2.2.

Remark 3.2 (Coverage errors for the surrogate function). Consider coverage errors for the surro-

gate function E[f̂ ]. In this case, we can set τ∞ = 0 and thus we have

|P{E[f̂ ] ∈ C(f̂ , R̂α)} − (1− α)| ≲ Ln

(
n

log n

)−s/(2s+1)

u1/2n .

From this, we see that the Bayesian credible band has the polynomial decay of the coverage error

with respect to E[f̂ ]. Hall [28] showed that the bootstrap confidence band has the polynomial decay

of the coverage error with respect to E[f̂ ]. Our result shows that the Bayesian credible band is

comparable to the bootstrap confidence band.

In [10], Castillo and Nickl also consider multi-scale sets using an admissible sequence w =

(w1, w2, . . .): {
f : sup

(l,k)∈I∞

|⟨f − f̂∞, ψl,k⟩|
wl

⩽ R

}
for R > 0,

where I∞ := {(l, k) : J0 ⩽ l < ∞, 0 ⩽ k ⩽ 2l − 1} ∪ {(l, k) : l = J0 − 1, 0 ⩽ k ⩽ 2J0 − 1}
and f̂∞ :=

∑
(l,k)∈I∞ ψl,k

∫
ψl,kdY. Here we call a sequence such that wl/

√
l ↗ ∞ an admissible

sequence. In what follows, we will bound the coverage error and the L∞-diameter of Bayesian

credible sets of the form

Cw(f̂∞, R̂α) :=

{
f : sup

(l,k)∈I∞

|⟨f − f̂∞, ψl,k⟩|
wl

⩽ R̂α

}
,

where the radius R̂α is taken in such a way that Πf{Cw(f̂∞, R̂α) | Y } = 1− α.

The following proposition provides the coverage error of multi-scale credible bands using a sieve

prior on R2J
′
, where J ′ is taken in a way that 2J

′
= (n/ log n)1/(2s+1). Let u′n := wJ ′/

√
J ′,

w := inf l⩾J ′ wl, and w := maxl<J ′ wl. For simplicity, we assume that maxl<J ′{
√
l/wl} ⩽ 1.

Proposition 3.2. Under Conditions 2.1 and 2.3 for Πβ that corresponds to Πf , there exist pos-

itive constants c1, c2, c3 depending only on C1 such that the followings hold: For n ⩾ 2 satisfying

∥f0∥Bs
∞,∞ ⩽ u′n and for any δ > 0, we have

|P(f0 ∈ Cw(f̂∞, R̂α))− (1− α)| ⩽ ϕΠβ
(c1
√

2J ′ log n) + c1(e
−c22J

′
logn +

√
nwδ

√
log n+ e−c2nw2δ2).

Further, provided that the right hand side above is smaller than α/2, for sufficiently large n de-

pending only on α, L∞-diameter of Cw(f̂∞, R̂α) is bounded as

∥Cw(f̂ , R̂α)∥∞ ⩽ c3

√
2J ′(log n)/nmax{w, u′n}

with probability at least 1− c1 exp(−c22J
′
log n)− c1 exp−c2nw2δ2.
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Remark 3.3 (Choices of δ and w). From proposition 3.2, if nw2δ2 logn→ ∞ and nw2δ2 log n→ 0,

then the coverage error vanishes, which suggests that an admissible sequence should depend on n

when using a sieve prior. Given a divergent sequence {ul : J0 − 1 ⩽ l} in priori, typical choices of

δ and w are

δ = 1/(
√
nu

s+1/2
J ′ ) and wl =


√
l for l < J ′;

ul
√
l for l ⩾ J ′.

Using these choices, the same asymptotic result as that of Proposition 3.1 is obtained.

3.1.2. L∞-credible bands. Focusing on the simple case in which the smoothness s is in (0, 1], L∞-

credible bands are constructed using Haar scaling functions: for l ∈ N, let {ϕl,0, . . . , ϕl,2l−1} be

ϕl,k(·) := 2l/21(k/2l,(k+1)/2l](·).
Let C(f̂ , R) be given as

C(f̂ , R) :=

{
f : max

0⩽k⩽2J−1

|⟨f − f̂ , ϕJ,k⟩|√
J

⩽ R

}
, R > 0,

where J = (n/ log n)1/(2s+1)un with a divergent sequence un and f̂ :=
∑2J−1

k=0 ϕJ,k
∫
ϕJ,kdY . For

a prior Πf of f and for α ∈ (0, 1), R̂α is chosen in the way that Πf (C(f̂ , R̂α) | Y ) = 1 − α. We

consider a sieve prior Πf on L∞[0, 1] induced from a prior Πβ on R2J via the same map as in the

previous subsection.

The following theorem provides the coverage error of L∞-credible bands. In the following,

τ∞ := ∥f0 −
∑2J−1

k=0 β0,JkϕJ,k∥∞, where β0 = (β0,J0, . . . , β0,J(2J−1)) with β0,Jk := ⟨ϕJ,k, f0⟩ for

k = 0, . . . , 2J − 1.

Proposition 3.3. Under Conditions 2.1 and 2.3 for Πβ that corresponds to Πf and under the

assumption that τ∞ ⩽ C ′
2

√
2J(log n)/n for some C ′

2 > 0, there exist positive constants c1, . . . , c4

depending only on C1 and C ′
2 such that the followings hold: For n ⩾ 2 satisfying ∥f0∥Bs

∞,∞ ⩽ un,

we have

|P(f0 ∈ C(f̂ , R̂α))− (1− α)| ⩽ ϕΠβ
(c1
√

2J log n) + c1

(√
nτ∞

2J/2
J1/2 + e−c22J logn

)
.

Further, provided that the right hand side above is smaller than α/2, for sufficiently large n de-

pending only on α, the L∞-diameter of C(f̂ , R̂α) is bounded as

c3

√
2J(log n)/n ⩽ ∥C(f̂ , R̂α)∥∞ ⩽ c4

√
2J(log n)/n

with probability at least 1− c1 exp(−c22J log n).

Remark 3.4 (Comparison to Proposition 3.1). Compared to Proposition 3.1, Proposition 3.3

provides the lower bound of the L∞-diameter.

3.2. Linear inverse problem. The second application is the frequentist evaluation of the coverage

error of the credible bands based on an indirect observation in Gaussian white noise model:

dY (t) = K(f0)(t)dt+
1√
n
dW (t),

12



where K is a known linear operator and f0 is included in the s-Hölder–Zygmund space as de-

scribed in the previous section. To this end, we introduce the wavelet-vaguelette decomposition

{ψl,k, v
(1)
l,k , v

(2)
l,k , κl : (l, k) ∈ I∞} of K, where recall that I∞ := {(l, k) : J0 ⩽ l < ∞, 0 ⩽ k ⩽

2l − 1} ∪ {(l, k) : l = J0 − 1, 0 ⩽ k ⩽ 2J0 − 1}: {ψl,k} is the wavelet basis (with the same nota-

tional convention used in the previous subsection), {v(1)l,k } and {v(2)l,k } are near-orthogonal functions,

and {κlk} is the quisi-singular values such that K(ψl,k) = κl,kv
(2)
l,k , (l, k) ∈ I∞. For details, see

[1, 20, 32, 30] and references therein. Our results cover both the mildly ill-posed and the severely

ill-posed cases for {κl,k}: κl,k ∼ 2−rl (mildly ill-posed); κl,k ∼ 2−r2l (severely ill-posed).

We use the Castillo–Nickl credible band for f . Let C(f̂ , R) be

C(f̂ , R) :=

{
f : max

(l,k)∈I(J)

κl,k|⟨f − f̂ , ψl,k⟩|√
l

⩽ R

}
, R > 0,

where f̂ :=
∑

(l,k)∈I(J) ψl,kκ
−1
l,k

∫
v
(1)
l,k dY . The choice of J is as follows:

2J = (n/ log n)1/(2s+2r+1) un for an positive sequence un in the mildly-ill posed case;

2J = c log n for some 1/(2r) < c < 1/r in the severely-ill posed case.

We use a prior Πf induced from Πβ on R2J via {v(1)l,k }, and R̂α is chosen in the way that Πf (C(f̂ , R̂α) |
Y ) = 1− α.

The following theorem provides the coverage error of Castillo–Nickl credible band in linear inverse

problems. In the following, τ ′∞ := ∥K(f0)−K(
∑

(l,k)∈I β0,lkψl,k)∥∞, where β0,lk := ⟨f, ψl,k⟩.

Proposition 3.4. Under Conditions 2.1 and 2.3 for Πβ that corresponds to Πf and under the

assumption that τ ′∞ ⩽ C ′
2

√
2J(log n)/n for some C ′

2 > 0, there exist positive constants c1, c2, c3

depending only on C1 appearing in Condition 2.1 and C ′
2 such that the followings hold: For n ⩾ 2

satisfying ∥f0∥Bs
∞,∞ ⩽ un, we have∣∣∣P{f0 ∈ C(f̂ , R̂α)

}
− (1− α)

∣∣∣ ⩽ ϕΠβ

(
c1
√

2J log n
)
+ c1

(√
nτ ′∞
2J/2

J1/2 + e−c22J logn

)
.

Further, provided that the right hand side above is smaller than α/2, for sufficiently large n de-

pending only on α, L∞-diameter of C(f̂ , R̂α) is bounded as

∥C(f̂ , R̂α)∥∞ ⩽ c3κ
−1
J−1,2J−1−1

√
2J(log n)/n

with probability at least 1− c1 exp(−c22J log n).

Remark 3.5 (Rate of convergence). The asymptotic form is demonstrated using a locally log-

Lipschitz prior with locally log-Lipschitz constant L = Ln. We have∣∣∣P{f0 ∈ C(f̂ , R̂α)
}
− (1− α)

∣∣∣
≲


Ln

(
n

logn

)−s/(2s+2r+1)
u
1/2
n + logn

u
s+r+1/2
n

, in the mildly ill-posed case;

Ln

(
n

logn

)−s/(2s+2r+1)
+ (log n)−s, in the severely ill-posed case,
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and

∥C(f̂ , R̂α)∥∞ ≲


(

n
logn

)−s/(2s+2r+1)
u
r+1/2
n , in the mildly ill-posed case;

(log n)−s, in the severely ill-posed case,

with probability at least 1− c1 exp(−c22J log n).

3.3. Nonparametric regression model. The third application of the main theorem is the fre-

quentist evaluation of coverage errors of credible bands in nonparametric regression models:

Yi = f0(Ti) + εi, i = 1, . . . , n,

where ε = (ε1, . . . , εn) is a vector of i.i.d. error terms with mean zero and variance σ20 and {Ti : i =
1, . . . , n} are i.i.d. samples on [0, 1]. For simplicity, ε and {Ti : i = 1, . . . , n} are independent and

σ0 does not depend on n.

Using p basis functions {ψp
j (·) : 1 ⩽ j ⩽ p}, we consider the credible bands for f of the form

C(f̂ , R̂α) =

{
f :

∥∥∥∥∥f(·)− f̂(·)
∥ψp(·)∥

∥∥∥∥∥
∞

⩽ R̂α

}
,

where f̂(·) :=
∑p

j=1 ψ
p
j (·)β̂j with β̂ := argminβ

∑n
i=1 |Yi −

∑p
j=1 ψ

p
j (Ti)βj |2, R̂α is taken in a way

that Πf{C(f̂ , R̂α) | Y } = 1 − α, and ψp(·) := (ψp
1(·), . . . , ψ

p
p(·))⊤. We consider a prior Πf of f

induced from a sieve prior Πβ on Rp by the map

(β1, . . . , βp) 7→
p∑

j=1

βjψ
p
j (·).

Due to the randomness of {Ti}, it is necessary to develop bounds of the coverage error and

L∞-diameter taking the randomness of {Ti} into consideration. To this end, we modify Conditions

2.1 and 2.3 and add conditions on the basis function. Let ψ̃p(·) := ψp(·)/∥ψp(·)∥, and ξp :=

supt∈[0,1] ∥ψp(t)∥. Let β0 := argminβE|f0(T1)− ψp(T1)
⊤β|2. For R > 0, let

B̃(R) := {β : ∥β − β0∥ ⩽ n−1/2R}, and ϕ̃Πβ
(R) := 1− inf

β,β̃∈B̃(R)
{π(β)/π(β̃)}.

Condition 3.1. There exists a positive constant C1 such that π(β0) ⩾ e−C1p logn.

Condition 3.2. The inequality ϕ̃Πβ
(1/

√
n) ⩽ 1/2 holds.

Condition 3.3. There exist strictly positive constants b and b such that the eigenvalues of the p×p
matrix (Eψp

i (T1)ψ
p
j (T1)) are included in [b2, b

2
].

Condition 3.4. There exist positive constants C4 and C5 such that the inequalities

log ξp ⩽ C4 log p and log sup
t ̸=t′∈[0,1]

{∥ψ̃p(t)− ψ̃p(t′)∥/|t− t′|} ⩽ C5 log p

hold.
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Remark 3.6 (Comments on the assumptions). Conditions 3.1 and 3.2 are the versions of Con-

ditions 2.1 and 2.3 in the case that {Ti}s are random. Condition 3.3 is a standard assumption.

Condition 3.4 is substantially weak; for example, the assumption holds for Fourier series, Spline

series, CDV wavelets, and local polynomial partition series; see [5].

The following proposition provides both the coverage error and the L∞-diameter of C(f̂ , R̂α).

Let τ2 :=
√

E|f0(T1)− ψp(T1)⊤β0|2 and τ∞ := ∥f0(·)− ψp(·)⊤β0∥∞. Further, let

τ :=

∥∥∥∥f0(·)− ψp(·)⊤β0
∥ψp(·)∥

∥∥∥∥
∞
.

Proposition 3.5. Under Conditions 3.1-3.4 and 2.2, there exists positive constants c1, c2, c3 de-

pending only on C1, . . . , C5, b, b, and q appearing in Conditions3.1-3.4 and 2.2 and Assumption 2.2

such that the followings hold: For n ⩾ 2 and any sufficiently small δ > 0, we have

|P(f0 ∈ C(f̂ , R̂α))− (1− α)| ⩽ ϕ̃Πβ
(c1
√
p logn) + δ2 + δ3 + c1(n

−2δ + δ1p log n+ ωn + γn), (6)

where

γn :=
n

log n

τ22
p

+max
{
1,
(
pξ2p/n

)1/2}
τ∞n

δ log p+
√
nτ
√

log p

and

ωn :=

nδ(log n)1/2max
{(
ξ2p/n

)1/2
n1/q logn,

(
ξ2p/n

)1/6
(log n)2/3

}
under Assumption 2.2 (a)

nδ(log n)7/6
(
ξ2p/n

)1/6
under Assumption 2.2 (b).

Further, provided that the right hand side in (6) is smaller than α/2, for sufficiently large p de-

pending only on α, with probability at least 1− δ3 − c1{
√
nτ

√
log p+ exp(−c2p log n)}, we have

sup
f,g∈C(f̂ ,R̂α)

∥f − g∥∞ ⩽ c3

√
ξ2p(log p)/n.

Remark 3.7 (Choices of ξp, τ2, τ∞, and τ). For typical basis functions including Fourier series,

spline series, and CDV wavelets, ξp ≲ √
p; see Section 3 in [5]. For S(> s)-regular CDV wavelets,

in the case that f0 is in the Hölder–Zygmund space with smoothness level s, τ2 ∼ τ∞ ∼ p−s.

For the other series and the other function classes, bounds on τ2 and τ∞ are available from the

approximation theorem; see [19] and Section 3 in [5]. Typical choice of τ is τ∞/
√
p; For the Haar

wavelet, we have τ ∼ τ∞/
√
p, since τ ⩽ τ∞/ inft∈[0,1] ∥ψp(t)∥. For periodic S-regular wavelets, we

also have τ ∼ τ∞/
√
p as shown in Appendix E.3.

Remark 3.8 (Rate of convergence). Consider the case with an unknown variance. Assume that

there exists a constant s > 1/2 such that τ2 ∼ τ∞ ∼ p−s, τ ∼ p−s−1/2, and ξp ≲ √
p. Assume

also that the error distribution is sub-Gaussian. Note that the assumption that s > 1/2 is usual

in nonparametric regression with an unknown variance; see Assumption A.1 in [49]. Consider that

we put a locally log-Lipschitz prior with locally log-Lipschitz constant L = Ln on β and use an
15



estimate σ̂2 = σ̂2u. Then, taking p ∼ (n/ log n)1/(2s+1)un with a divergent sequence un, we have

|P (f0 ∈ C(f̂ , R̂α))− (1− α)| (7)

≲ Ln

(
n

log n

)−s/(2s+1)

u1/2n +

(
n

log n

)−(s−1/2)/(2s+1)

un log n+
log n

u
s+1/2
n

(8)

and

sup
f,g∈C(f̂ ,R̂α)

∥f − g∥∞ ≲
(

n

log n

)−s/(2s+1)

u1/2n

with probability 1− c1/n.

One of the important aspects of this result is that it admits a general sieve prior for β. From (8),

the diminishing rate of the coverage error with respect to the prior distribution, that is, the first

and second terms on the right hand side in (8) is unchanged whenever Ln ≲ √
p up to a logarithmic

factor and un.

4. Proof of Theorem 2.1

In this section, we provide the proof of the main theorem.

4.1. Technical lemmas. Before the proof, we state pivotal ingredients of the proof except the

Berry–Esseen type bound on posterior distributions: the high-dimensional CLT on hyper-rectangles,

the anti-concentration inequality on hyper-rectangles, Anderson’s lemma, and concentration in-

equality for Gaussian maxima.

The high-dimensional CLT on hyper-rectangles is stated as follows: let Z1, . . . , Zn be independent

p-dimensional random vectors with mean zero. We denote the j-th coordinate of Zi by Zij . Let

Z̃1, . . . , Z̃n be independent centered p-dimensional Gaussian vectors such that each Z̃i has the same

covariance matrix as Zi. Let Are be the class of all hyper-rectangles in Rp: for any A ∈ Are, A is of

the form A = {β ∈ Rp : ai ⩽ βi ⩽ ai, 1 ⩽ ∀i ⩽ p} for (a1, . . . , ap)
⊤ ∈ Rp and for (a1, . . . , ap)

⊤ ∈ Rp.

Assume that the following three conditions hold:

H1. There exists b > 0 such that n−1
∑n

i=1 E|Zij |2 ⩾ b for 1 ⩽ ∀j ⩽ p;

H2. There exists a sequence Bn ⩾ 1 such that n−1
∑n

i=1 E|Zij |2+k ⩽ B4
n for 1 ⩽ ∀j ⩽ p and for

k = 1, 2;

H3. We assume either one of the following two conditions:

(a) There exists q > 0 such that E[{maxj=1,...,p |Zij |/Bn}q] ⩽ 2 for 1 ⩽ ∀i ⩽ n;

(b) E[exp{|Zij |/Bn}] ⩽ 2 for 1 ⩽ ∀i ⩽ n and for 1 ⩽ ∀j ⩽ p.

Lemma 4.1 (High Dimensional CLT for Hyperrectangles; Proposition 2.1 in [16]). Assume that

Conditions H1 and H2 hold. Let

ρ = ρn := sup
A∈Are

∣∣∣∣∣P
(

n∑
i=1

Zi/
√
n ∈ A

)
− P

(
n∑

i=1

Z̃i/
√
n ∈ A

)∣∣∣∣∣ .
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Then, there exists a positive constant c̃1 for which we have

ρ ⩽

c̃1
(
B2

n log7(pn)
n

)1/6
+ c̃1

(
B2

n log3(pn)

n1−2/q

)1/3
under Condition H3 (a);

c̃1

(
B2

n log7(pn)
n

)1/6
under Condition H3 (b).

Here, c̃1 depends only on b appearing in Condition H1 and q appearing in Condition H3.

We use the anti-concentration inequality on hyper-rectangles. Let σ2j := EZ2
j > 0 for 1 ⩽ ∀j ⩽ p

and let σ := min{σj}, σ := max{σj}.

Lemma 4.2 (Anti-concentration inequality on hyper-rectangles; Theorem in [35]). There exists a

universal positive constant c̃2 for which we have, for every z = (z1, . . . , zp)
⊤ ∈ Rp and R > 0,

γ := γ(R) := P(Z̃j ⩽ zj +R for 1 ⩽ ∀j ⩽ p)− P(Z̃j ⩽ zj for 1 ⩽ ∀j ⩽ p) ⩽ c̃2
R

σ

√
log p.

Remark 4.1 (Comment on the anti-concentration inequality). The point here is that the above

inequality allows for general hyper-rectangles. Remark that when we focus on max-rectangles, the

anti-concentration inequality above is less sharp than the anti-concentration inequality on max-

rectangles obtained by [15]; see also [13] in the sense that the former uses
√
log p while the latter

uses E[maxi=1,...,p Z̃j ].

The followings are Anderson’s lemma and the concentration inequality for Gaussian maxima.

Lemma 4.3 (Anderson’s lemma; Collorary 3 in [2]). Let Σ and Σ̃ be two nonnegative definite

and symmetric p × p matrices. Let Y and Ỹ be random vectors from N (0,Σ) and from N (0, Σ̃),

respectively. Let C be a convex symmetric set in Rp. If Σ− Σ̃ is nonnegative definite, then P(Y ∈
C) ⩽ P(Ỹ ∈ C).

Lemma 4.4 (Concentration inequality for Gaussian maxima; Theorem 2.5.8. in [27]). Let {Ni}pi=1

be i.i.d. random variables from the standard Gaussian distribution. Then, we have

P(| max
i=1,...,p

|Ni| − E max
i=1,...,p

|Ni|| ⩾ R) ⩽ e−R2/2, R > 0.

4.2. Proof of Theorem 2.1. We only prove the theorem under Assumption 2.2 (a). The proof

under Assumption 2.2 (b) is completed replacing Lemma 4.1 (a) by Lemma 4.1 (b).

The proof is divided into two parts: The former part is to present an upper bound of the

coverage error |P(β0 ∈ I(β̂(Y ), R̂α))− (1− α)|. The latter part is to evaluate the max-diameter of

I(β̂(Y ), R̂α).

Upper bound for the coverage error. At the first step, we show that R̂α concentrates on the (1−α)-
quantile of some distribution with a high probability. From Proposition 2.5, we have

|Πβ(I(β̂(Y ), R̂α) | Y )−N (I(β̂(Y ), R̂α) | β̂(Y ), σ20(X
⊤X)−1)| ⩽ ω for Y ∈ H,

where ω is the upper bound in Proposition 2.5 and recall that

H = {Y : ∥X(β̂(Y )− β0)∥ ⩽ c1
√
p log nσ0/4} ∩ {Y : Πσ2(|σ2/σ20 − 1| ⩾ δ1 | Y ) ⩽ δ2}.
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Let G be the cumulative distribution function of σ0max{|e⊤(p),i(X
⊤X)−1X⊤N |/wi}, where e(d),i is

the d-dimensional unit vector whose i-th component is 1, and N is the random vector from the

standard p-dimensional Gaussian distribution. Since

N (I(β̂(Y ), R̂α) | β̂(Y ), σ20(X
⊤X)−1) = P(σ0 max

i=1,...,p
{|e⊤(p),i(X

⊤X)−1X⊤N |/wi} ⩽ R̂α | Y ),

we have |(1− α)−G(R̂α)| ⩽ ω for Y ∈ H. Letting G−1 be the quantile function of G yields

G−1(1− α− ω) ⩽ R̂α ⩽ G−1(1− α+ ω) for Y ∈ H, (9)

which completes the first step.

At the second step, we derive an upper bound of P(β0 ∈ I(β̂(Y ), R̂α)) − (1 − α). The lower

bound is obtained in the same way. Because the inequality R̂α ⩽ G−1(1−α+ω) holds for Y ∈ H,

we have

P(β0 ∈ I(β̂(Y ), R̂α))− (1− α)

⩽ P(Y ∈ {Y : max
i=1,...,p

{|e⊤(p),i(X
⊤X)−1X⊤Y |/wi} ⩽ R̂α} ∩H)− (1− α) + P(Y ̸∈ H)

⩽ P
(

max
i=1,...,p

{|e⊤(p),i(X
⊤X)−1X⊤(ε+ r)|/wi} ⩽ G−1(1− α+ ω)

)
− (1− α) + ρ+ P(Y ̸∈ H)

⩽ γ(∥(X⊤X)−1X⊤r∥∞) + ρ+ P(Y ̸∈ H),

where both ρ and γ = γ(∥(X⊤X)−1X⊤r∥∞) are constants appearing in Lemmas 4.1 and 4.2 in

the case that Z := (X⊤X)−1X⊤ε. From Proposition 2.6, we have the upper bound of P(Y ̸∈ H).

Noting that ρ is independent of rescaling of Z and replacing Z by Z/σ0λ
1/2, we can take b = 1 and

Bn =
√
p(E|ε1/σ0|q)1/q(λ/λ)1/2, since we have

n−1
n∑

i=1

E|Zij |2 := n−1
n∑

i=1

E|e⊤(p),j(X
⊤X)−1X⊤e(n),iεi|2 ⩾ σ20λ

and since it follows from

|Zij/(εi/σ0)| ⩽ ∥e⊤(n),iX(X⊤X)−1∥/
√
λ ⩽ (λ/λ1/2)∥X⊤e(n),i∥ ⩽ (λ/λ)

√
p

that for 1 ⩽ ∀j ⩽ p,

n−1
n∑

i=1

E|Zij |3 ⩽ (
√
pλ/λ)3E(ε1/σ0)3 and n−1

n∑
i=1

E|Zij |4 ⩽ (
√
pλ/λ)4E(ε1/σ0)4.

Thus, from Lemmas 4.1 and 4.2, we obtain the following bounds on ρ and γ: For some c̃1 > 0

depending only on q,

ρ ⩽ c̃1

{(
p log7(pn)

n

λ

λ

)1/6

+

(
p log3(pn)

n1−2/q

λ

λ

)1/3
}
,

γ ⩽ c̃1
∥(X⊤X)−1X⊤r∥∞

σ0λ

√
log p,

which completes the second step and thus completes the evaluation of the coverage error.
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Estimate of the max-diameter. At the first step, we bound the max diameter using the quantile

function F−1 of maxi=1,...,p |Ni|. From the triangle inequality, we have, for Y ∈ H,

G−1(1− α− ω) ⩽ sup
β1,β2∈I(β̂,R̂α)

max
i=1,...,p

|β1,i − β2,i| ⩽ 2G−1(1− α+ ω).

Lemma 4.3 yields, for R > 0,

P
(

max
i=1,...,p

|Ni| ⩽
wR

σ0λ
1/2

)
⩽ P

(
max

i=1,...,p
|Ñi| ⩽ R

)
⩽ P

(
max

i=1,...,p
|Ni| ⩽

wR

σ0λ
1/2

)
,

where Ñ := σ0W (X⊤X)−1X⊤N and W = diag(w1, . . . , wp). Therefore, for any β ∈ (0, 1) we have(
w

σ0λ
1/2

)
G−1(1− β) ⩽ F−1(1− β) ⩽

(
w

σ0λ
1/2

)
G−1(1− β), (10)

which completes the first step.

At the second step, we will show that for sufficiently large p depending only on α, F−1(1−α±ω) ∼√
log p with probability at least P(Y ∈ H). First, we will show that F−1(1−α+ω) ≲

√
log p. From

Lemma 4.4, taking sufficiently large p depending only on α yields

P( max
i=1,...,p

|Ni| − E max
i=1,...,p

|Ni| ⩾ c̃2
√

log p) ⩽ exp(−c̃22 log p/2) < α− α/2 < α− ω,

for some positive constant c̃2. Therefore, noting that

F−1(1− α+ ω) := inf{R : P( max
i=1,...,p

|Ni| ⩾ R) ⩽ α− ω}

= inf{R : P( max
i=1,...,p

|Ni| − E max
i=1,...,p

|Ni| ⩾ R− E max
i=1,...,p

|Ni|) ⩽ α− ω},

we have F−1(1− α+ ω) ≲
√
log p.

Second, we show that F−1(1− α− ω) ≳
√
log p. From the Paley–Zygmund inequality, we have,

for θ ∈ [0, 1],

P( max
i=1,...,p

|Ni| ⩾ θE max
i=1,...,p

|Ni|) ⩾ (1− θ)2(E max
i=1,...,p

|Ni|)2/E( max
i=1,...,p

|Ni|)2.

Here, it follows that

E{ max
i=1,...,p

|Ni|}2 ⩽ {E max
i=1,...,p

|Ni|}2 +
√
2πE max

i=1,...,p
|Ni|+ 2 (11)

because we have, for any δ in (0, 1),

E[{ max
i=1,...,p

|Ni|}2]

=

∫
[0,Emaxi=1,...,p |Ni|+δ]

P( max
i=1,...,p

|Ni|2 ⩾ t)dt+

∫
[Emaxi=1,...,p |Ni|+δ,∞)

P( max
i=1,...,p

|Ni|2 ⩾ t)dt

⩽ (E max
i=1,...,p

|Ni|+ δ)2 +

∫
[Emaxi=1,...,p |Ni|+δ,∞)

2te−(t−Emaxi=1,...,p |Ni|2/2dt

⩽ (E max
i=1,...,p

|Ni|+ δ)2 +
√
2πE max

i=1,...,p
|Ni|+ 2,
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where the second inequality follows from the concentration inequality of the maxima of a Gaussian

process. Since it follows that (Emaxi=1,...,p |Ni|)2/E(maxi=1,...,p |Ni|)2 → 1 as p→ ∞ from (11), we

have, for sufficiently large p and for some θ depending only on α,

P( max
i=1,...,p

|Ni| ⩾ θE max
i=1,...,p

|Ni|) ⩾ α+ ω

and thus we obtain F−1(1−α−ω) ≳
√
log p, which completes the second step and hence completes

the proof. □

Appendix A. Proof of Proposition 2.5

A.1. Technical Lemmas. We present here some technical lemmas that will be used to prove

Proposition 2.5.

Lemma A.1 (Scheffé’s lemma). Let Q1 and Q2 be probability measures on a measurable space with

a common dominating measure µ. Let q1 = dQ1/dµ and q2 = dQ2/dµ. Then

∥Q1 −Q2∥TV =
1

2

∫
|q1(x)− q2(x)|dµ(x) =

∫
(q1(x)− q2(x))+dµ(x),

Proof. See, e.g., p.84 in [45]. □

Lemma A.2 (Posterior contraction of a marginal prior distribution). Recall that B(R) = {β ∈
Rp : ∥X(β−β0)∥ ⩽ σ0R} for R > 0. Under Conditions 2.1 and 2.3, there exist positive constants c̃1

and c̃2 depending only on C1 in Condition 2.1 such that for a sufficiently large R > 0, the inequality

Πβ(β ̸∈ B(R) | Y, σ2) ⩽ 4 exp{c̃1p log n− c̃2(σ
2
0/σ

2)R2} (12)

holds for Y ∈ H, where recall that

H := {Y : ∥X(β̂(Y )− β0)∥ ⩽ Rσ0/4} ∩ {Y : Πσ2(|σ2/σ20 − 1| ⩾ δ1 | Y ) ⩽ δ2}.

Proof. We use the following lower bounds on the small ball probability of a prior distribution:

Lemma A.3 (Lower bounds on the small ball probability of a prior distribution). Let Πβ be a

probability measure with a density π with respect to the p-dimensional Lebesgue measure. Recall

that ϕΠβ
(R) = 1− inf

β,β̃∈B(R)
{π(β)/π(β̃)} for R > 0. Then, we have, for every R > 0,

Πβ(β ∈ B(R)) ⩾
{1− ϕΠβ

(R)}(πeR)p/2

2(p/2 + 1)p/2+1/2

π(β0)σ
p
0√

det(X⊤X)
.

Proof of Lemma A.3. Observe that

Πβ(β ∈ B(R)) =

∫
B(R)

π(β)dβ ⩾ inf
β∈B(R)

{
π(β)

π(β0)

}
π(β0)

∫
B(R)

dβ.

Changing variables, we have that∫
B(R)

dβ =
(σ20R

2)p/2√
det(X⊤X)

∫
∥β∥⩽1

dβ =
(σ20R

2)p/2πp/2√
det(X⊤X)Γ(p/2 + 1)

,
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where Γ(·) is the Gamma function. Using the bound

Γ(p/2 + 1) ⩽
√
2π

e
(p/2 + 1)p/2+1/2e−p/2e1/18

(see section 5.6.1. in [36]), we have that∫
B(R)

dβ ⩾ (σ20πeR
2)p/2e17/18

√
2π
√

det(X⊤X)(p/2 + 1)p/2+1/2
.

Since e17/18/
√
2π ⩾ 1/2, we obtain the desired inequality. □

Return to the proof of Lemma A.2. Letting P := X(X⊤X)−1X⊤, we have

Πβ(β ∈ B | Y, σ2) =
∫
Bc e

−⟨P (ε+r),X(β−β0)⟩/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ∫
e−⟨P (ε+r),X(β−β0)⟩/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ

. (13)

Since cx2 + c−1y2 ⩾ 2xy for x, y, c > 0, we have, for any c > 1,∫
Bc

e−⟨P (ε+r),X(β−β0)⟩/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩽
∫
Bc

e∥P (ε+r)∥∥X(β−β0)∥/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩽
∫
Bc

e{c∥P (ε+r)∥2+c−1∥X(β−β0)∥2}/(2σ2)−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩽ exp{c∥P (ε+ r)∥2/(2σ2)− (1− c−1)(σ20/σ
2)R2/2}. (14)

Letting R̃ = 1/
√
πen, we have∫
e−⟨P (ε+r),X(β−β0)⟩/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩾
∫
B(R̃)

e−⟨P (ε+r),X(β−β0)⟩/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩾
∫
B(R̃)

e−{c∥P (ε+r)∥2+c−1∥X(β−β0)∥2}/(2σ2)−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩾ exp{−c∥P (ε+ r)∥2/(2σ2)− (1 + c−1)(σ20/σ
2)R̃2/2}Πβ(B(R̃)). (15)

We have∫
e−⟨P (ε+r),X(β−β0)⟩/σ2−∥X(β−β0)∥2/(2σ2)π(β)dβ

⩾
1− ϕΠβ

(R̃)

2
ep logn/2−p log p−C1p logne−c∥P (ε+r)∥2/(2σ2)−(1+c−1)(R̃2/2)(σ2

0/σ
2)

⩾ 4−1 exp{p log n/2− p log p− C1p log n− c∥P (ε+ r)∥2/(2σ2)− (1 + c−1)(σ20/σ
2)R̃2/2}, (16)

where the first inequality follows from (15) and from Lemma A.3 and the second inequality follows

from Condition 2.3.

Combining (14) and (16) with (13), we have, for Y ∈ H,∫
Bc

e−∥Y−Xβ∥2/(2σ2)π(β)dβ
/∫

e−∥Y−Xβ∥2/(2σ2)π(β)dβ

⩽ 4 exp[(C1 + 1/2)p log n+ {(1 + c−1)/(2n)}(σ20/σ2)− {(1− c−1)/2− c/16}(σ20/σ2)R2]. (17)
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Taking c = 3 completes the proof. □

Lemma A.4. Let A be an n× n symmetric positive semidefinite matrix such that ∥A∥op ⩽ 1 and

rank(A) < n. Let ε = (ε1, . . . , εn)
⊤ be a vector of i.i.d. random variables with mean zero and unit

variance.

(a) If in addition Assumption 2.2 (a) holds for an integer q ⩾ 2 and C3 > 0, then there exists

a positive constant c̃1 depending only on q and C3 such that, for every R >
√

rank(A),

P
(
ε⊤Aε ⩾ R2

)
⩽ c̃1 rank(A)/(R−

√
rank(A))q.

(b) If instead Assumption 2.2 (b) holds for C3 > 0, then there exists a positive constant c̃1

depending only on C3 such that, for every R > 0,

P
(
|ε⊤Aε− E[ε⊤Aε]| > R2

)
⩽ 2 exp{−c̃1min

(
R4/∥A∥2HS, R

2
)
},

where ∥ · ∥HS denotes Hilbert–Schmidt norm.

Proof. For Case (a), see Corollary 5.1 in [4]. The inequality in Case (b) is called the Hanson-Wright

inequality; for a proof, we refer to [29] and [41]. □

A.2. Proof of Proposition 2.5. Before the proof, we prepare additional notations for the sake

of notational simplicity. Let Ñ := N (β̂(Y ), σ20(X
⊤X)−1). Let B := B(c1

√
p log n) and H := H(c1)

for a sufficiently large c1 > 0 depending on C1 and C2. Let Π
B
β (dβ | Y ) be the probability measure

defined by

ΠB
β (dβ | Y ) := 1β∈BΠβ(dβ | Y )

/∫
B
Πβ(dβ̃ | Y )

and let ÑB be the probability measure defined by

ÑB(dβ) := 1β∈BÑ (dβ)

/∫
B
Ñ (dβ).

Let Πβ(· | Y, σ2) be the distribution defined by

Πβ(dβ | Y, σ2) := e−∥Y−Xβ∥2/(2σ2)π(β)dβ

/∫
e−∥Y−Xβ̃∥2/(2σ2)π(β̃)dβ̃

and let ΠB
β (· | Y, σ2) be the distribution defined by

ΠB
β (dβ | Y, σ2) := 1β∈Be

−∥Y−Xβ∥2/(2σ2)π(β)dβ

/∫
B
e−∥Y−Xβ̃∥2/(2σ2)π(β̃)dβ̃.

In the proof, c̃1, c̃2, . . . are positive constants depending only on C1, C2, and c1.

Proof outline :

First of all, we present a brief outline of the proof. From the triangle inequality, we have

∥Πβ(dβ | Y )− Ñ∥TV ⩽ ∥Πβ(dβ | Y )−Πβ(dβ | Y, σ20)∥TV + ∥Πβ(dβ | Y, σ20)− Ñ∥TV. (18)

Consider the first term on the right hand side of (18). Letting S = S(δ1) :=
{
σ2 : |σ2/σ20 − 1

∣∣ ⩽ δ1},
it follows that

∥Πβ(dβ | Y )−Πβ(dβ | Y, σ20)∥TV ⩽
∫
S
∥Πβ(dβ | Y, σ2)−Πβ(dβ | Y, σ20)∥TVΠσ2(dσ2 | Y ) + δ1
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with probability at least 1− δ2, from the application of Jensen’s inequality to the function x→ |x|
and from Condition 2.2. For the bound of the first term on the rightmost hand in the above

inequality, the triangle inequality yields∫
S
∥Πβ(dβ | Y, σ2)−Πβ(dβ | Y, σ20)∥TVΠσ2(dσ2 | Y ) ⩽ A1 +A2 +A3, (19)

where

A1 :=

∫
S
∥Πβ(dβ | Y, σ2)−ΠB

β (dβ | Y, σ2)∥TVΠσ2(dσ2 | Y ),

A2 :=

∫
S
∥ΠB

β (dβ | Y, σ2)−ΠB
β (dβ | Y, σ20)∥TVΠσ2(dσ2 | Y ),

A3 :=

∫
S
∥ΠB

β (dβ | Y, σ20)−Πβ(dβ | Y, σ20)∥TVΠσ2(dσ2 | Y ).

Upper bounds of A1, A2, A3 will be presented in (21),(22), and (23). Consider the second term on

the right hand side of (18). From the triangle inequality, we have

∥Πβ(dβ | Y, σ20)− Ñ∥TV ⩽ A4 +A5 +A6, (20)

where A4 := ∥Ñ − ÑB∥TV, A5 := ∥ÑB −ΠB
β (dβ | Y, σ20)∥TV, and A6 := ∥ΠB

β (dβ | Y, σ20)−Πβ(dβ |
Y )∥TV. Upper bounds of A4, A5, A6 will be presented in (25), (26), and (27).

Upper bound of (19):

Consider A1 in (19). From Lemmas A.1 and A.2, taking a sufficiently large c1 depending only

on C1 yields

A1 =

∫
S
Πβ(β ̸∈ B | Y, σ2)Πσ2(dσ2 | Y ) ⩽ 4e−c̃1p logn. (21)

Consider A2 in (19). From Lemma A.1, we have

A2 =

∫
S

∫ (
1− ϕΠβ ,2(β, σ

2)
)
+
ΠB

β (dβ | Y, σ20)Πσ2(dσ2 | Y ),

where

ϕΠβ ,2(β, σ
2) :=

π(β)e−∥Y−Xβ∥2/(2σ2)∫
B e−∥Y−Xβ̃∥2/(2σ2)π(β̃)dβ̃

∫
B e−∥Y−Xβ̃∥2/(2σ2

0)π(β̃)dβ̃

π(β)e−∥Y−Xβ∥2/(2σ2
0)

.

From Cauchy–Schwarz’s inequality and Assumption 2.1, we have

e−⟨P (ε+r),Xβ0−Xβ⟩/σ2−∥Xβ0−Xβ∥2/(2σ2)

⩾ e−⟨P (ε+r),Xβ0−Xβ⟩/σ2
0−∥Xβ0−Xβ∥2/(2σ2

0)e−C2c1δ1p logn/{4(1−δ1)}−c21δ1p logn/(1−δ1).

Likewise, we have∫
B
e−⟨P (ε+r),Xβ0−Xβ̃⟩/σ2−∥Xβ0−Xβ̃∥2/(2σ2)π(β̃)dβ̃

⩽ eC2c1δ1p logn/{4(1−δ1)}+c21δ1p logn/(1−δ1)

∫
B
e−⟨P (ε+r),Xβ0−Xβ⟩/σ2

0−∥Xβ0−Xβ∥2/(2σ2
0)π(β̃)dβ̃.
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Therefore, we have, for β ∈ B, Y ∈ H, and σ2 ∈ S,

ϕΠβ ,2(β, σ
2) ⩾ exp(−c̃2δ1p logn)

and thus it follows that

A2 ⩽ c̃2δ1p log n (22)

since (1− e−x)+ ⩽ x for x > 0.

Consider A3 in (19). From Lemmas A.1 and A.2, taking a sufficiently large c1 depending only

on C1 yields, for Y ∈ H,

A3 ⩽ Πβ(β ̸∈ B | Y, σ20) ⩽ 4 exp(−c̃3p log n). (23)

Therefore, inequalities (21), (22), and (23) yield∫
S
∥Πβ(dβ | Y, σ2)−Πβ(dβ | Y, σ20)∥TVΠσ2(dσ2 | Y ) ⩽ c̃4e

−c̃5p logn + c̃4δ1p log n. (24)

Upper bound of (20):

Consider A4 in (20). From Lemmas A.1 and A.4, we have

A4 = Ñ (Bc) ⩽ exp{−(3c1
√
p log n/4−√

p)2/2}. (25)

Consider A5 in (20). From Lemma A.1, we have

A5 =

∫ (
1− dÑB

dΠB
β (· | Y, σ20)

(β)

)
+

ΠB
β (dβ | Y, σ20).

We denote the density of Ñ with respect to the Lebesgue measure by ϕ̃. Since we have, for β ∈ B,

dÑB

dβ
(β) =

ϕ̃(β)∫
B ϕ̃(β̃)dβ̃

and
dΠB

β (· | Y, σ20)
dβ

(β) =
π(β)ϕ̃(β)∫

B π(β̃)ϕ̃(β̃)dβ̃
,

applying Jensen’s inequality to x→ (1− x)+ yields∫ (
1− dÑB

dΠB
β

(β | Y, σ20)

)
+

ΠB
β (dβ | Y ) =

∫ (
1−

∫
B

π(β̃)

π(β)

ϕ̃(β̃)∫
B ϕ̃(β

′)dβ′
dβ̃

)
+

ΠB
β (dβ | Y )

⩽
∫ ∫

B

(
1− π(β̃)

π(β)

)
+

ϕ̃(β̃)∫
B ϕ̃(β

′)dβ′
dβ̃ΠB

β (dβ | Y ).

Therefore, we obtain

A5 ⩽ ϕΠβ
(c1
√
p log n). (26)

Consider A6 in (20). From Lemmas A.1 and A.2, taking a sufficiently large c1 > 0 yields

A6 = Πβ(β ̸∈ B | Y, σ20) ⩽ 4 exp(−c̃6p log n). (27)

Therefore, inequalities (25), (26), and (27) yield

∥Πβ(dβ | Y, σ20)− Ñ∥TV ⩽ ϕΠβ
(c1
√
p log n) + c̃7 exp(−c̃8p log n). (28)
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Combining (24) and (28) with (19) provides the upper bound of the target total variation and

thus completes the proof. □

A.3. Proof of Proposition 2.6. Let c be any positive number. Under Assumption 2.2 (a), it

follows from Lemma A.4 (a) with R = c
√
p log n that the inequality

P(Y ̸∈ H(c)) ⩽ c̃1p
1−q/2(log n)−q/2 + δ3

holds for some c̃1 > 0 depending only on c, C3, and q. Under Assumption 2.2 (b), it follows from

Lemma A.4 (b) with R = (c2 + 1)p log n, that the inequality

P(Y ̸∈ H(c)) ⩽ 2e−c̃2 min{p(logn)2,p logn} + δ3

holds for some c̃2 > 0 depending only on c, C3, and q. Thus, we completes the proof. □

Appendix B. Proofs of Propositions 2.1–2.4

Proof of Proposition 2.1. Let B̃(R) := {β : ∥β − β0∥ ⩽ σ0λ
1/2
R} for R > 0. The inequality

ϕΠβ
(c
√
p log n) < cLσ0λ

1/2√
p log n, (29)

holds for any c > 0, since

ϕΠβ
(c
√
p log n) ⩽ sup

β,β̃∈B̃
[1− exp{− log{π(β)/π(β̃)}}] ⩽ cσ0Lλ

1/2√
p log n,

where the first inequality follows because ∥X(β − β0)∥ ⩾ λ
−1/2∥β − β0∥ and the second inequality

follows because 1 − e−x ⩽ x. Substituting c = 1/(
√
pn log n) into (29), we have ϕΠβ

(1/
√
n) ⩽

Lλ
1/2
σ0/

√
n. Therefore, we complete the proof. □

Proof of Proposition 2.2. First, consider an isotropic prior. We have

log π(β0) = log ρ(∥β0∥)− log

∫
ρ(∥β∥)dβ

= log ρ(∥β0∥)− log

[
{pπp/2/Γ(p/2 + 1)}

∫ ∞

0
xp−1ρ(x)dx

]
⩾ log inf

x∈[0,B]
ρ(x)− c̃1p log p

⩾ log inf
x∈[0,B]

ρ(x)− c̃1p log p− c̃1 log n+ log{
√

det(X⊤X)/σp0}

for some positive constant c̃1 depending only on m and c appealing in the definition of an isotropic

prior and Assumption 2.3. Thus, we see that an isotropic prior satisfies Condition 2.1. To see the

locally log-Lipschitz continuity, Taylor’s expansion yields

| log π(β0 + s1)− log π(β0 + s2)| ⩽ sup
x:0⩽x⩽B+

√
σ2
0λp logn

|d log ρ/dx(x)|(∥β0 + s1∥ − ∥β0 + s2∥).

This completes the proof for the case of an isotropic prior.
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Second, consider a product prior π(β) =
∏p

i=1 πi(βi). We have

log π(β0) ⩾ p logmin
i
πi(0)− L̃p1/2∥β0∥

⩾ p logmin
i
πi(0)− L̃Bp log n

⩾ −L̃Bp(1 + o(1)) log n− c̃2 log n+ log{
√

det(X⊤X)/σp0}

for some positive constant c̃2 depending only on c appearing in Assumption 2.3. Thus, we see that

a product prior satisfies Condition 2.1. To see the locally log-Lipschitz continuity, the Lipschitz

continuity of log π(β) yields

| log π(β)− log π(β0)| ⩽
p∑

i=1

| log πi(βi)− log πi(β0,i)| ⩽ L̃p1/2∥β − β0∥,

which completes the proof. □

Proof of Proposition 2.3. We present the proof only for the case under Assumption 2.2 (a). The

proof for the case under Assumption 2.2 (b) is completed replacing Lemma A.4 (a) by Lemma A.4

(b).

First, from Lemma A.4 (a), we have P(σ̂2u/σ20 − 1 ⩾ δ1) ⩽ c̃1/(n − p)q/2−1δ̃q1 for some positive

constant c̃1 depending only on q, because it follows that

σ̂2u =
∥Y −X(X⊤X)−1X⊤Y ∥2

σ20(n− p)σ20

⩽ ∥ε−X(X⊤X)−1X⊤ε∥2 + 2∥r −X(X⊤X)−1X⊤r∥2 + |ε⊤u|2

σ20(n− p)

=
ε⊤Ãε+ 2∥r −X(X⊤X)−1X⊤r∥2

σ20(n− p)

where

u :=

{I −X(X⊤X)−1X⊤}r/∥{I −X(X⊤X)−1X⊤}r∥ if {I −X(X⊤X)−1X⊤}r ̸= 0,

arbitrary if otherwise,

and Ã := I −X(X⊤X)−1X⊤ + uu⊤.

Next, we will show that

P
(
σ̂2u(Y )/σ20 − 1 ⩽ −δ1

)
⩽ c̃2

max{nq/4, n}
δ
q/2
1 (n− p)q/2

+ c̃2
pq/2+1

(n− p)qδq1
(30)

for some positive constant c̃2 depending only on q. Letting P̃ be the projection onto the linear

space spanned by {X, (I −X(X⊤X)−1X⊤)r}, we have

P
(
σ̂2u(Y )/σ20 − 1 ⩽ −δ1

)
⩽ P

(
{∥ε∥2 − ∥P̃ ε∥2}/{σ20(n− p)} ⩽ 1− δ1

)
⩽ P

(
∥ε∥2/σ20(n− p)− n/(n− p) ⩽ −δ1/2

)
+ P

(
∥P̃ ε∥2/σ20(n− p) ⩾ p/(n− p) + δ1/2

)
. (31)
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For the upper bound of the first term on the rightmost hand side in (31), we use Rosenthal’s

inequality:

Lemma B.1 (Rosenthal’s inequality; see [38] and [47].). For some positive constant c̃3 depending

only on q, we have E
∣∣∥ε/σ0∥2 − n

∣∣q/2 ⩽ c̃3max{nq/4, n}.

We have, from Markov’s inequality and Rosenthal’s inequality,

P
(
∥ε∥2/{σ20(n− p)} − n/(n− p) ⩽ −δ1/2

)
⩽ c̃4max{nq/4, n}/{δq/21 (n− p)q/2} (32)

for some c̃4 > 0 depending only on q. For the upper bound of the second term on the rightmost

hand side in (31), we use Lemma A.4 (a) with R =
√
p+ (n− p)δ1/2. We thus obtain

P
(
∥P̃ ε∥2/{σ20(n− p)} ⩾ p/(n− p) + δ1/2

)
⩽ c̃4n

1−q/2/δ
q/2
1 . (33)

Combining (32) and (33) with (31) yields (30), which completes the proof for the case under

Assumption A.4 (a). □

Proof of Proposition 2.4. The marginal posterior distribution of σ2 is given by the inverse Gamma

distribution IG(a∗, b∗), where a∗ = µ1 + n/2 − p/2 and b∗ = µ2 + ∥Y − PY ∥2/2. The mean of

this marginal posterior is {2µ2 + ∥(I −X(X⊤X)−1X⊤)Y ∥2}/{2µ1 + n− p− 2}; while the variance

is 2{2µ2 + ∥(I − X(X⊤X)−1X⊤)Y ∥2}2/{2µ1 + n − p − 2}2{2µ1 + n − p − 4}. From Chebyshev’s

inequality,

Πσ2(σ2 : |σ2/σ20 − 1| ⩾ δ1 | Y ) ⩽ c̃1∥(I −X(X⊤X)−1X⊤)Y ∥2/{n2(δ1 − |E[σ2/σ20 | Y ]− 1|)2}
(34)

for some positive constant c̃1 depending only on µ1 and µ2. We have, from the proof of Proposition

2.3, the upper bound of P(∥(I − X(X⊤X)−1X⊤)Y ∥2/(n − p) − 1 ⩾ δ1/2) and thus complete the

proof. □

Appendix C. Proofs for Section 3.1

C.1. Proof of Proposition 3.1. First, we transform a white noise model

dY (t) = f0(t)dt+
dW (t)√

n

into a Gaussian sequence model

Yl,k = β0,lk + rl,k + εl,k, (l, k) ∈ I,

where the distribution of εl,k is N (0, 1/n) and rl,k = τ∞/
√
2J . This transformation is done via a

mapping

f →
(∫

ψ(J0−1)0(t)f(t)dt,

∫
ψ(J0−1)1(t)f(t)dt, . . . ,

∫
ψ(J−1)(2J−1−1)(t)f(t)dt

)
.

Therefore, if the estimate of L∞-diameter is provided, Theorem 2.1 will complete the proof.
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Next, we derive the upper bound of the L∞-diameter of C(f̂ , R̂α). For f, g ∈ C(f̂ , R̂α), let

h := f − g. It follows from the triangle inequality and from the approximation ability of the

S-regular wavelet that ||h||∞ ⩽ c̃1(A1 +A2 +A3) for some c̃1 > 0, where

A1 := 2J0/2 max
0⩽k⩽2J0−1

|⟨h, ψ(J0−1)k⟩|,

A2 :=
∑

J0⩽l⩽J−1

2l/2 max
0⩽k⩽2l−1

|⟨h, ψl,k⟩|,

A3 :=
∑
J⩽l

2l/2 max
0⩽k⩽2l−1

|⟨h, ψl,k⟩|.

Using the radius R̂α, the quantities A1 and A2 on the right hand side are bounded as max{A1, A2} ⩽
c̃22

J/2
√
JR̂α for some c̃2 > 0. There exist positive constants c̃3, c̃4, c̃5 such that, for sufficiently large

n depending only on α,

max{A1, A2} ⩽ c̃3

√
2J/n

√
log n

with probability at least 1− c̃4 exp(−c̃52J log n), since it follows from Theorem 2.1 that R̂α ⩽ c̃6σ0

on H for some c̃6 > 0. The quantity A3 on the right hand side is bounded as

A3 ⩽ c̃72
J/22−J(s+1/2)u1/2n = c̃7

√
2J/n

√
log n/usn

for some c̃7 > 0. This complete the proof. □

C.2. Proof of Proposition 3.2. The proof consists of the upper bound of the coverage error and

the estimate of the L∞-diameter.

Upper bound of the coverage error. We apply Theorem 2.1 for the Gaussian sequence model

Yl,k = β0,lk + rl,k + εl,k, (l, k) ∈ I(J ′)

and the corresponding credible band by setting X = I2J′ , wl,k = wl for (l, k) ∈ I(J ′), and σ0 =

1/
√
n.

However, an additional treatment for the term supl⩾J ′,0⩽k⩽2l−1 |β0,lk−Yl,k|/wl is required because

C(f̂∞, R̂α) depends on (YJ ′+1,0, YJ ′+1,1, . . .), where Yl,k :=
∫
ψl,kdY for J ′ ⩽ l <∞, 0 ⩽ k ⩽ 2l − 1.

Let Y := (YJ0−1,0, . . .).

The treatment that we conduct is as follows. Let H̃ := {Y : supJ ′⩽l,0⩽k⩽2l−1 |Yl,k−β0,lk|/wl ⩽ δ}.
Note that we have

P(f0 ∈ C(f̂∞, R̂α)) ⩽ P( sup
(l,k)∈I(J ′)

|β0,lk − Yl,k|/wl ⩽ R̂α)
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and

P(f0 ∈ C(f̂∞, R̂α))

⩾ P(Y ∈ {Y : sup
(l,k)∈I(J ′)

|β0,lk − Yl,k|/wl + sup
J ′⩽l,0⩽k⩽2l−1

|β0,lk − Yl,k|/wl ⩽ R̂α} ∪ H̃)

⩾ P(Y ∈ {Y : sup
(l,k)∈I(J ′)

|β0,lk − Yl,k|/wl + δ ⩽ R̂α})− P(Y ̸∈ H̃)

= P(Y ∈ {Y : sup
(l,k)∈I(J ′)

|β0,lk − Yl,k − sgn(Yl,k − β0,lk)δwl|/wl ⩽ R̂α}) + P(Y ̸∈ H̃).

Therefore, setting r := (±wlδ) enables us to apply Theorem 2.1 for this case. Two remarks are in

order. Remark that the sign of r does not affect on the result. Remark also that Assumption 2.1 is

always satisfied because Assumption 2.1 is on a bias term in the model and because there is no bias

term in the Gaussian sequence model. Thus, adding P(Y ̸∈ H̃) to the upper bound will complete

the evaluation of the coverage error.

Consider the upper bound of P(Y ̸∈ H̃). Let {Nl,k : J ′ < l, 0 ⩽ k ⩽ 2l − 1} be i.i.d. random vari-

ables from the standard Gaussian distribution. It follows from Lemma 4.4 and from the inequality

Emaxk⩽2l−1 |Nl,k| ⩽
√
2l that for some c̃1, c̃2 > 0,

P(Y ̸∈ H̃) ⩽
∑
l⩾J ′

P(max
k

|Nl,k| − Emax |Nl,k| ⩾ wl(δ/σ0 −
√
2/un))

⩽ c̃1e
−c̃2nw2δ2 .

This completes the evaluation of the coverage error.

Estimate of the L∞-diameter. We derive the upper bound of the L∞-diameter of C(f̂∞, R̂α). For

f, g ∈ C(f̂∞, R̂α), we have

∥f − g∥∞ ⩽ 2
∑
l<J ′

2l/2 max
k⩽2l−1

|⟨h, ψl,k⟩|+ 2
∑
l⩾J ′

2l/2 max
k⩽2l−1

|⟨h, ψl,k⟩|,

where h := f − g. The former term on the right hand side in the above inequality is bounded as∑
l<J ′

2l/2 max
k⩽2l−1

|⟨h, ψl,k⟩| ⩽
∑
l<J ′

2l/2
√
l(wl/

√
l){ max

k⩽2l−1
|⟨h, ψl,k⟩/wl|} ⩽ c̃32

J ′/2
√
J ′max

l<J ′
{wl/

√
l}R̂α

for some c̃3 > 0. There exist c̃4, c̃5, c̃6 > 0 such that for sufficiently large n depending only on α,∑
l⩽J ′

2l/2 max
k⩽2l−1

|⟨h, ψl,k⟩| ⩽ c̃4

√
2J ′(log n)/nmax

l<J ′

wl√
l

with probability at least 1 − c̃5 exp(−c̃62J
′
log n), since it follows from (9) and (10) that R̂α ⩽√

(log n)/n on H for some c̃7 > 0,

The latter term on the right hand side is bounded as

2
∑
l⩾J ′

2l/2 max
k⩽2l−1

|⟨h, ψl,k⟩| ⩽ c̃82
−J ′(s+1/2)un

for some c̃8 > 0 because of the approximation property of the S-regular wavelet. This completes

the proof. □
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C.3. Proof of Proposition 3.3. The proof follows essentially the same line as that of Proposition

3.1. The only difference is to provide the lower bound of the L∞-diameter. It follows that there

exists c̃1 > 0 for which we have, for sufficiently large n such that the coverage error is bounded by

α/2, sup
f,g∈C(f̂ ,R̂α)

∥f − g∥∞ ⩾ c̃1
√

2J/n with a high probability, since sup
f,g∈C(f̂ ,R̂α)

∥f − g∥∞ ⩾
√
2J R̂α. This completes the proof. □

Appendix D. Proofs for Section 3.2

Proof of Prosposition 3.4. The proof follows the line of that of Proposition 3.3. The only difference

is to deal with the non-orthogonality of {v(1)l,k }.
When denoting by Ỹ = (Ỹl,k)(l,k)∈I(J) the coefficients of dY with respect to {v(1)l,k : (l, k) ∈ I(J)},

Ỹ follows

Ỹl,k = κl,kβ0,lk + r̃ + εl,k, (l, k) ∈ I(J),

where β0 = (β0,lk)(l,k)∈I(J) is the coefficient vector of f0 with respect to {ψl,k : (l, k) ∈ I(J)}, r̃ :=
τ ′∞/

√
2J , and ε = (εl,k)(l,k)∈I(J) follows the Gaussian distribution with mean zero and covariance

matrix Σ.

From the near-orthogonality of {v(1)l,k }, there exist b and b such that bI2J/n ⪯ Σ ⪯ bI2J/n , where

constants b, b depend only on the frame constants of {v(1)l,k } and {v(2)l,k }. Let κ := diag(κl,k)(l,k)∈I(J).

Thus, setting Y = Σ−1/2Ỹ , X = Σ−1/2κ, r = Σ−1/2r̃, σ0 = 1, and wl,k =
√
lκ−1

l,k , Theorem 2.1

completes the proof. □

Appendix E. Proof for Section 3.3

First of all, we transform the model into the following regression model based on the approxi-

mation by p basis functions {ψp
j : 1 ⩽ j ⩽ p}:

Y = Xβ0 + r + ε,

where Y = (Y1, . . . , Yn)
⊤, X = (X1, . . . , Xn)

⊤ with each componentXi of which the j(∈ {1, . . . , p})-
th component is ψp

j (Ti), and r = (r1, . . . , rn)
⊤ with each component ri = f0(Ti)−ψp(Ti)

⊤β0. Here,

recall that β0 ∈ argminE|f0(T1)−
∑p

j=1 ψ
p
j (T1)βj |2.

E.1. Technical lemmas. Before the proof, we state four technical tools used in the proof. Let

N(n) be a random n-vector from N (0, σ20In), and N(p) be a random p-vector from N (0, σ20Ip). Let

B = (Bij) := (Eψp
i (T1)ψ

p
j (T1)) and recall ψ̃p(·) := ψp(·)/∥ψp(·)∥ and ξp := ∥∥ψp(·)∥∥∞.

Lemma E.1 (Matrix Chernoff inequality; [44]). Let {Ai : i = 1, . . . , n} be an i.i.d. sequence of

positive semi-definite and self-adjoint p× p matrices of which the maximum eigenvalues are almost

surely bounded by R. Then,

P(λmin(
∑

Ai/n) ⩽ (1− δ)λmin(E[A1])) ⩽ p{e−δ/(1− δ)1−δ}nλmin(E[A1])/R for δ ∈ [0, 1] and

P(λmax(
∑

Ai/n) ⩽ (1− δ)λmax(E[A1])) ⩽ p{eδ/(1 + δ)1−δ}nλmin(E[A1])/R for δ > 0,
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where λmin(·) and λmax(·) are the maximum and the minimum eigenvalues.

Lemma E.2 (Lemma 4.2 in [5]). Under Conditions 3.3-3.4, the equality∥∥∥∥ψ̃p(·)⊤
√
n(β̂ − β0)− ψ̃p(·)⊤B

−1X⊤ε√
n

∥∥∥∥
∞

⩽ R1 +R2

holds, where R1 and R2 are random variables such that there exist positive constants c̃1 and c̃2

depending only on q appearing in Assumption 2.2 (a) for which we have

R1 ⩽

c̃1η2
√

ξ2p log p

n (n1/q
√
log p+

√
pτ∞) under Assumption 2.2 (a),

c̃1η
2

√
ξ2p log p

n (
√
log n

√
log p+

√
pτ∞) under Assumption 2.2 (b),

R2 ⩽ c̃2η
√

log pτ∞

with probability at least 1− c̃2/η, for any η > 1.

Remark E.1. Belloni et al. [5] provides the proof under Assumption 2.2 (a). The proof under

Assumption 2.2 (b) is almost the same noting that n1/q comes from E[maxi=1,...,n |εi|].

Lemma E.3 (Corollary 2.2 and Proposition 3.3 in [14]). Under Conditions 3.3-3.4, for any η > 0,

there exists a random variable Z̃
d
= ∥ψ̃p(·)⊤B−1N(p)∥∞ such that the inequality∣∣∣∣∥∥∥∥ψ̃p(·)⊤

√
n
B−1X⊤ε

n

∥∥∥∥
∞

− Z̃

∣∣∣∣
⩽

c̃1
n1/q logn

η1/2
ξp

n1/2 + (logn)3/4

η1/2
ξ
1/2
p

n1/4 + (logn)2/3

η1/3
ξ
1/3
p

n1/6 under Assumption 2.2 (a),

c̃1
logn
η1/2

ξp
n1/2 + (logn)3/4

η1/2
ξ
1/2
p

n1/4 + (logn)2/3

η1/3
ξ
1/3
p

n1/6 under Assumption 2.2 (b)

holds with probability at least 1− c̃2{η + (log n)/n} for some c̃1, c̃2 > 0 not depending on n and p.

Lemma E.4. Under Condition 3.4, the inequality E∥ψ̃p(·)⊤B−1N(p)∥∞ ⩽ c̃1
√
log p holds for some

positive constant c̃1 depending only on C5 appearing in Condition 3.4.

Proof. From Dudley’s entropy integral (e.g.,see Corollary 2.2.8 in [46]),

E[∥ψ̃p(·)⊤B−1/2N(p)∥∞]

⩽ E[|ψ̃p(0)⊤B−1/2N(p)|] + E[ sup
t ̸=t′∈[0,1]

|ψ̃p(t)⊤B−1/2N(p) − ψ̃p(t′)⊤B−1/2N(p)|]

⩽ b+

∫ θ

0

√
logN([0, 1], dX , δ)dδ,

where N([0, 1], dX , δ) is a δ-covering number of [0, 1] with respect to

dX(t, t′) := {E[ψ̃p(t)⊤B−1/2N(p) − ψ̃p(t′)⊤B−1/2N(p)]
2}1/2

and θ := supt∈[0,1] dX(t, 0). Since θ is bounded by 2b,∫ θ

0

√
logN([0, 1], dX , δ)dδ ⩽

∫ 2b

0

√
logN([0, 1], dX , δ)dδ.
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Since it follows from the bound on covering numbers of functions Lipschitz in one parameter

(Theorem 2.7.11 in [46]) that we have, for some c̃2 > 0, N([0, 1], dX , δ) ⩽
(
c̃2p

C5/δ
)
, the inequality∫ 2b

0

√
logN([0, 1], dX , δ)dδ ⩽

√
C5 log p+

∫ 2b

0

√
log(c̃2b/δ)dδ

holds. Thus, we obtain the desired inequality. □

Lemma E.5. Under Conditions 3.3-3.4, there exists a positive constant c̃1 not depending on n and

p for which we have

sup
x∈R

P
(∣∣∥ψ̃p(·)⊤B−1/2N(p)∥∞ − x

∣∣ ⩽ R
)
⩽ c̃1R

√
log p, R > 0.

Proof. From Theorem 2.1 in [14],

sup
x∈R

P
(∣∣∥ψ̃p(·)⊤B−1/2N(p)∥∞ − x

∣∣ ⩽ R
)
⩽ c̃1RE[∥ψ̃p(·)⊤B−1/2N(p)∥∞]

and thus Lemma E.4 completes the proof. □

E.2. Proof of Proposition 3.5. We only provide the proof under Assumption 2.2 (a). We mention

that although the proof is not a direct consequence of Theorem 2.1, we can follow the same line as

the proof of Theorem 2.1.

Modification of the test set H. Take c1 > 0 sufficiently large. Before providing the coverage error

and the L∞-diameter, we modify the test set

H = {Y : ∥X(β̂(Y )− β0)∥ ⩽ c1
√
p log n} ∩ {Y : Πσ2(|σ2/σ20 − 1| ⩾ δ1 | Y ) ⩽ δ2}

in Proposition 2.5 as

H := {(X,Y ) :∥X(β̂(Y )− β0)∥ ⩽ c1
√
p log n, (b/2)2Ip ⪯ X⊤X/n ⪯ (2b)2Ip}

∩ {(X,Y ) : Πσ2(|σ2/σ20 − 1| ⩾ δ1 | Y ) ⩽ δ2}.

The probability P((X,Y ) ̸∈ H) is evaluated as follows:

P((X,Y ) ̸∈ H) ⩽A1 +A2 +A3 + δ3,

where

A1 := P(∥X(X⊤X)−1X⊤ε∥ ⩾ c1
√
p log n/2, (b/2)2Ip ⪯ X⊤X/n ⪯ (2b)2Ip),

A2 := P(∥X(X⊤X)−1X⊤r∥ ⩾ c1
√
p log n/2),

A3 := P(X ̸∈ {X : (b/2)2Ip ⪯ (X⊤X)/n ⪯ (2b)2Ip}).

It follows from Lemma A.4 that A1 ⩽ c̃1e
−c̃2p logn for some c̃1, c̃2 > 0. It follows from the Markov

inequality that

A2 ⩽
E[r⊤X(X⊤X)−1X⊤r]

p log n
⩽ n

log n

τ22
p
.

It follows from Lemma E.1 that A3 ⩽ c̃1e
−c̃2p logn.
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Upper bound for the coverage error. At the first step, we derive a high-probability bound of R̂α.

From Proposition 2.5, for (X,Y ) ∈ H,

∣∣Πβ{∥ψ̃p(·)⊤(β̂ − β0)∥∞ ⩽ R̂α | Y,X} − P(∥ψ̃p(·)⊤(X⊤X)−1X⊤N(n)∥∞ ⩽ R̂α | Y,X)
∣∣ ⩽ ω,

where ω := ϕ̃Πβ
(c1

√
p log n)+ c1δ1p log n+ δ2+ δ3+ c1e

−c2p logn. Here the constant c2 is determined

in Proposition 2.5. Letting G be the distribution function of ∥ψ̃p(·)⊤(X⊤X)−1X⊤N(n)∥∞, G−1 its

quantile function, we have

G−1(1− α− ω) ⩽ R̂α ⩽ G−1(1− α+ ω) for (X,Y ) ∈ H. (35)

Thus, we complete the first step.

At the second step, we derive approximation bounds of ∥ψ̃p(·)⊤(X⊤X)−1X⊤N(n)∥∞ and ∥ψ̃p(·)⊤

(β̂−β0)∥∞ by
√
n∥ψ̃p(·)⊤B−1/2N(p)∥∞ in Kolmogorov distance. Let η = ηn be arbitrary divergent

sequence. Let

ρ1 := sup
R>0

∣∣P(∥ψ̃p(·)⊤
√
n(β̂ − β0)∥∞ ⩽ R)− P(∥ψ̃p(·)⊤B−1/2N(p)∥∞ ⩽ R)

∣∣,
ρ2 := sup

R>0

∣∣P(∥ψ̃p(·)⊤
√
n(X⊤X)−1X⊤N∥∞ ⩽ R)− P(∥ψ̃p(·)⊤B−1/2N(p)∥∞ ⩽ R)

∣∣, and
γ(R) := sup

x>0
P(|∥ψ̃p(·)⊤B−1/2N(p)∥∞ − x| ⩽ R).

and consider upper bounds of ρ1, ρ2, and γ(R).

There exist c̃3, c̃4 > 0 for which we have four inequalities

P
(√

n

∣∣∣∣ ∥∥∥ψ̃p(·)⊤(β̂ − β0)
∥∥∥
∞

−
∥∥∥ψ̃p(·)⊤B−1X⊤ε/n

∥∥∥
∞

∣∣∣∣
⩾ c̃3η

{(
ξ2p/n

)1/2√
log p(n1/q

√
log p+

√
pτ∞) +

√
log pτ∞

})
⩽c̃4/η2, (36)

P
(√

n

∣∣∣∣∥ψ̃p(·)⊤(X⊤X)−1X⊤N(n)∥∞ − ∥ψ̃p(·)⊤B−1X⊤N(n)/n∥∞
∣∣∣∣ ⩾ c̃3η

(
ξ2p/n

)1/2
n1/q log p

)
⩽c̃4/η2, (37)

P
(√

n

∣∣∣∣ ∥∥∥ψ̃p(·)⊤B−1X⊤ε/n
∥∥∥
∞

− Z̃

∣∣∣∣
⩾ c̃3η

{(
ξ2p/n

)1/2
(n1/q log n) +

(
ξ2p/n

)1/4
(log n)3/4

}
+ c̃3η

2/3
{(
ξ2p/n

)1/6
(log n)2/3

})
⩽c̃4(1/η2 + log n/n), (38)
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and

P
(√

n

∣∣∣∣ ∥∥∥ψ̃p(·)⊤B−1X⊤N(n)/n
∥∥∥
∞

− Z̃

∣∣∣∣
⩾ c̃3η

{(
ξ2p/n

)1/2
(n1/q log n) +

(
ξ2p/n

)1/4
(log n)3/4

}
+ c̃3η

2/3
{(
ξ2p/n

)1/6
(log n)2/3

})
⩽c̃4(1/η2 + log n/n). (39)

The first two inequalities follows from Lemma E.2 and the last two inequalities follows from Lemma

E.3.

It follows from inequalities (36) and (38) and from Lemma E.5 that for some c̃5 > 0,

ρ1 ⩽c̃5(A4 +A5), (40)

where

A4 :=
1

η2
+

log n

n
+ η(log p)1/2max

{(
ξ2p/n

)1/2
n1/q logn,

(
ξ2p/n

)1/6
(log n)2/3

}
and

A5 := η(log p)τ∞max
{
1,
(
pξ2p/n

)1/2}
. (41)

Likewise, it follows from inequalities (37) and (39) and from Lemma E.5 that for some c̃5 > 0,

ρ2 ⩽c̃5A4. (42)

It follows from Lemma E.5 that for some c̃5 > 0,

γ(R) ⩽ c̃5R
√

log p. (43)

Thus, we complete the second step.

Finally, we have

P(f0 ∈ C(f̂ , R̂α)) ⩽ P{∥ψ̃p(·)⊤(β̂ − β0)∥∞ ⩽ G−1(1− α+ ω) + τ}+ P{(X,Y ) ̸∈ H}

⩽ P{∥ψ̃p(·)⊤B−1/2N(p)/
√
n∥∞ ⩽ G−1(1− α+ ω) + τ}+ ρ1 + P{(X,Y ) ̸∈ H}

⩽ P{∥ψ̃p(·)⊤B−1/2N(p)/
√
n∥∞ ⩽ G−1(1− α+ ω)}

+ γ(
√
nτ) + ρ1 + P{(X,Y ) ̸∈ H}

⩽ ω + ρ1 + ρ2 + γ(
√
nτ) + P((X,Y ) ̸∈ H),

and thus from (40)-(43), taking η = nδ, we obtain the upper bound of P(f0 ∈ C(f̂ , R̂α))− (1− α).

Likewise, we obtain the lower bound of P(f0 ∈ C(f̂ , R̂α)) − (1 − α), which provides the desired

bound of the coverage error.

Estimate of the L∞-diameter. We will show that G−1(1− α+ ω) ⩽ c̃6
√

(log p)/n for some c̃6 > 0.

It follows from the concentration inequality for the suprema of the Gaussian process, from Lemma

E.4, by taking sufficiently large p depending only on α, that for sufficiently large c̃7 > 0,

P(∥ψ̃p(·)⊤B−1/2N(p)∥∞ − E[∥ψ̃p(·)⊤B−1/2N(p)∥∞] ⩾ c̃7
√

log p) ⩽ e−c̃27 log p < α− ω − ρ2.
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Thus, observing

G−1(1− α+ ω) := inf{R : P(∥ψ̃p(·)⊤(X⊤X)−1X⊤N(n)∥∞ ⩾ R) ⩽ α− ω}

⩽ inf{R : P(∥ψ̃p(·)⊤B−1/2N(p)/
√
n∥∞ ⩾ R) ⩽ α− ω − ρ2}

= inf

{
R : P

(
∥ψ̃p(·)⊤B−1/2N(p)∥∞/

√
n− E[∥ψ̃p(·)⊤B−1/2N(p)/

√
n∥∞]

⩾ R− E[∥ψ̃p(·)⊤B−1/2N(p)/
√
n∥∞]

)
⩽ α− ω − ρ2

}
and taking sufficiently large p depending only on α, we have G−1(1− α+ ω) ≲

√
(log p)/n.

□

E.3. Proof of the bound on τ . In this subsection, we show that τ ≲ τ∞/
√
p for periodic S ⩾ 2-

regular wavelets. We consider a wavelet pair (ϕ, ψ) satisfying the following three assumptions:

• There exists an integer N for which the support of ϕ is included in [0, N ] and the support

of ψ is included in [−N + 1, N ];

• ϕ and ψ are CS ;

• The inequality infx∈R
∑

k∈Z{ψ(x− k)}2 > 0 holds.

We periodize the pair (ϕ, ψ) as follows:

ϕ
(per)
l,k (t) :=

∑
m∈Z

2l/2ϕ(2lt+ 2lm− k) and ψ
(per)
l,k (t) :=

∑
m∈Z

2l/2ψ(2lt+ 2lm− k)

for k = 0, . . . , 2l−1 and l = 1, . . . , J . Taking J0 as 2J0 ⩾ 2N , {ϕ(per)J0,k
: k = 0, . . . , 2J0 −1}∪{ψ(per)

l,k :

k = 0, . . . , 2l − 1, l = J0, . . . , J} forms p = 2J basis functions based on periodic S-regular wavelets.

It suffices to show that inft∈[0,1] ∥ψp(t)∥ ≳ √
p. Since 2J > 2N and since the support of ψ is

included in [−N + 1, N ], we have

∥ψp(t)∥2 ⩾ 2J
2J−1∑
k=0

{
∑
m∈Z

ψ(2J t+ 2Jm− k)}2 = 2J
2J−1∑
k=0

∑
m∈Z

{ψ(2J t+ 2Jm− k)}2

and the rightmost quantity in the above inequality is bounded below by 2J infx∈R
∑

k∈Z{ψ(x−k)}2.
Thus we complete the proof.
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