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RANDOMIZED INCOMPLETE U-STATISTICS IN HIGH DIMENSIONS

XIAOHUI CHEN AND KENGO KATO

ABSTRACT. This paper studies inference for the mean vector of a high-dimensional U-statistic.
In the era of Big Data, the dimension d of the U-statistic and the sample size n of the observa-
tions tend to be both large, and the computation of the U-statistic is prohibitively demanding.
Data-dependent inferential procedures such as the empirical bootstrap for U-statistics is even more
computationally expensive. To overcome such computational bottleneck, incomplete U-statistics
obtained by sampling fewer terms of the U-statistic are attractive alternatives. In this paper, we
introduce randomized incomplete U-statistics with sparse weights whose computational cost can be
made independent of the order of the U-statistic. We derive non-asymptotic Gaussian approxima-
tion error bounds for the randomized incomplete U-statistics in high dimensions, namely in cases
where the dimension d is possibly much larger than the sample size n, for both non-degenerate and
degenerate kernels. In addition, we propose novel and generic bootstrap methods for the incomplete
U-statistics that are computationally much less-demanding than existing bootstrap methods, and
establish finite sample validity of the proposed bootstrap methods. The proposed bootstrap meth-
ods are illustrated on the application to nonparametric testing for the pairwise independence of a

high-dimensional random vector under weaker assumptions than those appearing in the literature.

1. INTRODUCTION

Let X1,..., X, be independent and identically distributed (i.i.d.) random variables taking values
in a measurable space (S,S) with common distribution P. Let » > 2 and d > 1 be given positive
integers, and let h = (hy,...,hq)T : S — R? be a fixed and jointly measurable function that
is symmetric in its arguments, i.e., h(x1,...,2z,) = h(x;,,...,x;.) for every permutation iy,..., %,
of 1,...,r. Suppose that E[|h;(X1,...,X;)|] < oo for all j =1,...,d, and consider inference on
the mean vector § = (01,...,04)7 = E[h(X1,...,X,)]. To this end, a commonly used statistic is
the U-statistic with kernel h, i.e., the sample average of h(X;,,...,X;, ) over all distinct r-tuples
(i1y...,0p) from {1,...,n}

Un = UD(B) = —— S h(Xa,. s Xa), (1)

|In,7‘| (ila---aiv')eln,r
where I, = {(i1,...,%) : 1 <41 < -+ < 4 < n} and |I,,| = n!/{r!(n — r)!} denotes the
cardinality of I, ,.
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U-statistics are an important and general class of statistics, and applied in a wide variety of
statistical problems; we refer to [28] as an excellent monograph on U-statistics. For univariate
U-statistics (d = 1), the asymptotic distributions are derived in the seminal paper [21] for the
non-degenerate case and in [35] for the degenerate case. There is also a large literature on boot-
strap methods for univariate U-statistics [4, 6, 1, 24, 25, 15, 41]. A more recent interest lies in
the high-dimensional case where d is much larger than n. [8] develops Gaussian and bootstrap
approximations for non-degenerate U-statistics of order two in high dimensions, which extends the
work [10, 12] from sample averages to U-statistics.

However, a major obstacle of inference using the complete U-statistic (1) is its computational
intractability. Namely, the computation of the complete U-statistic (1) requires O(n"d) operations,
and its computational cost can be prohibitively demanding even when n and d are moderately large,
especially when the order of the U-statistic » > 3. For instance, the computation of a complete
U-statistic with order 3 and dimension d = 5000 when the sample size is n = 1000 requires
(g) x d =~ 0.8 - 102 (0.8 trillion) operations. In addition, the naive application of the empirical
bootstrap for the U-statistic (1) requires even more operations, namely, O(Bn"d) operations, where
B is the number of bootstrap repetitions.

This motivates us to study inference using randomized incomplete U -statistics with sparse weights
instead of complete U-statistics. Specifically, we consider the Bernoulli sampling and sampling with
replacement to construct random weights in Section 2. For a pre-specified computational budget
parameter N < |I, |, these sampling schemes randomly choose (on average) N indices from I, ,,
and the resulting incomplete U-statistics UT’L ~ are defined as the sample averages of h(X;,,..., X;,)
taken over the subset of chosen indices (i1, ...,4,). Hence the computational cost of the incomplete
U-statistics is reduced to O(Nd), which can be much smaller than n"d as long as N < n" and can
be made independent of the order of the U-statistic provided that N does not depend on r.

The goal of this paper is to develop computationally scalable and statistically correct inferential
methods for the incomplete U-statistics with high-dimensional kernels and massive data, where d is
possibly much larger than n but n can be also large. Specifically, we study distributional approxi-
mations to the randomized incomplete U-statistics in high dimensions. Our first main contribution
is to derive Gaussian approximation error bounds for the incomplete U-statistics on the hyperrect-
angles in R? for both non-degenerate and degenerate kernels. In Section 3, we show that the derived
Gaussian approximation results display an interesting computational and statistical trade-off for
non-degenerate kernels (see Remark 3.1), and reveal a fundamental difference between complete
and randomized incomplete U-statistics for degenerate kernels (see Remark 3.2). The mathematical
insight of introducing the random weights is to create the (conditional) independence for the terms
in the U-statistic sum in order to obtain a Gaussian limit. Note that the Gaussian approximation
results are often not directly applicable since the covariance matrices of the approximating Gaussian
distributions depend on the underlying distribution P that is unknown in practice. Our second con-
tribution is to propose fully data-dependent bootstrap methods for incomplete U-statistics that are
computationally (much) less demanding than existing bootstrap methods for U-statistics [1, 8, 9].
Specifically, we introduce generic bootstraps for incomplete U-statistics in Section 4.1. Our generic
bootstrap constructions are flexible enough to cover both non-degenerate and degenerate kernels,
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and meanwhile they take the computational concern into account for estimating the associated (and
unobserved) Hajek projection. In particular, we propose two concrete estimation procedures for the
Hajek projection: one is a deterministic construction based on the divide and conquer algorithm
(Section 4.2), and another is a random construction based on a second randomization independent
of everything else (Section 4.3). For both constructions, the overall computational complexity of
the bootstrap methods can be made independent of the U-statisitic order r.

As a leading example to illustrate the usefulness of the inferential methods developed in the
present paper, we consider testing for the pairwise independence of a high-dimensional random
vector X = (X(l), e X(p))T, i.e., testing for the hypothesis that

Hy: XM ... X are pairwise independent. (2)

Let Xq,...,X, be ii.d. copies of X. Several nonparametric test statistics are proposed in the
literature, including: Kendall’s 7, Spearman’s p, Hoeffding’s D [22], Bergsma and Dassios’ t* [2],

and the distance covariance [42], all of which can be expressed as functions of U-statistics.

Example 1.1 (Spearman’s p). Let II, be the collection of all possible permutations on {1,...,r}.
[21] shows that Spearman’s rank correlation coefficient matrix p can be written as

n—2_. 3

nt1’ + ntl’

p =

where p = Uég)(hs ) is the p x p matrix-valued U-statistic associated with the kernel
S S
h? (X1, Xo, X3) = (hjp(X1, X0, X3)) 0= 5 Z sign { (Xr(1) — Xn@) (Xn) — Xagz) '}
7TEH5
and T = (T k) 1< k<p = U,(lz)(hK) is the p x p Kendall 7 matrix with the kernel
W5 (X1, Xa) = sign {(X1 — X2)(X1 — X2)"}.

Here, for a matrix A = (a;k)1<jk<p, 5ign{A} is the matrix of the same size as A whose (j, k)-th
element is sign(a; ;) = 1(a;jr > 0) — 1(a;x < 0). It is seen that the leading term in Spearman’s p

is p, and so it is reasonable to reject the null hypothesis (2) if max;<;<r<p|pj k| is large. Precisely

speaking, this test is testing for a weaker hypothesis that
H - E[Sign(ij) — Xéj))sign(ka) - Xék))] =0forall1<j<k<p.

Example 1.2 (Bergsma and Dassios’ t*). [2] propose a U-statistic t* = (¢} ;)1<jh<p = U7(l4)(hBD)
of order 4 with the kernel

1
hBD(le cee 7X4) = ﬂ Z d)(Xﬂ'(l)? s ’X7r(4))¢(X7r(l)v s ’X7r(4))Ta
welly

where ¢(X1,...,X4) = <¢j<X17-- X4)) -1 and
65(X1,.., X2) = 1(XD v XY < XPAXP) 41X A xP > xP v x )
11XV v xP < xP A xP) —1(x? A xP > xP v xP).

Here, a A b = max{a,b} and a V b = min{a,b}. Under the assumption that (XU) X(*)) has a

bivariate distribution that is discrete or (absolutely) continuous, or a mixture of both, [2] show
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that E[ ;‘k] = 0 if and only if XU) and X are independent, and so it is reasonable to reject
the null hypothesis (2) if maxi<jcr<p [t} ] is large (or maxi<jcp<py ], is large, since in general
E[tj] = 0).

Example 1.3 (Hoeffding’s D). [22] proposes a U-statistic D = (Djx)1<jk<p = U7(l5)(hD) of order
5 with the kernel

1
hD(Xla s aX5) = m ¢(X7r(1)7 s 7X7r(5))¢(X7r(1)7 s 7X7T(5))T7
w€ellsy
where qf)(Xl, N ,X5) = (qu(Xl, ey X5))§:1 and
6i(X1 . X5) = XY > X)) — 1) > X > x7) - 1xP) > X))

Under the assumption that the joint distribution of (X ), x (k)) has continuous joint and marginal
densities, [22] shows that E[D;;] = 0 if and only if X) and X*) are independent, and so it
is reasonable to reject the null hypothesis (2) if maxi<j<rp<p|Dji| is large (or maxi<jcr<p Djk
is large, since in general E[D;] > 0). It is worth noting that Bergsma and Dassios’ t* is an
improvement on Hoeffding’s D since the former can characterize the pairwise independence under

weaker assumptions on the distribution of X than the latter.

Note that h° is non-degenerate, while h®P and hP are degenerate of order 1 under Hy. In
Examples 1.1-1.3, to compute the test statistics, we have to compute U-statistics with dimension
d = p(p — 1)/2, which can be quite large. In addition, the orders of the U-statistics are at least
3, and so the computation of the test statistics is prohibitively demanding, not to mention the
empirical bootstrap or subsampling for those U-statistics. It should be noted that there are efficient
algorithms to reduce the computational costs for computing some of those U-statistics [cf. 30,
Section 6.1], but such computational simplifications are case-by-case and not generically applicable,
and more importantly they do not yield computationally tractable methods to approximate or
estimate the sampling distributions of the U-statistics. The Gaussian and bootstrap approximation
theorems developed in the present paper can be directly applicable to calibrating critical values
for the max-type test statistics appearing in Examples 1.1-1.3, since {y = (y1,...,yq)" € R?:
max<j<q |y;| <t} = [—t,]? is a hyperrectangle in R%.

The above testing problem is motivated from recent papers by [30] and [19], which study testing
for the null hypothesis

HY - XM ..., X are mutually independent,

and develop tests based on functions of the U-statistics appearing in Examples 1.1-1.3. Note
that H{ is a stronger hypothesis than Hy. Specifically, [30] consider tests statistics such as, e.g.,
S5 =D 1<i<k<p ﬁ?k — 3pup with p; = E[p] 5] under Hy and show that nSﬁ/(9pclﬁ) LN N(0,1) under
H{ as (n,p) — oo where ¢ = Var(}E[th(Xl,Xg,Xg] | X1]). On the other hand, [19] consider
test statistics such as, e.g., L, = maxi<j<k<p |pjx| and show that L2 /Var(py 2) — 4logp + loglogp
converges in distribution to a Gumbel distribution as n — oo and p = p,, — oo under H{j provided

that logp = o(n'/?) (precisely speaking, [19] rule out degenerate kernels). Importantly, compared
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with the tests developed in [30] and [19] based on analytical critical values, our bootstrap-based
tests can directly detect the pairwise dependence for some pair of coordinates (or E[sign(Xy ) _
XQ(j))sign(X{k) - X?()k))] # 0 for some 1 < j < k < p for Spearman’s p) rather than the non-
mutual-independence and also work for non-continuous random vectors (see, e.g., [17] for interesting
examples of pairwise independent but jointly dependent random variables; in particular, their
examples include continuous random variables). In contrast, the derivations of the asymptotic null
distributions in [30] and [19] critically depend on the mutual independence between the coordinates
of X. In addition, they both assume that X is continuously distributed so that there are no ties
in X 1(j ), e ,XT(Lj ) for each coordinate 7, thereby ruling out discrete components. It is worth noting
that the U-statistics appearing Examples 1.1-1.3 are rank-based, and so if X is continuous and
H{ is true, then those U-statistics are pivotal, i.e., they have known (but difficult-to-compute)
distributions, which is also a critical factor in their analysis; however, that is not the case under
the weaker hypothesis of pairwise independence and without the continuity assumption on X.

To verify the finite sample performance of the proposed bootstrap methods for randomized
incomplete U-statistics, we conduct simulation experiments in Section 5 on the leading example
for nonparametric testing for the pairwise independence hypothesis in (2). Specifically, we consider
to approximate the null distributions of the (leading term of) Spearman p and Bergsma-Dassios’
t* test statistics, and examine the cases where n = 300, 500,1000 and p = 30,50, 100 (and hence
d = p(p—1)/2 = 435,1225,4950). Statistically, we observe that the empirical rejection probability of
the null hypothesis with the critical values calibrated by our bootstrap methods is very close to the
nominal size for (almost) all setups. Computationally, we find that the (log-)running time for our
bootstrap methods scales linearly with the (log-)sample size, and in addition, the slope coefficient
matches very well with the computational complexity of the bootstrap methods. Therefore, the
simulation results demonstrate a promising agreement between the empirical evidences and our

theoretical analysis.

1.1. Existing literature. Incomplete U-statistics were first considered in [5], and the asymptotic
distributions of incomplete U-statistics (for fixed d) are derived in [7] and [26]; see also Section 4.3
in [28] for a review on incomplete U-statistics. Closely related to the present paper is [26], which
establishes the asymptotic properties of univariate incomplete U-statistics based on sampling with
and without replacement and Bernoulli sampling. To the best of our knowledge, the present paper
is the first paper that establishes approximation theorems for the distributions of randomized
incomplete U-statistics in high dimensions. See also Remark 3.4 for more detailed comparisons
with [26]. Incomplete U-statistics can be viewed as an special case of weighted U-statistics, and
there is a large literature on limit theorems for weighted U-statistics; see [37, 33, 31, 34, 23, 20]
and references therein. These references focus on the univariate case and do not cover the high-
dimensional case. There are few references that study data-dependent inferential procedures for
incomplete U-statistics that take computational considerations into account. An exception is [3],
which proposes several inferential methods for univariate (generalized) incomplete U-statistics, but

do not develop formal asymptotic justifications for these methods. It is also interesting to note that
5



incomplete U-statistics have gained renewed interests in the recent statistics and machine learning
literatures [13, 32], although the focuses of these references are substantially different from ours.
From a technical point of view, this paper builds on recent development of Gaussian and boot-
strap approximation theorems for averages of independent high-dimensional random vectors [10, 12]
and for high-dimensional U-statistics of order two [8]. Importantly, however, developing Gaussian
approximations for the randomized incomplete U-statistics in high dimensions requires a novel
proof-strategy that combines iterative conditioning arguments and applications of Berry-Esseen
type bounds, and extending some of results in [8] to cover general order incomplete U-statistics. In
addition, these references do not consider bootstrap methods for incomplete U-statistics that take

computational considerations into account.

1.2. Organization. The rest of the paper is organized as follows. In Section 2, we introduce
randomized incomplete U-statistics with sparse weights generated from the Bernoulli sampling and
sampling with replacement. In Section 3, we derive non-asymptotic Gaussian approximation error
bounds for the randomized incomplete U-statistics in high dimensions for both non-degenerate and
degenerate kernels. In Section 4, we first propose generic bootstrap methods for the incomplete
U-statistics and then incorporate the computational budget constraint by two concrete estimates
of the Héjek projection: one deterministic estimate by the divide and conquer, and one randomized
estimate by incomplete U-statistics of a lower order. Simulation examples are provided in Section
5 and Appendix B. In Section 6, we leave some additional discussions including extensions of the
present paper. All the technical proofs are gathered in Appendix A.

1.3. Notation. For a hyperrectangle R = Hd [aj,bj] in R, a constant ¢ > 0, and a vector

j=1
y = (y1,...,94)7 € R? we use the notation [cR + y] = H?Zl[caj + yj,¢bj + y;]. For vectors
y=(y1, -, ya) ", 2= (21,...,24)T € R% the notation y < » means that y; < z; forall j = 1,...,d.
For a,b € R, let a Vb = max{a,b} and a A b = min{a,b}. For a finite set J, |J| denotes the
cardinality of J. Let |- | denote the max-norm for vectors and matrices, i.e., for a matrix
A = (a;5), |Aloo = max; j |a;j|. “Constants” refer to finite, positive, and non-random numbers.

For 0 < 8 < 00, let 9 be the function on [0, 00) defined by 15(z) = e’ — 1, and for a real-valued
random variable £, define |||y, = inf{C > 0 : E[¢s([{]/C)] < 1}. For B € [1,00), || - [|ly, is an
Orlicz norm, while for 8 € (0,1), |- |y, is not a norm but a quasi-norm, i.e., there exists a constant
Cp depending only on 8 such that |1 + &ally, < C(ll€1llys + [1€2ly;) (indeed, there is a norm
equivalent to || - [, obtained by linearizing 15 in a neighborhood of the origin; cf. Lemma A.2
ahead).

For a generic random variable Y, let Py (-) and Ejy[-] denote the conditional probability and
expectation given Y, respectively. For a given probability space (X, A, @) and a measurable function
f on X, we use the notation Qf = [ fd@ whenever the latter integral is well-defined. For a jointly
measurable symmetric function f on S” and k = 1,...,7, let P""*f denote the function on S*
defined by P**f(x1,...,xx) = [+ [ f(®1, .\ Thy Thi1s - - - » T )dP(Tp41) - - - dP(x,) whenever the
integral exists and is finite for every (z1,...,z;) € S*. For given 1 < k < £ < n, we use the notation

Xﬁ = (Xk, ..., X¢). Throughout the paper, we assume that n >4V r and d > 3.
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2. RANDOMIZED INCOMPLETE U-STATISTICS

In this paper, to construct sparsely weighted U-statistics, we shall use random sparse weights. For
t=(i1,...,0) € I, let us write X, = (X;,,..., X, ), and observe that the complete U-statistic
(1) can be written as

Up=—— 5 h(X,).

|In’r’ Leln,r

Now, let N := N,, be an integer such that 0 < N < |I,, |, and let p, = N/|I,,|. Instead of taking
the average over all possible ¢ in I,,,, we will take the average over a subset of about N indices

chosen randomly from I,, ;. In the present paper, we study Bernoulli sampling and sampling with

replacement.

2.1. Bernoulli sampling. Generate i.i.d. Ber(p,) random variables {Z, : ¢ € I,,,} with success
probability py, i.e., Z,,0 € I, are i.i.d. with P(Z, = 1) =1 —-P(Z, = 0) = p,. Consider the
following weighted U-statistic with random weights

1
lea,N == Z Z,h(X.), (3)
N
LEIn,r
where N = > e1, . 2. is the number of non-zero weights. We call UA n the randomized incom-

plete U-statistic based the Bernoulli sampling. Note that N follows Bin(|1,+|, pn), the binomial
distribution with parameters (|1, .|, pn). Hence E[N] = |Inr|pn = N and the computation of the
incomplete U-statistic (3) only requires O(Nd) operations on average. In addition, by Bernstein’s

inequality (cf. Lemma 2.2.9 in [39]),
P (\N/N — 1] > V2t/N + 2t/(3N)) <2t (4)

for every t > 0, and hence N concentrates around its mean N. Therefore, we can view N as a
computational budget parameter and p, as a sparsity design parameter for the incomplete U-statistic.

The reader may wonder that generating |1, ,,| & n" Bernoulli random variables is computationally
demanding, but there is no need to do so. In fact, we can equivalently compute the randomized
incomplete U-statistic in (3) as follows.

1. Generate N ~ Bin(|1p.+|, pn)-

2. Choose indices ¢1, . . randomly without replacement from I, .

LR
G-1 5N
3. Compute U;, y = N7' 3250 h(X,,).

In fact, define Z, = 1 if + is one of ¢y, .. and Z, = 0 otherwise; then, it is not difficult to see

U
that {Z, : v € I, ,} are i.i.d. Ber(p,) random variables. So, we can think of the Bernoulli sampling

as a sampling without replacement with a random sample size.

Remark 2.1 (Comments on the random normalization). Interestingly, changing the normalization
in (3) does affect approximating distributions to the resulting incomplete U-statistic. Namely, if
we change N to N in (3), i.e., (vfr’LN =N-! > et , Zh(X,), then we have different approximating

distributions unless # = 0. In general, changing NtoNin (3) results in the approximating Gaussian
7



distributions with larger covariance matrices, and hence it is recommended to use U], y rather than
ﬁ;z ~- See also Remark 3.3 ahead.

2.2. Sampling with replacement. Conditionally on X = (Xy,...,X,), let XL*J,,j =1,...,.N
be i.i.d. draws from the empirical distribution |I,, |~ > er, ., 0x, (6x, denotes the point mass at

X,). Let
N

U = D R(XE) (5)

j=1
be the incomplete U-statistic obtained by sampling with replacement. We call UA n the randomized
incomplete U-statistic based on sampling with replacement. Note that U1I7,, N can be written as a
weighted U statistic. Indeed, for each ¢ € I, ,, let Z, denote the number of times that X, is redrawn

*
PR

in the sample {X - X[ }. Then, the vector Z = (Z,),e1, , (ordered in an arbitrary way) follows
a multinomial distribution with parameters N and probabilities 1/|I,, ,|,...,1/|I, | independent

of X7, and U, y can be written as

1
7,L,N = N Z Z,M(X,). (6)
1€ln,r
Hence, we can think of U,’%N as a statistic of Xy,...,X,, and Z,,. € I, ,, but we will use both

representations (5) and (6) interchangeably in the subsequent analysis.

Remark 2.2. All the theoretical results presented below apply to incomplete U-statistics based
on either the Bernoulli sampling or sampling with replacement. Both sampling schemes will be

covered in a unified way.

3. GAUSSIAN APPROXIMATIONS

In this section, we will derive Gaussian approximation results for the incomplete U-statistics (3)
and (5) on the hyperrectangles in R%. Let R denote the class of (closed) hyperrectangles in RY, i.e.,

R consists sets of the form H;l:l[aj,bj] where —oco < a; < bj < oo for j =1,...,d with the con-
vention that [a;, bj] = (—o0,b;] for a; = —oo0 and [a;, b;] = [a;, 00) for bj = co. For the expository
purpose, we mainly focus on the non-degenerate case where min;j<q Var(E[h; (X1, ..., X;) | Xi]) is

bounded away from zero in the following discussion. However, our Gaussian approximation results
also cover the degenerate case (cf. Theorem 3.3).
Before stating the formal results, we begin with the intuition behind the Gaussian approximation
results. Consider the Bernoulli sampling. Decompose the difference U{L N —0as
N

N 1
Upn—0= N Z Z{h(X,) -0} = ﬁ(An + V1= pnBn),
Le[n,v‘

where A,, and B,, are defined by

. . 1 (ZL - pn)
Ay=U,—0 and By=— > ﬁ{h(XL) —6}.



For the notational convenience, we write W,, = A, + /1 — p,B,. For any hyperrectangle R € R,

observe that
1 N
R[4 ],
an(l - pn) 1- Pn

where a,, = n/N. Since A, is o(X])-measurable, conditionally on X7', A, can be treated as
a constant. On the other hand, conditionally on X%, v/ NB, = (N(1 — p,))~/? Yoer, (2 —
p){h(X,) =0} = |L,.| 71/ Yoer,, (ol —pn))"Y2(Z, — pp){h(X,) — 0} is the sum of independent

random vectors with mean zero whose (conditional) covariance matrix is

Z {h(X,) — OH{h(X,) — 0} =T},

LET,,

P(vnW, € R) =P (x/NBn €

Subject to suitable moment conditions, T, can be approximated by I', :== P"(h —0)(h — )T under
the max-norm. Hence, letting v = N(0,T'},), we have

1 N 1 N
a—p 1—pnA"]) s ([ o —p) 1—pnA”D’

1 | N 1 [ N
O‘n(l_pn)R_ 1_p"An > NE[’VB ([ a"(l_pn)R_ 1_p”An )

The right hand side of the last expression can be written as
(@YB € [a; V2R — wmn]) (fA € [R— \/an(l — pn)YE] )
for Yp ~ N(0,I',) independent of X7'. Next, since U, is a complete U-statistic, conditionally on
Yp, we have (cf. [8])
Ply,, (Vitdn € [R = Van(T=pa)V3]) = 74 (IR = Van(l—pn)Va])
where v4 = N(0,7°T'y) and T'y = P(g — 6)(g — 6)T with g = P"~'h. Hence,
B(v/iWa € R) ~ E 74 (R = Van(l = pa)V5])| =B (Ya + Vau(1 = pu)Ys € R)

for Y4 ~ N(0,r"Ty) independent of Yg. Since Y4 + v/, (1 —p,)Yp ~ N(O, r2Fg + an (1 —pp)Th),
anpn = n/|In,| = 0, and N/]V ~ 1, it is expected that the distribution of \/n(U],  — 0) can be
approximated by N(0,7?T'y + ;') on the hyperrectangles. Similar arguments carry through the

P xp <\/NBn S

and by Fubini,

IP’(\/JVBne

sampling with replacement case as well.

Now, we turn to stating the formal Gaussian approximation results. We assume the following
conditions. Let ¢ > 0 and D,, > 1 be given constants, and recall that g = (g1,...,94)7 = P""'h.
Suppose that

(C1) P> < Dk forall j=1,...,d and k = 1,2.

(C2) |[hj (X lgpy < Dy forall j=1,...,d.

In addition, suppose that either one of the following conditions holds:
(C3-ND) P(g; —6;)? > g* forall j =1,...,d.



(C3-D) P"(h; —0;)? > g* forall j =1,...,d.

Conditions (C1) and (C2) are adapted from [12] and [8]. Condition (C2) assumes the kernel h
to be sub-exponential, which in particular covers the bounded kernel. In principle, it is possible
to extend our analysis under milder moment conditions on the kernel h, but this would result in
more involved error bounds. For the sake of clear presentation, we work with Condition (C2). By
Jensen’s inequality, Conditions (C1) and (C2) imply that P|g;|>** < D for all j and for k = 1,2,
and | g;(X1)|ly, < Dy, for all j. In addition, Condition (C1) implies that PThJQ. < 1+P|hiP <1+ D,
for all j. Condition (C3-ND) implies that the kernel h is non-degenerate. In the degenerate case,
we will require Condition (C3-D) to derive Gaussian approximations.

In all what follows, we assume that

Pn = N/|Iny| < 1/2

without further mentioning. The value 1/2 has no special meaning; we can allow p, < ¢ for any
constant ¢ € (0,1), and in that case, the constants appearing in the following theorems depend in
addition on c¢. Since we are using randomization for the purpose of computational reduction, we
are mainly interested in the case where N < |1, |, and the assumption that p, is bounded away
from 1 is immaterial.

The following theorem derives bounds on the Gaussian approximation to the randomized incom-
plete U-statistics on the hyperrectangles in the case where the kernel h is non-degenerate. Recall
that a,, = n/N,p, = N/|I,,|,0 = P'h = Pg,T'y = P(g—0)(g — 0)T, and Ty, = P"(h — 0)(h — 6)T.

Theorem 3.1 (Gaussian approximation under non-degeneracy). Suppose that Conditions (C1),
(C2), and (C3-ND) hold. Then there exists a constant C' depending only on o and r such that

sup |P{v/n(U,, x —0) € R} —P(Y € R)|
ReR

D2 log"(dn) 1/6 (™)
n AN ’

— sup ’IP’{\/N(UAN —9) e R} — P(a; 2y € R)‘ <C (
ReER

where Y ~ N(0,7°Ty + ay,I'p).

Theorem 3.1 shows that the distribution of /n(U, 5 — ) can be approximated by the Gaussian
distribution N (0,7%T, + a,,T';) on the hyperrectangles provided that D2 log”(dn) < n A N, from
which we deduce that the Gaussian approximation on the hyperrectangles holds for UT/% N even when

d > n. In the cases where N > n (ie., o, < 1) and N < n (i.e, oy, > 1), the approximating
distribution can be simplified to N(0,7°Ty) and N(0,T),), respectively.

Corollary 3.2. Suppose that Conditions (C1), (C2), and (C3-ND) hold. Then there exists a

constant C depending only on o and r such that

n og? 1/3 2 10e” (dn. 1/6
sup\P{\/H(UAN—H)GR}—VA(R)\<C{<D"lgd> +<Dnlg(d)> }

RER N nAN

where 4 = N(0,7°Ty), and
NDnl 2d 1/3 D21 7d 1/6
sup IP){\/N( 7’L7N—9)6R}—73(R)‘<C{<Og> +<nog(n)> ’

ReER n nAN
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where yg = N(0,I';).

Remark 3.1 (Comments on the computational and statistical trade-off for the randomized incom-
plete U-statistics with non-degenerate kernels). Theorem 3.1 and Corollary 3.2 reveal an interesting
phase transition phenomenon between the computational complexity and the statistical efficiency
for the randomized incomplete U-statistics. Suppose that n A N > D2 log”(dn) and ¢ is bounded
away from zero. First, if the computational budget parameter N is superlinear in the sample size n
(i.e., N > nD, log? d), then both the incomplete U-statistic Vn(U,, y —0) and its complete version
Vn(U, — 0) can be approximated by the same Gaussian distribution v4 = N(0,72T,) (cf. [8] for
r = 2 case). Second, if N is on the same order of n, then the scaling factor of Uq’% n remains the
same as U, namely, \/n. However, the approximating Gaussian distribution for /n( 7’1 N —0) has
a larger covariance matrix than that for \/n(U, —0) in the sense that a,,I'y, is positive semi-definite.
In this case, we sacrifice the statistical efficiency for the sake of keeping the computational cost
linear in n. Third, if we further reduce the computational budget parameter N to be sublinear
inn (i.e., N < n/(D,log®d)), then the scaling factor of U, n changes from /n to VN, and the
distribution of Uf% N s approximated by N (6, N ~1T',) on the hyperrectangles. Hence, the decay
rate of the covariance matrix of the approximating Gaussian distribution is now N~!, which is

slower than the n~! rate for the previous two cases.

Next, we consider the case where the kernel h is degenerate, i.e., P(g; — Hj)2 =0 for all j =
1,...,d. We consider the case where the kernel h is degenerate of order kK — 1 for some &k = 2,...,r,
ie., Pr="h(zy,...,2x_1) = P"h for all (z1,...,25_1) € S*¥~1. Even in such cases, a Gaussian
approximation holds for v N (U;l N — 0) on the hyperrectangles provided that N <« n* up to log
factors. More precisely, we obtain the following theorem.

Theorem 3.3 (Gaussian approximation under degeneracy). Suppose the kernel h is degenerate of
order k — 1 for some k = 2,...,r. In addition, suppose that Conditions (C1), (C2), and (C3-D)
hold. Then there exists a constant C' depending only on o and r such that

sup |P{VN(U,x —0) € R} —15(R)|
RER

<C <W>M+<Di(1ogn)1ogs(dn))1/6+(W)l/ﬁ | (8)

nk n N
where yg = N(0,I'1,).

Remark 3.2 (Comments on the Gaussian approximation under degeneracy). In the degenerate
case, for the Gaussian approximation to hold, we must have N < n* (more precisely, N <
n*/(D? log"*3 d)), which is an indispensable condition even for the d = 1 case. To see this, consider
the Bernoulli sampling case (similar arguments apply to the sampling with replacement case) and
recall that VNW,, = VN A, + \/MBH, where A,, = U, —0 and B,, = UAN —U,. According
to Theorem 12.10 in [38], n®/2A,, converges in distribution to a Gaussian chaos of order k. Hence,
in order to approximate v N (Ufm N—0)~ V' NW,, by a Gaussian distribution, it is necessary that

VN A,, is stochastically vanishing, which leads to the condition N < n*.
11



It is worth noting that Theorem 3.3 reveals a fundamental difference between complete and
randomized incomplete U-statistics with the degenerate kernel. Namely, in the degenerate case,
the complete U-statistic n¥/2(U,, — 6) is known to have a non-Gaussian limiting distribution when
d is fixed, while thanks to the randomizations, our incomplete U-statistics v N (U, x — 0) can be
approximated by the Gaussian distribution, and in addition the Gaussian approximation can hold

1/2

even when d > n. On one hand, the rate of convergence of the incomplete U-statistics is N ~'/“ and

—k/2 S0 in that sense we are sacrificing

is slower than that of the complete U-statistic, namely, n
the rate of convergence by using the incomplete U-statistics instead of the complete U-statistic,
although the rate N~/2 can be arbitrarily close to n~%/2 up to log factors. On the other hand, the
approximating Gaussian distribution for the incomplete U-statistics is easy to estimate by using
a multiplier bootstrap developed in Section 4. The multiplier bootstrap developed in Section 4 is
computationally much less demanding than e.g., the empirical bootstraps for complete (degenerate)
U-statistics [cf. 6, 1], and can consistently estimate the approximating Gaussian distribution g
on the hyperrectangles even when d > n; see Theorem 4.1. To the best of our knowledge, there
is no existing work that formally derives Gaussian chaos approximations to degenerate U-statistics
in high dimensions where d > n, and in addition such non-Gaussian approximating distributions
appear to be more difficult to estimate in high dimensions. Hence, in the degenerate case, the
randomizations not only reduce the computational cost but also provide more tractable alternatives

to make statistical inference on 6 in high dimensions.

Remark 3.3 (Effect of deterministic normalization in the Bernoulli sampling case). In the Bernoulli
VEnr Z,h(X,), instead
of the random one, ie., Uy y = N-! ZLHM Z,h(X,). Then, in the non-degenerate case, the
distribution of \/ﬁ((v];lN —0) can be approximated by N (0,72, + a, P"hhT), and in the degenerate
case, vV N ( vT'LN—G) can be approximated by N (0, P"hhT) (provided that N < n* for the degenerate
case). To see this, observe that (u];lN -0 =U,—-0)+N"! >er,,(Ze — pn)W(X,), and the
distribution of N~! > et (Z. — pn)h(X,) can be approximated by N (0, (1 — pn)PThRT). Since
PThhT is larger than I'j, ﬁnless 6 = 0 (in the sense that P'hhT — T}, = 667 is positive semi-

definite), the approximating Gaussian distributions have larger covariance matrices for [1’1 n than

sampling case, consider the deterministic normalization, i.e, U/ y = N71 3

those for U], y, and hence it is in general recommended to use the random normalization rather
than the deterministic one.

Remark 3.4 (Comparisons with [26] for d = 1). The Gaussian approximation results established
in Theorems 3.1, 3.3, and Corollary 3.2 can be considered as (partial) extensions of Theorem 1
and Corollary 1 in [26] to high dimensions. [26] focuses on the univariate case (d = 1) and derives
the asymptotic distributions of randomized incomplete U-statistics based on sampling without
replacement, sampling with replacement, and Bernoulli sampling ([26] considers the deterministic
normalization for the Bernoulli sampling case). For the illustrative purpose, consider sampling
with replacement. Suppose that p, — p € [0,1] and the kernel h is degenerate of order k — 1
for some kK = 1,...,7 (the & = 1 case corresponds to a non-degenerate kernel). Then Theorem
1 in [26] shows that (n*/2(U,, — 9),N1/2(U,’17N —Uy)) 4 (V,W), where V is a Gaussian chaos of

order k (in particular, V ~ N(0,72P(g — 0)?) if k = 1) and W ~ N(0, P"(h — 0)?) such that V
12



and W are independent. Hence, provided that n*/N — a € [0, c], k/Q(U —0) LV oW

if @« < oo and \/N(UAN —0) % W if a = co. The present paper focuses on the cases where the
approximating distributions are Gaussian (i.e., the cases where k = 1 and « is finite, or k£ > 2 and
a = o00), but covers high-dimensional kernels and derives explicit and non-asymptotic Gaussian
approximation error bounds that are not obtained in [26]. In addition, the proof strategy of our
Gaussian approximation results differs substantially from that of [26]. [26] shows the convergence of
the joint characteristic function of (n*/2(U,, —6), Nl/Q(U{%N —U,,)) to obtain his Theorem 1, but the
characteristic function approach is not very useful to derive explicit error bounds on distributional
approximations in high dimensions. Instead, our proofs iteratively use conditioning arguments
combined with Berry-Esseen type bounds, as briefly discussed in the beginning of this section.
Finally, we expect that the results of the present paper can be extended to the case where k > 2
and « is finite; in that case, the approximating distribution to nk/ 2(U,’L’ ~ — ) will be non-Gaussian
and the technical analysis will be more involved in high dimensions. We leave the analysis of this

case as a future research topic.

4. BOOTSTRAP APPROXIMATIONS

The Gaussian approximation results developed in the previous section are often not directly
applicable in statistical applications since the covariance matrix of the approximating Gaussian
distribution, 72I'; + o, (or T, in the degenerate case), is unknown to us. In this section,
we develop data-dependent procedures to further approximate or estimate the N (0, rQFg + a,I'y)
distribution (or the N(0,T';) distribution in the degenerate case) that are computationally (much)
less-demanding than existing bootstrap methods for U-statistics such as the empirical bootstrap.

4.1. Generic bootstraps for incomplete U-statistics. Let D, = {X;,..., X,} U{Z, : ¢+ €
I, }. For the illustrative purpose, consider to estimate the N (0, r’T + a,I'y) distribution and let
Y ~ N (O,r2Fg + a,I'y). The basic idea of our approach is as follows. Since Y = YA + al/ Yg
where Y4 ~ N(0,7%T';) and Y ~ N(0,T) are independent, to approximate the distribution of Y,
it is enough to construct data-dependent random vectors Ut A and U, s B such that, conditionally on
n, (1) U, s 4 and Uy ¢ p are independent, and (ii) the conditional distributions of U} ! 4 and Uy s p are

computable and “close” enough to N(0,7°T;) and N(0,T},), respectively. Then, the conditional
distribution of U} = UE,A 1/2Uﬁ p should be close to N(0,r ’T'y + a,I'y) and hence to the
distribution of /n(Uj, 5 — 0). Of course, if the target distribution is N(0,r T'y) or N(0,T',), then
it is enough to simulate the conditional distribution of U}; 4 O Uii, p alone, respectively.

Construction of U)i, p is straightforward; in fact, it is enough to apply the (Gaussian) multiplier
bootstrap to \/Z,h(X,),t € Ip.

Construction of Uﬁ’R

1. Generate i.i.d. N(0,1) variables {] : ¢ € I, ,} independent of the data D,,.

2. Construct
\/> Z SL \% {h U;L,N}7
Leln 7

where N is replaced by N for the sampling with replacement case.
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In the Bernoulli sampling case, U’ . p reduces to Uﬁ = N-1/2 Z] 1 &, {R(X,;) = Uy, n}, while in

the sampling with replacement case, simulating U g can be equivalently implemented by simulating

UﬁB—N 1/22 i miR(X)) = Uy, v} for g, my ~ N(0,1) idd. independent of X\, ..., X/ ;
in fact the distribution of U ﬁ ,.p in the latter definition (conditionally on X7 ,.... X} ) is Gaussian

with mean zero and covariance matrix N ! ijl{h( X7 )= U, yHIX) — mN}T, which is iden-
tical to the conditional distribution of Uﬁh p in the original definition. In either case, in practice,
we only need to generate (on average) N multiplier variables. The following theorem establishes
conditions under which the conditional distribution of Ufi’ p is able to consistently estimate the
N(0,T'},) (= vp) distribution on the hyperrectangles with polynomial error rates.

Theorem 4.1 (Validity of U};B). Suppose that Conditions (C1), (C2), and (C3-D) hold. In
addition, suppose that
D2 log®(dn)
nAN
for some constants 0 < C1 < 0o and ¢ € (0,1). Then there exists a constant C' depending only on
a,r, and C1 such that

< Clnig (9)

sup |Pp, (UE 5 € R) —vB(R)| < Cn~=¢/8
RER ’

with probability at least 1 — Cn~S/8.

In the degenerate case, the approximating distribution is yg = N(0,I',). So, in that case, we can
approximate the distribution of v/ N (U;L N —0) on the hyperrectangles by the conditional distribution
of UfL’ p» Which can be simulated by drawing multiplier variables many times. We call simulating
UE,B the multiplier bootstrap under degeneracy (MB-DG). On average, the computational cost of the
MB-DG is O(BNd) where B denotes the number of bootstrap iterations, which can be independent
of the order of the U-statistic provided that N is so. In the remainder of this section, we will focus
on the non-degenerate case.

In contrast to Ufh p» construction of Ufby 4 is more involved. We might be tempted to apply the
multiplier bootstrap to the H&jek projection, rn ! > i—19(Xi,), but the function g = P 1h is
unknown so the direct application of the multiplier bootstrap to the Hajek projection is infeasible.
Instead, we shall construct estimates of g(X;,) for iy € {1,...,n} or a subset of {1,...,n}, and
then apply the multiplier bootstrap to the estimated Hajek projection. Generically, construction
of Ufh 4 is as follows.

Generic construction of Uﬂ A

1. Choose a subset S; of {1,...,n} and generate i.i.d. N(0,1) variables {&, : i1 € Si}
independent of the data D, and {{ : ¢ € I, ,}. Let n; =|S1|.
2. For each iy € S}, construct an estimate §() of ¢ based on X T

3. Construct

A_ \/7 Z g’bl{/\ll ) }7

11 €851

where g =ni' S, g (X))
14



Step 1 chooses a subset S; to reduce the computational cost of the resulting bootstrap. Con-
struction of estimates §(i1),i1 € S1 can be flexible. For instance, the estimates /g\(il), i1 € S1 may
depend on another randomization independent of everything else. In Sections 4.2 and 4.3, we will
consider deterministic and random constructions of §(1), iy € Sy, respectively.

It is worth noting that the jackknife multiplier bootstrap (JMB) developed in [8] (for the
r = 2 case) and [9] (for the general r case) is a special case of Uth where S1 = {1,...,n} and
") (X;,) is realized by its jackknife estimate, i.e., by the U-statistic with kernel (zg,...,z,)
h( X, 2, ..., x,) for the sample without the i1-th observation. Nevertheless, the bottleneck is that
the computation of the jackknife estimates of g(Xj,),i1 = 1,...,n requires O(n"d) operations and
hence implementing the JMB can be computationally demanding.

Now, consider Uﬁb = UTﬁL’ a4t ai/ 2
non-degeneracy (MB-NDG). The following theorem establishes conditions under which the condi-

Ube. We call simulating Uﬁ the multiplier bootstrap under

tional distribution of U} is able to consistently estimate the N(0,7%I'y + a,,I';) distribution on the

hyperrectangles with polynomial error rates. Define

-~ 1 ~(i1) 2
Ban = s 32 (070 i)Y
11 1

which quantifies the errors of the estimates g\, i; € 5.
Theorem 4.2 (Generic bootstrap validity under non-degeneracy). Let UrﬁL = Urﬁz, A+ ayl,,/ 2U27 B
Suppose that Conditions (C1), (C2), and (C3-ND) hold. In addition, suppose that

D2 log®(dn)
ni AN

for some constants 0 < Cy < co and ¢ € (0,1), where T4 := maxi<j<a/P(g; — 0;)%. Then there
exists a constant C' depending only on o,r, and C1 such that

<O~ ¢ and P (EEKAJ log*d > Cln_3</4) < Cyn~¢/8 (10)

sup [Py, (U € R) — P(Y ¢ R)‘ < Cn—¢/8 (11)
ReR

with probability at least 1 — Cn=S/%, where Y ~ N(0, Ty + a,L'y). If the estimates g i e S
depend on an additional randomization independent of Dp,{&, i1 € S1}, and {&) : v € I, ,}, then
the result (11), with D,, replaced by the augmentation of D, with variables used in the additional
randomization, holds with probability at least 1 — Cn=¢/8.

The second part of Condition (10) is a high-level condition on the estimation accuracy of g, i; €
Si. In Sections 4.2 and 4.3, we will verify the second part of Condition (10) for deterministic and
random constructions of §(i1), 11 € S1. Note that the bootstrap distribution is taken with respect
to the multiplier variables {&;, : i1 € Si} and {¢] : ¢ € I,,,}, and so if the estimation step for g
depends on an additional randomization, then the variables used in the additional randomization
have to be generated outside the bootstrap iterations.

In the case where the approximating distribution can be simplified to v4 = N (0, T'QFQ), then it
is sufficient to estimate N(0,r2T) by the conditional distribution of U}i’ A-

15



Corollary 4.3 (Validity of Ug 1) Suppose that all the conditions in Theorem 4.2 hold. Then there
exists a constant C' depending only on o,r, and C1 such that
sup |Pp, (UﬁL’A € R) —va(R)| < Cn~¢/8 (12)
RER
with probability at least 1 — Cn=S/%. If the estimates ¢\ iy € S; depend on an additional ran-
domization independent of Dy, {&, : i1 € Si}, and {& : v € I}, then the result (12), with D,
replaced by the augmentation of D,, with variables used in the additional randomization, holds with
probability at least 1 — Cn~¢/8.

Remark 4.1 (Comments on the partial bootstrap simplification under non-degeneracy). When
the distribution of v/N( . — 0) can be simplified to y5 = N(0,I'p), it is also possible to use
the partial bootstrap U};B to estimate N(0,I'g). In this case, we must take N to be sublinear
in n (ie., N < n/(D,log?d)) to ensure the Gaussian approximation validity (cf. Remark 3.1).
However, we do not recommend this simplification because the decay rate of the covariance matrix
of the approximating Gaussian distribution N (6, N~1T'g) to UT’% Nis N —1 which is slower than the
n~! rate for the linear and superlinear cases. In particular, this implies a power loss in the testing
problems if the critical values are calibrated by Uqg, B

The rest of this section is devoted to concrete constructions of estimates ﬁ(il), i1 € S1.

4.2. Divide and conquer estimation. We first propose a deterministic construction of ’g\(il), 11 €
S1 via the divide and conquer (DC) algorithm [43].

1. For each i1 € Sy, choose K disjoint subsets Séii:), k=1,..., K with common size L > r—1
from {1,...,n}\ {i1}.
2. For each i1 € Si, estimate g by computing U-statistics with kernel (za, ..., z,) — h(z,29,...,2;,)

applied to the subsamples {X; : i € Sg’,ﬁ:)}, k=1,...,K, and taking the average of those

U-statistics of order r — 1, i.e.,

K
, 1 1
Si)(p)y = Ly 1 h(z, Xy, oy X, ).
g ( ) Kkzl ‘IL,T71| Z - ( 2 T)

i2,.00sir €5y &

i< <y

The DC algorithm can be viewed as an estimation procedure for g via incomplete U-statistics
of order r — 1 with a block diagonal sampling scheme (up to a permutation on the indices). We
call simulating Ug with the DC algorithm as the MB-NDG-DC. In Section 4.3, we will propose a
different estimation procedure for g via randomized incomplete U-statistics of order r — 1 based
on an additional Bernoulli sampling. As a practical guidance to implement the DC algorithm, we
suggest to choose S1 = {1,...,n},L =r —1, and K = |(n — 1)/L] consecutive blocks, which are
the parameter values used in our simulation examples in Section 5. In this case, the DC algorithm
turns out to be calculating Hoeffding’s averages of the U-statistics of order r — 1, which requires
O(nd) operations for each i;. In contrast, the JMB constructs §") by complete U-statistics of
order r — 1, which requires O(n"~'d) operations for each i;. Since the estimation step for g can

be done outside the bootstrap iterations, the overall computational cost of the MB-NDG-DC is
16



O((BN + miKL + Bny)d) = O(n?d + B(N + n)d) (where B denotes the number of bootstrap
iterations), which is independent of the order of the U-statistic. In addition, if we choose to only
simulate Ui 1> then the computational cost is O(n?d+ Bnd), since the O(BNd) computations came
from simulating Urﬁz, - We can certainly make the computational cost even smaller by taking nq and
K smaller than n. For instance, if we choose n; and K in such a way that n; K = O(n) and L = r—1,
then the overall computational cost is reduced to O(nd+ B(N +n)d) = O(B(N +n)d) (or O(Bnd)
if we only simulate Uﬁ, 4)- In general, choosing smaller n; and K would sacrifice the statistical
accuracy of the resulting bootstrap, but if O(n?d) computations are difficult to implement, then
choosing smaller nq and K would be a reasonable option.

Our MB-NDG-DC differs from the the Bag of Little Bootstraps (BLB) proposed in [27], which
is another generically scalable bootstrap method for large datasets based on the DC algorithm.
Specifically, tailored to the U-statistic U, := ,ST)(h) with kernel h, let @, := Qn(P) be the
distribution of U, and A(Qn(P)) = AM(Qn(P), P) be a quality assessment of U,, (cf. Chapter 6.5 in
[29]). For instance, A(Qn(P)) can be the 95%-quantile of the distribution of maxi<;j<q v/n(Un;j—6;).
A natural estimate of A(Q,(P)) is the plug-in estimate A\(Qn(P,)), where P, =n~1>"" 4§y, is the
empirical distribution of X1, ..., X,. Typically, \(Q,,(P,)) is computationally difficult to compute,
even for a moderate sample size n. The BLB first divides the original sample {X;,..., X} into K
subsets 71, ..., Lk of size L uniformly at random. Denote by ]P)ng)L =Lt ZieIk dx, the empirical
distribution of {X;}icz,. Then, on each subset Zy,k = 1,..., K, the BLB repeatedly resamples n

(k)

points i.i.d. from IF’m 1, computes the U-statistic with kernel h for each resample, forms the empirical
distribution Qj, ;. of the computed U-statistics, and approximates )\(Qn(]P’Ef)L)) by A(Q}, ;). Finally
the BLB takes the average K ! Zle M@y, ;) as an estimate of A(Qn(P)). The computational
cost of the BLB is O(BKL"d) = O(BnL"~'d). Note that asymptotic validity of the BLB requires
that L — oo (cf. Theorem 1 of [27]), so that Pflk)L is close enough to P. Therefore, in order
for the BLB to approach the population quality assessment value A(Q,(P)), its computational
complexity has to depend on the order r of the U-statistic. On the contrary, our MB-NDG-DC
applies the DC algorithm to estimation of the Hajek projection and the overall computational cost
is O(n?d + B(N + n)d), which does not depend on r. In particular, the computational cost of the
MB-NDG-DC is O(n%d + Bnd) if we choose N to be on the same order of n.

The following proposition provides conditions for validity of the multiplier bootstrap equipped
with the DC estimation (MB-NDG-DC).

Proposition 4.4 (Validity of bootstrap with DC estimation). Suppose that Conditions (C1), (C2),
and (C3-ND) hold. In addition, suppose that
5 =272 7 2
D,Q;;Oi E\cfln) <Cin~¢ and UQDI"(IEg d <1 + Il{olgl‘/iq> < OB (13)
for some constants 0 < C7 < oo,q € [1,00), and ¢ € (0,1). Then, there exists a constant C
depending only on a,r,q, and Cy such that each of the results (11) and (12) holds with probability
at least 1 — Cn~S/8.

For instance, consider to take N = n, S, = {1,...,n},L =r —1, and K = |[(n — 1)/L], and

suppose that D2 log”(dn) < n'~¢ for some ¢ € (0,1). Then, by Theorem 3.1 and Proposition 4.4,
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there exists a constant C' depending only on 74,0, and r such that

sup [P(vn(U, x —0) € R) —Ppp (Uf € R)| < Cn~¢/8 (14)
ReR

with probability at least 1 — Cn~¢/8. Hence, the conditional distribution of the MB-NDG-DC
approaches uniformly on the hyperrectangles in R? to the distribution of the randomized incomplete
U-statistic at a polynomial rate in the sample size.

4.3. Random sampling estimation. Next, we propose a random construction of i) i; € S;
based on an additional Bernoulli sampling. For each iy =1,...,n, let In_1,-1(i1) = {(i2,...,%r) :
1<ipg < -+ <ip <m,ij # 11 Vj # 1}, In addition, define o, : {1,...,n —1} = {1,...,n}\ {i1}
as follows: if {1,...,n}\ {1} = {j1,...,Jn—1} with j; < --- < jn—1, then oy, (¢) = j, for ¢ =
1,...,n — 1. For the notational convenience, for /' = (ig,...,i,) € In_1,-1, we write oy, (¢/) =
(i, (32), ..., 04, (ir)) € In—1,-1(i1).
Now, consider the following randomized procedure to construct §(i1), i1 € 51.
1. Let 0 < M = M,, < |I,—1,—1| be a positive integer, and generate i.i.d. Ber(s},) random
variables {Z/, : // = (ia,...,1,) € In_1 -1} independent of D,,{&;, : i1 € S1}, and {{ : ¢ €
I}, where ¥, = M/|I,—1 ,—1].
2. For each i; € Sy, construct gl (z) = M1 ZL’eIn_l,T_1 ZZ,h(a:,XUil(u)).
The resulting bootstrap method is called the multiplier bootstrap under non-degeneracy with random
sampling (MB-NDG-RS). Equivalently, the above procedure can be implemented as follows:
1. Generate M ~ Bin(|1p—1,r—1/,9n).
2. Sample 4}, ..., L’M randomly without replacement from 1,1 ,_1.

3. Construct g (z) = M1 Z;‘il h(x,XUil(L;)) for each i; € 5.

So, on average, the computational cost to construct (), 4; € S; by the random sampling estimation
is O(n1Md), and the overall computational cost of the MB-NDG-RS is O(niMd + B(N + nj)d)
(or O(n1Md+ Bnid) if we only simulate Ufl, 4)- As a practical guidance to implement the random
sampling estimation, we suggest to choose S; = {1,...,n} and M proportional to n — 1, which are
the parameter values used in our simulation examples in Section 5. Then the overall computational
cost of the MB-NDG-RS is O(n?d+ B(N +n)d) (or O(n?d+ Bnd) if we only simulate Uth), which
is independent of the order of the U-statistic. In addition, the computational cost can be made
even smaller, e.g., can be reduced to O(B(N + n)d) by choosing n; and M in such a way that
ni1M = O(n) (or O(Bnd) if we only simulate Urﬁz, 1), which would be a reasonable option if O(n?d)
computations are difficult to implement.

Proposition 4.5 (Validity of bootstrap with Bernoulli sampling estimation). Suppose that Con-
ditions (C1), (C2), and (C3-ND) hold. In addition, suppose that
D2 log®(dn) _ 2D2 log’ (dn)
—ne 2L ¢ and L2
ni AN Cin an nAM
for some constants 0 < C; < oo and ¢ € (0,1). Then, there exists a constant C' depending only on
o,r, and Cy such that each of the results (11) and (12), with Dy, replaced by D, = D, U{Z, :// €

In_1,-1}, holds with probability at least 1 — Cn~¢/8.
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For instance, consider to take N =n,S; = {1,...,n}, and M proportional to n— 1, and suppose
that D2 log”(dn) < n'~¢ for some ¢ € (0,1). Then, by Theorem 3.1 and Proposition 4.5, the result
(14) holds with probability at least 1 — C'n =S/,

Remark 4.2 (Alternative options for random sampling estimation). In construction of ('), instead
of normalization by M, we may use normalization by M , namely, M1 zjj‘il h(x,XUil(L;)) for
G (z). In view of the concentration inequality for M (cf. equation (4)), it is not difficult to see
that the same conclusion of Proposition 4.5 holds for () (z) = M1 Z;‘il h(z, X%(L})).

Next, alternatively to the Bernoulli sampling, we may use sampling with replacement to construct

("), which can be implemented as follows: 1) sample ¢}, ..., ¢y, randomly with replacement from
I,—1,—1 (independently of everything else); and 2) construct gi') (z) = M~ Z;‘il h(z, X, (L;_)) for
i1 € S7. For each i; € Sy, conditionally on X7, X%(L;_),j =1,...,M areii.d. draws from the em-

pirical distribution |1,—1 1|71} dx,,- Mimicking the proof of Proposition 4.5, it is not

V€lp_1,r-1(i1)
difficult to see that the conclusion of the proposition holds for the estimation of g via sampling with
replacement under the condition (15) (here Z/, is the number of times that ¢’ is redrawn in the sample

{¢},..., ¢y}, for which g (z) can be expressed as g (z) = M~} Svel 1 Zuh(@, Xy, (1))

5. NUMERICAL EXAMPLES

In this section, we provide some numerical examples to verify the validity of our proposed boot-
strap algorithms (i.e., MB-DG, MB-NDG-DC, MB-NDG-RS) for approximating the distributions of
incomplete U-statistics. In particular, we examine the statistical accuracy and computational run-
ning time of the bootstrap algorithms in the leading example of testing for the pairwise independence
of a high-dimensional vector. We consider two test statistics: Spearman’s p and Bergsma-Dassios’
t*. Under Hj in (2), the leading term p of Spearman’s p is non-degenerate while Bergsma-Dassios’
t* is degenerate of order 1. Slightly abusing notation, we will use p as Spearman’s p statistic
throughout this section. We consider tests of the forms

max |pjr| > ¢ = reject Hy and max |t7 ;| > ¢ = reject Ho,
1<k<p 7 1<i<k<sp

where the critical values are calibrated by the bootstrap methods. For Spearman’s p, we use
Ug for MB-NDG-DC and MB-NDG-RS. For Bergsma-Dassios’ t*, we use UE,B for MB-DG. In
addition, we also test the performance of the partial versions of MB-NDG-DC and MB-NDG-RS
(i.e., Uﬁ” 4; cf. Corollary 4.3) for Spearman’s p statistic when its distribution can be approximated
by 74 = N(0,7%T,) (cf. Corollary 3.2).

5.1. Simulation setup. We simulate i.i.d. data from the non-central ¢-distribution with v = 3
degrees of freedom and non-centrality parameter p = 2. This data generating process implies
Hy. We consider n = 300,500,1000 and p = 30,50,100 (so the number of the free parameters
is d = p(p —1)/2 = 435,1225,4950). For each setup (n,p), we fix the bootstrap sample size
B =200 and report the empirical rejection probabilities of the bootstrap tests averaged over 2,000
simulations. For Spearman’s p, we apply the MB-NDG-DC and MB-NDG-RS (full version Uﬁ)
and set the computational budget parameter value N = 2n. In addition, we implement the MB-

NDG-DC with the parameter values suggested in Section 4.2 (i.e., S1 ={1,...,n},L=r—1, and
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Ficure 1. Bootstrap approximation U} for Spearman’s p test statistic with the
divide and conquer estimation (MB-NDG-DC). Plot of the nominal size « versus
the empirical rejection probability R(a).

K =|(n—1)/L]), and the MB-NDG-RS with the parameter values suggested in Section 4.3 (i.e.,
S ={1,...,n} and M = 2(n — 1)). For Bergsma-Dassios’ t*, we apply the MB-DG Uf%B with
N = n*/3. Moreover, we also apply the partial versions of MB-NDG-DC and MB-NDG-RS U}i’ A
with N = 4n3/2. Note that these computational budget parameter values are chosen to minimize
the error bounds in the corresponding Gaussian and bootstrap approximations. We only report
the simulation results for the randomized incomplete U-statistic with the Bernoulli sampling since
the simulation results for the sampling with replacement case are qualitatively similar.

5.2. Simulation results. We first examine the statistical accuracy of the bootstrap tests in terms
of size for U}i for Spearman’s p and Ui p for Bergsma-Dassios’ t*. Due to the space concern, we

report the simulation results of the partial bootstrap Ui 4 for Spearman’s p in Appendix B. For
20



p=30, n=300 p=30, n=500 p=30, n=1000

0.8
1
0.8
1
0.8
1

0.4
0.4
0.4

Bootstrap approximation
Bootstrap approximation
Bootstrap approximation

0.0
0.0
|
0.0
|

T T T T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

alpha alpha alpha

p=50, n=300 p=50, n=500 p=50, n=1000

0.8
0.8
|
0.8
|

Bootstrap approximation
0.4
0.4
1
0.4

Bootstrap approximation

Bootstrap approximation

0.0
L
0.0
L
0.0
L

T T T T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

alpha alpha alpha

p=100, n=300 p=100, n=500 p=100, n=1000

0.8
1
0.8
1
0.8
1

0.4
0.4
0.4

0.0
L
0.0
L

Bootstrap approximation
\

Bootstrap approximation

Bootstrap approximation

0.0
|

T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0

alpha alpha alpha

FiGureE 2. Bootstrap approximation U} for Spearman’s p test statistic with the
random sampling estimation (MB-NDG-RS). Plot of the nominal size o versus the

empirical rejection probability ﬁ(a).

~

each nominal size a € (0,1), we denote by R(«) the empirical rejection probability of the null
hypothesis, where the critical values are calibrated by our bootstrap methods. Figures 1, 2, and 3
display the plots of R(a) versus a for MB-NDG-DC (Spearman’s p), MB-NDG-RS (Spearman’s p),
and MB-DG (Bergsma-Dassios’ t*), respectively. Clearly, the bootstrap approximations becomes
more accurate as n increases. In particular, it is worth noting that the bootstrap approximations
work quite well on the right tail, which is relevant in the testing application.

Next, we report the computer running time of the bootstrap tests. Figure 7 displays the computer
running time versus the sample size, both on the log-scale. It is observed that the (log-)running
time for the bootstrap methods scales linearly with the (log-)sample size. We further fit a linear

model of the (log-)running time against the (log-)sample size (with the intercept term) for each p.
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FiGUrRE 3. Bootstrap approximation UE p for Bergsma-Dassios’ t* test statistic
(MB-DG). Plot of the nominal size « versus the empirical rejection probability

~

R(«).

For Spearman’s p, the slope coefficient for p = (30, 50, 100) is (1.820,1.863,1.819) in the case MB-
NDG-DC, and (1.987,1.874,1.918) in the case MB-NDG-RS. In either case, the slope coefficient
is close to the theoretic value 2. Recall that the computational complexity for MB-NDG-DC and
MB-NDG-RS is the same as O((n + B)nd) for the suggested parameter values. For n larger than
B, the computational cost is approximately quadratic in n for each p. For Bergsma-Dassios’ t*,
the slope coefficient for p = (30,50, 100) is (1.314,1.318,1.316), which matches very well to the the

exponent 4/3 of the computational budget parameter value N = n/3

. In addition, the running
time lines are in parallel with each other. This also makes sense because the computational costs
of all the bootstrap methods are linear in d (and thus quadratic in p) and the increase of p only

affects the intercept on the log scale.
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Fi1GURE 4. Computer running time of the bootstrap versus the sample size on the
log-scale. Left: bootstrap Uf for Spearman’s p with the divide and conquer esti-
mation (MB-NDG-DC). Middle: bootstrap U} for Spearman’s p with the random
sampling estimation (MB-NDG-RS). Right: bootstrap Ui’ p for Bergsma-Dassios’ ¢*
(MB-DG).

6. DISCUSSIONS

In this paper, we have derived the Gaussian and bootstrap approximation results for incomplete
U-statistics with random and sparse weights in high dimensions. Specifically, we have considered
two sampling schemes: Bernoulli sampling and sampling with replacement, both subject to a com-
putational budget parameter to construct the random weights. On one hand, the sparsity in the
design makes the computation of the incomplete U-statistics tractable. On the other hand, the ran-
domness of the weights opens the possibility for us to obtain unified Central Limit Theorem (CLT)
type behaviors for both non-degenerate and degenerate kernels, thus revealing the fundamental
difference between complete and randomized incomplete U-statistics. Building upon the Gaussian
approximation results, we have developed novel bootstrap methods for incomplete U-statistics that
take computational considerations into account, and established finite sample error bounds for the

proposed bootstrap methods. We end this paper with discussions on two extensions.

6.1. Extension to normalized U-statistics. In applications to, e.g., testing problems, if the
variances of the coordinates of Uf% n are heterogeneous, it would be natural to normalize the incom-
plete U-statistic U] , in such a way that all the coordinates have approximately unit variance, and
use a max-type test statistic of Uv’% n- Often, the coordinatewise variances are unknown and have
to be estimated. From Theorems 3.1 and 3.3, in the non-degenerate case the approximate variance
of the j-th coordinate of \/n(U,, y — ) is 0]2- = Jij + ozna%,j, where 01247]- = r?P(g; — 0;)* and
0% = P"(hj — Gj)Q, while in the degenerate case, the approximate variance of the j-th coordinate
of VN(U,, y —0) is 0’]237]-. So, the problem boils down to estimating Uzl,j and 01237].. To this end, we
propose the following estimators: recall the setup in Section 4.1 and define

2

~ r (i 9 . 1

O’i,j = E {9](-“)()(11) —g;}° and 0’123,]' = Iy E Z{hj(X,) - T,L,N,j}2,
11E€S51 €D
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where N is replaced by N in the definition of /0\)237 j for the sampling with replacement case. These
estimators are the (7, j)-elements of the conditional covariance matrices of Uﬁh 4 and Ufl’ B> respec-
tively. Note that the computational cost to construct 8123’]., j=1,...,dis (on average) O(Nd),
while that of 8%7j,j =1,...,dis O(n%d) if the DC estimation with the parameter values suggested
in Section 4.2 is used for estimation of g. Then the proofs of Theorems 4.1 and 4.2 immediately
imply the following lemma.

Lemma 6.1 (Variance estimation). (i) Suppose that Conditions (C1), (C2), and (C3-ND) hold,
and in addition suppose that Condition (10) holds for some constants 0 < C1 < oo and ¢ € (0,1).
Then there exists a constant C' depending only on o,r, and Cy such that maxi<j<q |/Ua,j/0124,j -1 <
Cn*3</8/ log? d with probability at least 1 — Cn~S/8.

(ii) Suppose that Conditions (C1), (C2), and (C3-D) hold, and in addition suppose that Condition
(9) holds for some constants 0 < Cy < oo and ¢ € (0,1). Then there exists a constant C' depending
only on o,r, and Cy such that max;<;<q |312B,j/012E3,j — 1] < Cn=3¢/8/log? d with probability at least
1—Cn=¢/8,

Now, let Ay = diag{c? ,,...,0% 4}, Ap = diag{c% ,...,0% d},KA = diag{0% 1,...,044} A =
diag{%,,...,0% 4}, A = diag{o?,...,03} = Ay +anAp, and A = diag{53,...,63} = A4+ anAp.
We consider to approximate the distributions of \/ﬁlA\*l/ Q(Ur’% N —0) in the non-degenerate case and

\/NK;/Q(UT'L,N — 0) in the degenerate case. Recall the setup in Section 4.1.

Corollary 6.2 (Gaussian and bootstrap approximations to normalized incomplete U-statistics).
(i) Suppose that Conditions (C1), (C2), and (C3-ND) hold, and in addition suppose that Condition
(10) together with D2 (log”(dn))/(n A N) < Cin=%/* hold for some constants 0 < Cy < oo and
¢ €(0,1). Then there exists a constant C' depending only on o,r, and Cy such that

sup P(\/H/A\_I/Q(Uéw —0) e R) —P(A Y € R)’ <Cn~%  and
RER

P { sup ‘Pmn (A='2Uf € R) —P(AY?Y € R)] > cn—@‘/g} < Cn~¢/8,
ReR
where Y ~ N(0,7°Ty + a, ).

(i1) Suppose that Conditions (C1), (C2), and (C3-D) hold, and in addition suppose that Condition
(9) holds for some constants 0 < Cy < oo and ¢ € (0,1). Then there exists a constant C' depending
only on a,r, and C1 such that

sup |Pp, (A,"°UL 5 € R) = 7h(R)| < Cn~¢/®
RER '
with probability at least 1 — Cn~=/8, where 7}5 = N(O,A]g,lﬂfhj\glﬂ). If, in addition, the kernel
h is degenerate of order k — 1 for some k = 2,...,r, and if ND2(log"*3d)/n* < C1n=¢/? and
D2 (log™(dn))/N < Cin=3/4, then there exists a constant C' depending only on o,r, and Cy such
that
sup P(\/N/A\JEI/Q( wN—0)€ER)— WL(R) <C'n¢/8,

ReR
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6.2. Incomplete U-statistics with increasing orders. Finally, it is interesting to note a connec-
tion of incomplete U-statistics with machine learning. The recent paper by [32] studies asymptotic
theory for one-dimensional incomplete U-statistics with increasing orders (i.e., r = r, — 00).
Specifically, they use sampling with replacement and establish asymptotic normality for the non-
degenerate case. Their motivation is coming from uncertainty quantification for subbagging and
(subsampled) random forests, which, from a mathematical point of view, are defined as infinite
order U-statistics [16] where the order of the U-statistics corresponds to the subsample size for
a single tree and so r = r, — oco. Since exact computation of subbagging and random forests is
in most cases intractable, a common practice is to choose a smaller number of subsamples ran-
domly. Building on the asymptotic normality result, [32] develop pointwise confidence intervals
for subbagging and random forests; see also [40] for related results. Extending the results of [32]
to high dimensions enables us to develop methods to construct simultaneous confidence bands for
subbagging and random forests and hence would be an interesting venue for future research. Such
extension is by no means trivial since the constants appearing in the error bounds developed in the
present paper depend on the order r in complicated ways.

APPENDIX A. PROOFS

A.1l. Preliminary lemmas. This section collects some useful lemmas that will be used in the
subsequent proofs. We will freely use the following maximal inequalities for the 1g-norms.

Lemma A.1 (Maximal inequalities for the 1 g-norms). Let &1, ..., & be real-valued random vari-
ables such that |||y, < oo for alli=1,...,k for some 0 < 3 < oo, where k > 2. Then

max &

< C(log k)" max (1€l
wt} AR

where Cg is a constant that depends only on (3.

Proof of Lemma A.1. For § > 1, the lemma follows from Lemma 2.2.2 in [39]. For § € (0,1), 3
is not convex and so we can not directly apply Lemma 2.2.2 in [39], but apply the lemma for the

norm equivalent to || - [y, obtained by linearizing ¥ in a neighborhood of the origin; see Lemma
A.2 below. 0

Lemma A.2 (Norm equivalent to || - [[y,). Let 8 € (0,1), and take xg > 0 large enough so that

the function

~ Yp(x) if x > xp
Ty T if0<x <2

is convex. Then there exists a constant 1 < Cg < oo depending only on [ such that

G5l < liElls, < Cslil,

for every real-valued random variable &.

Proof of Lemma A.2. This seems to be well-known, but we include a proof of the lemma since we

could not find a right reference. In this proof, the notation < signifies that the left hand side is
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bounded by the right hand side up to a constant that depends only on 5. We first show that
HﬁH% S lI€llys- To this end, we may assume that |||y, = 1, i.e., E[tp5(|¢])] = 1, and show that
||§H¢~B < 1. By Taylor’s theorem, we have ¥(z) 2 = and ¥5(z/C) < C Pys(z) for C > 1, so that

E[$s(1¢/C)) S ElE/CI) +Elps(€/CN) S C7.

This implies that ”5”% < 1. Next, suppose that "5”% = 1 and we show that |||y, < 1. By

~

convexity of 1;5, we have E[?,ZB(K/CD] < C7! for C > 1. Combining the fact that ¢s(z/C) <
C~Pyg(zp) for 0 < v < w5 and C > 1, we have

E[s(I6/CD] < CPus(as) + Elds(€/Cl] S C7,

which implies that |||, < 1. This completes the proof. O

Lemma A.3 (Useful maximal inequalities for U-statistics). Let Xi,...,X, be i.i.d. random
variables taking values in a measurable space (S,S) with common distribution P, and let h =
(h1,...,hg)t : 87 — R% be a symmetric and jointly measurable function such that ||hj(X7)|ly, < oo
forallj =1,...,d for some § € (0,1]. Consider the associated U-statistic Up(h) = |Iny|7' 3, c;  h(X,)
with kernel h, and let Z = maxi<j<q |Un(h;) — P"h;|. In addition, let Y

D Ani(X(1yya) = PThy}|, and

M = max max ]hj(Xg_l)TJrl) — P"hjl,

1<i<m 1<5<d

where m = |n/r| is the integer part of n/r. Then, for every n € (0,1] and & > 0, there exists a
constant C depending only on 5,m, and & such that

8
} 2 t
P (mZ > (1+n)E[Z] +t) <exp (‘2(1+5)mg2> Foexp - (CHMM)
B

for every t > 0, where 0? = max;<;<q P"(h; — P"hj)%.

Proof of Lemma A.3. The proof essentially follows from that of Lemma E.1 in [8], and so we only
point out required modifications. The difference is that in Lemma E.1 in [8], Z is defined as

maxi<j<d | Yo {hj(X (’;"71)7" 1) — P"h;}| where h is to be defined below. Without loss of generality,
we may assume that ¢ > C1[|[M|[y, for some sufficiently large constant Cy that depends only on 3,7
and d. For 7 = 8E[M], let h(z1,...,2) = h(x1,...,2.)L(|h(z1,...,2)|oc < 7)and h =h — h. In
addition, define Vy(x1,...,2,), Ty, £ = 1,2 as in the proof of Lemma E.1 in [8]. Then, Z < T} + Ty,
and since h = h 4+ h and hence h = h + (—h), we have E[[W1(X})|so] < E[Z] + E[|[W2(X7)|oo], s0

9

that E[Z] > E[|W1(X])|eo] — E[|[W2(X7)|oc]. Hence, for every n > 0 and ¢ € (0, 1),
P (Z > (1+n)E[Z] + t)
<SP = (14 n)E[Wi(XT) o] — E[[W2(XT)|oo]) + (1 = €)t) + P(T2 > et).

Choose ¢ = £(§) < 1/2 small enough so that (1 —2¢)~?(1+6/2) < 1+6. From the proof of Lemma

E.1 in [8], we have E[[W2(XT)|c] < C2|[M|[y, for some constant Cy that depends only on 3. By
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choosing C1 sufficiently large, we have (1 + 7)C2[|M|y, < et, so that
P(Z> (1L+n)E[Z] +1) <P(T3 > (1L+nE[Wi(XD) o] + (1 = 29)8) + P(Ty > et).
The rest of the proof is analogous to the proof of Lemma E.1 in [8] and hence omitted. O

Lemma A.4 (Gaussian comparison on hyperrectangles). Let Y, W be centered Gaussian random
vectors in R% with covariance matrices ¥¥ = (Z}{k)lgjykgd,zw = (Z%)Kj,kgd, respectively, and
let A = |2Y — W\ . Suppose that ming¢j<q E}Tj V min;¢j<q E% > g2 for some constant ¢ > 0.
Then

sup [P(Y € R) —P(W € R)| < CAY?10g?3 d,
ReR

where C' is a constant that depends only on o.
Proof of Lemma A.4. The proof is implicit in the proof of Theorem 4.1 in [12]. O

A.2. Proofs for Section 3. Observe that P|h; — GjP*k < 2'FDF by Jensen’s inequality for
all j and k = 1,2, and ||h;(XT]) — 0]y, < (14 1/log2)D,, for all j. So, in view of the identity

N0 = N1 > e, Z{n(X,) — 6} where N is replaced by N for the sampling with replacement
case, it is without loss of generality to assume that

0=P'h=0

by replacing h with h — 6.

Throughout this section, the notation < signifies that the left hand side is bounded by the right
hand side up to a constant that depends only on ¢ and r. In addition, let C' denote a generic
constant that depends only on ¢ and r; its value may change from place to place.

Proof of Theorem 3.1. 1t is not difficult to see that the equality of the first two terms in (7) holds
since n = Nay,,. So it suffices to prove the second line in (7). In this proof, without loss of generality,
we may assume that

D2 log™(dn) < ¢1(N An) (16)
for some sufficiently small constant ¢; depending only on ¢ and r, since otherwise the conclusion
of the theorem is trivial by taking C in (7) sufficiently large. In addition, for the notational
convenience, let

D2 log"(dn) 1/6
o o (D)
Bernoulli sampling case. First, consider the Bernoulli sampling. The proof is divided into several

steps.

Step 1. Recall the decomposition W, = (N/N)U;%N = U+ N3 o (Z,—pp)h(X,) =
Ay + /T = pnBy, and observe that VN B,, = |I,, .|~/ > e, (pn(l = pn))_1/2kZL —pn)h(X,). Let
Y be a random vector in R? such that Y | X7 ~ N(0, T}) where T'j, = 1D h(X,)h(X,)T.
In this step, we shall show that with probability at least 1 — Cn~!,

LEIn,T

p&{z(\/ﬁBn,}/}) = sup IF"X{L(\/NBn €R)— P|X{L(i} € R)| < Cwy,.
ReR

The proof of Step 1 is lengthy and divided into six sub-steps.
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Step 1.1. We first derive a generic upper bound on p&?(\/ﬁ B, }A/) Let ?L, ¢t € I, be random
vectors in R? independent conditionally on X7 such that Y, | X7 ~ N(0, h(X,)h(X,)T) for . € In ;.
Observe that conditionally on X7, y 4 L) 712 Diel, Y,. Define

~

L, = ma<X ‘ | Z pn 1 _pn)) 3/2|h ( )‘3EHZL _pn|3]'

1<)
1E€1n,

Further, for ¢ > 1, define

3
r ZL_ nh'XL ZL_ ’I’LhXL Inr
Mn, E E‘Xn max ( P ) J( ) 1 max ( p ) ]( ) > W
~ m| S s V(= pa) 19554 | \/pa(l—pa) |~ 4¢logd

A7 vV ‘In,r‘
M, y(¢p) = Z X7 | max |Y]| 1 max |Yj\ ,
) |Inr| ) )

g 1<]<d 1<5< 4¢logd

and M, (¢) = M x(¢) + M, v(¢). Let L, and M, be constants whose values will be determined
later.
Then, Theorem 2.1 in [12] (applied conditionally on X7') yields that there exists a constant Cy

—o 4 N\ 16
L log™d
¢n=C2 | — 17— ;
[ Ln,r|

depending only on ¢ such that for

we have that

— /6  —
Pl (VNB,,Y) < C (W) * ALLZ
n,r n
on the event 5n = {M (¢n) < Mu}{L, <L Ly }n{min;¢j<q Ty jj = c?/2}. In Steps 1.2-1.4, we will
bound L, and M (¢n), and in Step 1.5, we will evaluate the probability that min;<j<4 Ty i = a2
In Step 1.6, we will derive an explicit bound on P X?(\/» By, Y) that holds with probability at least
1—-Cn L
Step 1.2: Bounding L,. Since p, < 1/2 and E[|Z, — pu[?] = pu(1 — pu){p2 + (1 — pp)2} < Cpn,
L, e (X = Zy. Let m =
\n/r],Z1 = maxi<j<d p iy |hj (X} (- 1)T+1)\ , and My = maxi<i<m maxigj<d |1 (X(ZZ 1)r+1)] Then,
Lemma E.3 in [8] yields that

is bounded from above by C’pﬁl/2 times maxi<j<d |[In,

P (mz1 > 9E[Z4] + C\\M§1\¢1/3t3) < 3t

for every ¢ > 0. Further, since the blocks X(l D10 i=1,...,m are i.i.d., Lemma 9 in [11] yields
that
7.1 < 3 < 3
B2 S xS B [115(X{ 1y, 40)P] + EM]logd S mD,, + E[M{]log d.

Since EIM?] < My, , = HMlui’;l < D3 log*(dn), we have

P (En > Cp; V2D, {1+ n~ D% log*(dn) + t>n~1D? log3(dn)}> < 3eh
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Since D?1log”(dn) < ¢in, by choosing L,, = C’pﬁl/QDn and t = logn, we conclude that P(En >
Ly) <3n L
Step 1.3: Bounding M,, x(¢,). We begin with noting that

)

_ C VN
Vi < -1/2 (X, 31 (X, .
n.x (0) 7, L; Dy lrgj?z(d’hj( )| lfgfgid!hg( )| > 1plogd

Since || max,ez, . maxi<j<q |h;(X,)|[|¢; S Dnlog(dn), we have that

hi(X,)| < CD, log?(d
mmax max, b (X,)] nlog™(dn)

with probability at least 1 — 2n~'. Now, since

VN o (DN
4o, logd ™ \ logd

1/3 gy ,
> ¢y '"Dplog*(dn),

by choosing ¢; in (16) sufficiently small, we have that Mn x(¢n) = 0 with probability at least
1—2n"%
Step 1.4: Bounding M,y (¢,). Suppose that

max max |hj(X,)| < CD,log?(dn),

1€In r 1<j<d

which holds with probability at least 1 — 2n~! by Step 1.3. Recall that [|£||y, < (1 + €)][€]|y, for
every real-valued random variable. (For completeness, we provide its proof: assume ||£[/y, = 1,
and observe that E[el¥]] < e+ E[et’] < e+ 2, so that E[y(|¢])] < 1+ e. The desired result follows
from the observation that 11(x/C) < C~ 14y (x) for C > 1.) Conditionally on X7, since }A/L,j |
XP ~ N(0,h3(X,)) for every ¢ € I, we have || maxicjca |V llly, < (1+ e)l|maxicjcal Villlu. S
max; < j<q |h;(X,)| log!/?d, so that

t
> t> <2exp | — 75
C'maxigj<q |hj(X,)|log 124

for every ¢ > 0. Hence, it follows from Lemma C.1 in [12] that

PN ~ I
masx [7,51°1 (max Bol > V')]

1<j<d 1<j<d 4¢, logd

Pixn [ max |V, ;
X7 1<J<d‘ L

Eixp

3
Inr AV Inr
S ALLLI—— |hj(X,)log"/?d | exp | — o 7
¢nlogd = 1<j<d Cy, max < jeq |hj(X,)]log®? d
< (n'/? + Dylog®?(dn))? o2
< (n"*+ Dylog n))’exp [ — :
C DY 10g' /8 (dn)

2/3 1/3
< n3r/2 exp | — 73 n < n3r/2 exp _nlﬁ
CD;/” 1og' /5 (dn) C'log'/?(dn)

< n37‘/2 exp(_n11/42/0) < ngr/ge_nlm/c’

where we have used the assumption (16). Therefore, we conclude that ]/\Zmy((ﬁn) < Cn3r/2e—n''*/C

with probability at least 1 — 2n~1!.
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Step 1.5: Bounding |fh — I'ploo. Let Zg = \fh — T4 |00, and observe that

max 175 (X)hs(Xo)llv, o < max 115 (X0)/2 + Wi (X0) /2,

1<j,k<d

2 2
S max (20 oy + IR ) S s A3,

= max [|h;(X,)|I}, < D,

1<]<d
and max;<;r<a P’ (hjhi)? = maxi<j<d P”h? < D2. Hence, Lemma A.3 yields that

1/2
P (m2y > 2E[Z] + 1) < e /OmPD) 4 3exp § - ( C||I\/It| ) |
2112

where m = |n/r|, and Zy and My are defined by

= max and

1<j,k<d Z{h X(z 1 r+1) (ngfl)r+1) — P"hjhy}

M=mmm)h e X 1) = Pl

Observe that [Mafly, , < D2 log?(dn). In addition, Lemma 8 in [11] yields that

E[Z5) < v/mD2logd + \/EMZ]logd < D, \/nlogd + D? log®(dn).

Hence,

P (22 > C{n %D, log"? d + n~' D2 log*(dn)} + t)

<e _Lﬁ +3e —ﬂ
S SR\ 732 *P\TCD, log(dn) )

Choosing t = Cn~'/2D,,(logn)/?\/ Cn~1D2(log n)? log?(dn) for large enough C leads to

P <22 > C{n~Y2D, log"2(dn) + n~' D2 (log n) 1og3(dn)}) <On~L.

Choosing c; in (16) small enough, we conclude that ]fh —T']0e < /2 and hence min;<;<q fhyjj >
0?/2 with probability at least 1 — Cn~!.

Step 1.6. In view of Steps 1.1-1.5, choosing L,, = C’pﬁl/QDn and M, = Cngr/Qe_"1/4/C, we have
P(&,) =1 —Cn~!. Hence,

R D21 7d 1/6 1/2
p&?(\/ﬁBn,Y) <C { <"](\)[g> + Zg 37"/2€—n1/4/C < @,

n

with probability at least 1 — Cn~1.
Step 2: Gaussian comparison. In this step, we shall show that

sup ’IP’|X{L(}A’ €R)— ’yB(R)‘ < Cwp
ReR
with probability at least 1 —Cn~!, where yg = N(0,T';,). First, the Gaussian comparison inequality

(Lemma A.4) yields that the left hand side is bounded by cA'? log?/? d on the event {|fh —I'hloo <
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A}. From Step 1.5, [Ty = Thloe < C{n~/2D, log'/?(dn) +n~' D2 (log n) log®(dn)} with probability
at least 1 — Cn~!, so that

R 2 1007 1/6 2 5 1/3

ReR n n

with probability at least 1 — Cn~1.
Step 3: Gaussian approximation to A,. Recall that I'y = Pgg” since § = 0. In this step, we
shall show that

sup [P(vnA, € R) —ya(R)| < Cwy, (17)
ReR

where v4 = N(0,72T,). The Hoeffding decomposition yields that

aa= Y (D)o mn = o + 3 () v ),

k=1 k=2

=:Rp
where (mh)(z1,...,2%) = (0 — P)-+- (0, — P)P""*h is the Hoeffding projection at level k;
see, e.g., [14], p.137. Since rUr(Ll)(mh) =rn 1Y " g(X;) is the average of centered independent
random vectors with covariance matrix r?I'y, Proposition 2.1 in [12] yields that

sup [P(ry/mUW (m1h) € R) — VA(R)‘ < Cwy,
ReR

under our assumption. It remains to bound the effect of the remainder term R,,. To this end, we

make use of Corollary 5.6 in [9], which yields that

E 112]2}% U ) (thj)|] < n 7k 2(1ogh? d), | Pr <1r£]a<xd h?) <n7F2D, logh/*t1 d
for every k = 2,...,r. Hence,

E[|Rnloo] < Dp Z n~F/210gh 21 4 < n7'D, log? d.
k=2
Now, for R = H;l:l[aj,bj], let a = (ay,...,aq)" and b = (b1,...,bq)", and for t > 0, we use the
convention that b+t = (by +t,...,bg +t)T. Observe that
P(VnAn € R) = P({—vnAn < —a} N {vnA, <b})

<P ({=viiAn € —a} N {VitAn <0} 0 {IVARuloo < 6}) + P (IVRaloo > 1)
P({—rv/nUWM (m1h) < —a+t} N {rv/nU (m1h) < b+ t}) + Ct~'n~2D,, log? d
<val{y eRY: —y < —a+t,y <b+1t}) + Cw, + Ct 'n"V2D, log?d
< 74(R) + Ct\/logd + Cw, + Ct"'n~Y2D, log? d

N

for every t > 0, where the last inequality follows from Nazarov’s inequality stated in Lemma A.1
n [12]. Choosing t = (n~*D2 log® d)'/*, we conclude that

D2 log? d\
P(vnA, € R) — va(R) < C (”;’g) + Cw, < Ca,
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because of the assumption (16). Likewise, we have P(v/nA, € R) > y4(R) — Cw,. Therefore, we
obtain the conclusion (17).

Step 4: Gaussian approximation to W,. Pick any hyperrectangle R € R. Recall that o, = n/N,

I S /NA"M |
an(1—py) 1—-p,

Now, we freeze the random variables X{". From Steps 1 and 2, the conditional probability inside the

and observe that

P(v/nW, € R) =E

Pixp (WB,L €

expectation is bounded from above by vp ([\/;R — 1]\;7114”]> + Cw, with probability

an(1=pn)

at least 1 — Cn~!. Since the probability is bounded by 1 and n~! < w,,, we have

1 N
R[4,
73([ an(l —pn) I —pn )
—IP’(x/l—pnYBe “12p fA})+cwn_P(\FA e [R— \/am 1—pnYB)+C’wn,

where Yp ~ N(0,I';,) = vp independent of X'. Next, we freeze the random variable Y. Since Yp
is independent of X7', Step 3 yields that

Py, (Vitdn € [R = Van (= pa)¥s]) <74 (IR = Van(l = p)Vs]) + Cop.

By Fubini, we conclude that

P(v/nW, € R) <E [’yA <[R —Vap(l fpn)YB])} + Cwy,
=P (Ya € [R— Vau(l = pa)Ys]) + O = P(Ya + van(1 = pa) Vs € B) + Ceo,

where Y4 ~ N(0,72T g) = 74 is independent of Yp. Since app, = n/|Iy,| S n~™t < n~!and

P(\/ﬁWnGR)gE + Cw,

IThloo < Dy, using the Gaussian comparison inequality (Lemma A.4), we have

Dylog?d\"?
P(Ya + v/an(l — pn)Y5 € R) < P(Y4 + 2V € R) + C (;ig) ,
and the second term on the right hand side is bounded from above by Cw,. Likewise, we have
P(yv/nW, € R) =2 P(Ya + ozn/ Yp € R) — Cw,. Hence, for Y =Y, + a}/QYB ~ N(O,rzfg + a,p),
we have

sup [P(vnW, € R) —P(Y € R)| < Cwy. (18)
ReER

Step 5: Gaussian approximation to U/ . We shall verify that the inequality (18) holds with
VvnW, replaced by y/nU], . Since Y is centered Gaussian and maxi¢j<a Var(¥y) < Dn(1 + an),
we have E[|Y|] < /Dn(1 + ap)logd. By the Borell-Sudakov-Tsirel’son inequality (cf. Theorem
2.5.8 in [18]), we have

P (!anl/zY\oo > C\/Dn(l + aﬁl)log(dn)> <2nt

Combining this estimate with (18), we have

P <|\/NWn\oo > C\/Dn(l + a;l)log(dn)> < Cwp.
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Next, since N = ZLGInr Z, and Z,,1 € I, are i.i.d. Ber(p,) with p, = N/|I, .|, by Bernstein’s
inequality (cf. Lemma 2.2.9 in [39]), we have

P (W ~ N| > V2Nt + 2t/3> <2t

for every t > 0. Choosing t = logn and choosing ¢; sufficiently small in (16) such that y/(logn)/N <
1/4, we have

P (yﬁ/z\r 1> 2\/(logn)/N) <ol
Since |z7! — 1] < 2]z — 1| for |z — 1| < 1/2, we have that
IN/N =1 < 2|N/N — 1| < 4,/(logn) /N

with probability at least 1 — 2n 1.
Now, observe that \/NU{%N =VNW,+ (N/]V— 1)v/NW,,, and with probability at least 1—C'coy,

logn) log(dn)
nAN )

(V) — VR, | < 0y 22!

Arguing as in Step 3 and noting that minj¢; <y Var(aﬁ1

that for every R € R,

2 .
/ Y;) > minicjcq P’”hJZ 2 1, we conclude

D,,(logn) log?(dn)
nAN

P(VNU), y € R) <P(a,"?V € R) + Cooy, + c\/

< P(a;Y?Y € R) 4+ Cwp.

Likewise, we have IP’(\/NUAN €ER)> P(aﬁlﬂY € R) — Cwy,. This leads to the conclusion of the

theorem in the Bernoulli sampling case.

Sampling with replacement case. Next, consider sampling with replacement. The proof is similar

to the Bernoulli sampling case, so we only point out the differences. Recall that we assume 6 = 0.
Observe that U}, v = Up+N~' 3200 {W(X}) = Un} =: An+ By Since X};,..., X}, areiid. draws
from the empirical distribution |I,,,|"* > c; dx, conditionally on X7, VNB, is v/N times the
average of i.i.d. random vectors with mean zéro and covariance matrix fh — UnUg conditionally
-1 diel,, h(X,)h(X,)T. Let Y be a random vector in R? such that

Y | X7 ~ N(0, Ty — U,UL). We first verify that

on X7, where I'y, = |,

p&F(\/NBn, Y) < Cwy,

with probability at least 1 — Cn~!. Define

~

1 3
In = gz 7 2 (X0 = Ung

LeIn,'r

n

By Jensen’s inequality, L 8Z1, where Z; is defined in Step 1.2 for the Bernoulli sampling case.
L

<
By Step 1.2, we have P(L,, > CD,,) < 3n~! under the assumption (16). So we can take L, = CD,
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and ¢, = C'Q(NAZ?1 log* d)*l/6 > 1 by taking the constant Cs large enough. For ¢ > 1, define

i U 1> YN
MN,X ¢ | nr’ Z llril‘]a%}(d‘h ) Un7]| 1 (maX |h ( ) UTLJ’ > 4¢10gd>] ’

1<9<d
—~ m
M,y (¢) = Ejxp filafd‘y‘ 1 <11233de| 4glogd | |’

and ]\/Zn(q[)) = ]\/JH,X(qb) + Mn,y(gé) Observe that

max max |h;(X,) — Up |

€I, 1<5<d S max max |[7;(X,) = Un,jlly, log(dn)

Leln ™ 1<]<d

< <
S max lrgjfgdHh (X))l log(dn) < Dy log(dn),

and hence

_ | <CD,1 2
mnax 1rgja<xd|h( .) = Un,j| < CDylog"(dn)

with probability at least 1 — 2n~!. Using similar calculations to those in Step 1.3, we have that

J\/Zn,X(an) = 0 with probability at least 1 — 2n 1. Step 1.4 needs a modification. Since 17] | X7 ~

NO. ™ g, (X0 =Ung ), we e a9l S ey 7, 5 VT
conditionally on X where V;, = maxi<j<g [Ins| 7' 2 ,c. h?( X,), from which we have

t
n < _ .
Pixg <1rga<xd|y| ) b 2exp< CvVVa logd)

Let m = |n/r| and V,, = MaX|<j<d D iy J(XW

(i—1yr+1)- Then, Lemma E.3 in [8] yields that

P (mVy > 2B[V,] + CIM3lly, ,#) < 3¢

for every ¢ > 0, where My = maxi<i<m maxicj<d |h;j (X(i;"_l)rﬂ)]. Further, Lemma 9 in [11] yields
that
E[V,] < 112% Y E [fﬂ( (i 1yrs1) | T EMi]logd < mDy, +E[M?]log d.
Since E[M?] < |||\/|2H¢1/2 = HI\/I1H¢1 < D2 log?(dn), we have
P (V= CDu {1+ n~tD, log?(dn) + t*n"1D,, logQ(dn)}) < 3et

Since D,, > 1 and D2 log”(dn) < c1n, by choosing t = logn, we conclude that IP’(V CD,) < 3n~ L.
Now, suppose that V,, < CD,,, which holds with probability at least 1 — 3n~!. Then, since

t
n < _
Fix (f?ai‘dm ) S 26Xp< /D, 1ogd>’
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it follows from Lemma C.1 in [12] that

[ N
Exp max|Y\1<maX|Y|> VN )]

1<j<d 1<j<d 4¢n

4¢n Cgan}lﬁ 10g3/2 d

S \F +\/D log ] exp <— VN )

N1/3

<Nexp|-———F1—
CDY10g5/6 g

) < N*2exp(-N'0/C),

where we have used the assumption (16). Therefore, we conclude that J\/Zmy(qbn) < CN3/2exp(—N6/C)
with probability at least 1 — 2n~!

Step 1.5 also needs a modification. Note that |T, — UpUZL — Tplao < [T — Thloo + |Un|%. In the
Bernoulli sampling case, we have shown in Step 1.5 that \fh — T'hloo < 0?/4 with probability at
least 1 — Cn~! (changing the constant from 1/2 to 1/4 does not affect the proof). So we only need
to show that |U,|%, < ¢?/4 with probability at least 1 — Cn~!. By Lemma A.3,

= t
P (m|Unloc > 2E[Z5] +1 <et2/<3mDn>+3exp{_},
( ) Cl[My |y,

where Z3 = maxicjea| Xy hj(X{_y),,,)|- Observe that [Mi[ly, < Dplog(dn). In addition,
Lemma 8 in [11] yields that

E[Z3] < v/mDylogd + \/E[M2]logd < \/nD, logd + D, log?(dn).

Hence,

P (|Un|OO > C{n"Y2DY?10g? d + n"1 D, log?(dn)} + t)

< nt? 43 nt
<exp|— exp| ———=———+-+].
P 3rDy, P CD,, log(dn)

Choosing t = Cn_l/QD,ll/z(log n)'/2\/ Cn=' D, (logn)log(dn) for large enough C' leads to

P (\Unyoo > C{n~Y2DY?1ogV?(dn) + n~ 1D, log2(dn)}) < OnL.

Choosing ¢; in (16) small enough, we conclude that |U,|%, < ¢?/4 and hence minlgjgd{fh,jj -
Un27j} > ¢%/2 with probability at least 1 — Cn~!. Therefore, the overall bound in Step 1 for the
sampling with replacement case is given by

=N D2 loe” d 1/6 N3/267N1/6/C
Pl (VNB,,Y) < C { (Ng> t——p (5@

with probability at least 1 — Cn~!.

Step 2 in the Bernoulli sampling case goes through under the assumption (16). Step 3 remains
exactly the same as the Bernoulli sampling case. Step 4 follows similarly as the Bernoulli sampling
case with p, = 0. Step 5 is not needed in the sampling with replacement case. This completes the

proof. O
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Proof of Corollary 3.2. In view of Theorem 3.1, the corollary follows from the Gaussian comparison
inequality (Lemma A.4) and the fact that |I'y|cc < [Thloo < CDy,. O

Proof of Theorem 3.3. We shall follow the notation used in the proof of Theorem 3.1. In this proof,
without loss generality, we may assume that

ND2log"3d < ean®,  D2(logn)log®(dn) < con, and D?log”(dn) < caN (19)

for some sufficiently small constant co depending only on ¢ and r, since otherwise the conclusion
of the theorem is trivial by taking C' sufficiently large.
Bernoulli sampling case. We first verify that

~ D21oe” d 1/6 711/2 , B
B ) <o (ZRE0) T 2 i .

with probability at least 1 — Cn~1.

It is not difficult to verify from Step 1.2 in the proof of Theorem 3.1 that P(En > Cp, 1 2Dn) <
3n~! under the assumption that D2 (logn)log®(dn) < can, and so take L = Cpgl/QDn. Step 1.3
goes through as it is. Step 1.4 needs a modification. From Step 1.4, we have that on the event
max,er, , maxi<j<d |hj(X,)| < CDylog?(dn),

- ~ NI 2/3
E|xn | max Y, ;1 | max |Y, ;| > Vil < Cn®exp | — n ,
bliggd 7 1<j<d 7 4y log d C D2 10g7/5 (dn)

and the assumption that D2 (logn)log®(dn) < can yields that the right hand side is bounded from
above by

1/3
n3r/2 exp | — (nlogn) / < n3r/2e—nt/10/C
C'log™(dn)

Since max,ey, , maxi<j<q |hj(X,)| < CD, log?(dn) with probability at least 1 —2n~1, we have that
J/\Zmy((ﬁn) < On3r/2e=n1/C with probability at least 1 — 2n~!. Step 1.5 holds under the present
assumption. Hence, the inequality (20) holds with probability at least 1 — Cn~!. In addition, Step
2 in the proof of Theorem 3.1 goes through under the present assumption (19), so that

~ 2 5 1/6 9 5 1/3
sup |Pixn(Y € R) — yB(R)‘ <C { (Dnlog(d”)> " <Dn(10gn) log (dn)) }
RER n -

N

n

C (D%(log n)log®(dn) > 1/6

with probability at least 1 — Cn~!. Therefore, we have that

D2 (log n) log® (nd)\ /® /D2 10g” (dn)\ V/°
[P 5 € )] < (Pt 00 il
RER n N

with probability at least 1 — Cn~!, and in view of the fact that n~! < ¢&,,, we conclude that

sup
RER

P(vVNB, € R) — WB(R)\ < Cton.
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Since h is degenerate of order k — 1, we have

.S (Z) ULO (i),

l=k
and Step 3 in the proof of Theorem 3.1 yields that

E[|Anloc] < CDn Y n?10g"?™ d < CDun */210g" > d. (21)
l=k
Hence, for R = H?Zl[aj, bjl,a=(a,...,aq)T,b=(b1,...,bg)", and t > 0, we have

P(VNW,, € R) = P{—VNW, < —a} N {VNW, <b})

<P ({—\/an < —a} N {VNW, <b} N {|\/NAnyoo < t}) 4P (\\/NAnyoo > t)
P ({~V/N(L=pa)By < —a+t} 1 {y/N(1 = pa) By < b+ 1}) + Ct™ VN0 /2D, logh/+1 4
v8({y € R : /1= poy < —a+1,3/1=puy <b+1}) + Cop + Ct VN0 2D, logh* 1 d
<75([(1 = pn) V2R)) + Cty/logd + Coy + Ct VN0 /2D, logh/?t d,

where the last inequality follows from Nazarov’s inequality ([12], Lemma A.1). Choosing ¢t =
(Nn~=FD2 logh*1 d)1/4, we conclude that

N

N

1/4
N D2 loght3 4
P(VEW, € R) < 8({(1 - pa)~"2R)) + C (m»»g) + Caon,

Finally, since p, < N/n", the Gaussian comparison inequality (Lemma A.4) yields that

ND, log?d > 1/3
r b

n

v5([(1 = pn)"V2R)) < y5(R) + C (

2 100k +3 g\ 1/4
and the second term on the right hand side is bounded from above by C (W) . Hence,

ND?logh*3d A
P(\/NWTL € R) < FYB(R) +C nT + Cﬁn

Likewise, we have

P(VNW,, € R) > vg(R) — C <"

Finally, arguing as in Step 5 in the proof of Theorem 3.1, we obtain the conclusion of Theorem 3.3
for the Bernoulli sampling case.

Sampling with replacement case. This case is similar to but easier than the Bernoulli sampling
case under degeneracy. Recall that Uf% N = Ap+ DB, where A,, = U, and B,, = N -1 Zj.vzl{h(X L*]) -
U,}. Under the assumptions that D2 (logn)log®(dn) < can and D2 log”(dn) < caN, all the sub-
steps of Step 1 in the proof of Theorem 3.1 carry over to the degenerate case, i.e., we have that

N D21 7d 1/6 N3/2 —NV/8/C
p&?(x/NBn,YKO{(”J‘f) TLki Sae
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with probability at least 1 — Cn~!. In addition, the error bound in Step 2 remains the same as the

Bernoulli sampling case under degeneracy. Hence, we have that

sup |Pxp (VNB, € R) — y5(R)| < C,
ReR

with probability at least 1 — Cn~!. Now, using the estimate (21), for R = H?Zl
(a1,...,aq)T,b=(by,...,bg)T, and t > 0, we have

[a;,bs],a =
P(VNU,, y € R) = P({-VNU, y < —a} N {VNU, y < b})

<P({(-VNU,x < ~a) N {VNUy <0} 0 { VN Ao < 1}) + P (VN Al > 1)

<P ({_‘/NBn <—a+t}N{VNB, <b+ t}) + Ct 'V Nn=*2D, logh?**1q

<vs{y eRY: —y < —a+t,y <b+t})+Co, + Ct 'WNn*2D, logh/*1 d
< y5(R) + Ct\/logd + Ceo, + Ct~'VNn~*/2D,, 1ogh/>+1 d,

where the last inequality follows from Nazarov’s inequality ([12], Lemma A.1l). Choosing t =
(Nn=*D2 logh*1 d)1/4, we conclude that

1/4
, ND2logh*3d / .
P(VNU,y € R) <p(R)+C | —F—— ] +C%n.

Likewise, we have the reverse inequality and the conclusion of Theorem 3.3 for the sampling with

replacement case follows. ]

A.3. Proofs of Theorems 4.1 and 4.2. As before, we will assume that § = P"h = 0. Throughout
this section, the notation < signifies that the left hand side is bounded by the right hand side up
to a constant that depends only on o,r, and Cj. Let C denote a generic constant that depends
only on ¢,r, and Cy; its value may change from place to place. Recall that Y4 ~ N(0,7°T,) = v4
and Yp ~ N(0,T',) = 7B, and Y4 and Yp are independent. Define

PP, (Uh o Ya) = sup |Pip, (Uf, € R) ~B(Y € R)|, % = A4, B.
RER

Proof of Theorem 4.1. Bernoulli sampling case. Conditionally on D,,, the vector Ufz, g 1s Gaussian

with mean zero and covariance matrix

;v S Zh(X) — Uy HR(X,) — ULy

Leln,'r

On the other hand, Yp ~ N(0,I';) and mini¢;<q Prhjz > ¢2. Hence, the Gaussian comparison
inequality (Lemma A.4) yields that

P, (Ul 5 Ye) S (Bplog®d)'?, (22)
where Ap is defined by

Ap = N7 e, ZAR(X) = Uy yHI(X) = Uy p 3T =T
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Observe that
g <IN/N|- (|NT'Soe, (20— pR(XOR(X)T| +[Ph = Tiloo)
+|N/N = 1]+ |Thloo + 1U;, v1%
—: |N/N|(Ap1 +Aps) + Aps + Apy,

where T, = |1, | ™ e p,  R(X)R(X,)T.

From Step 5 in the proof of Theorem 3.3, ]]/\7/]\7 — 1] < C(N"21og?2n + N~1logn) <
CN-1/2 logl/zn < Cn~%/? with probability at least 1 — 2n~!. Choose the smallest ng such that
Cn=¢/2 < 1/2 for all n > ng. Clearly, ng depends only on ¢,C}, and (, and since for n < ng,
the conclusion of the theorem is trivial by taking the constant C' in (11) sufficiently large (the
constant C' in (11) can be taken independent of (), we may assume in what follows that n > ny.
Then, [N/N — 1| < CN~210g"/? n, < 1/2 with probability at least 1 — 2n!, and hence using the
inequality |71 — 1] < 2|z — 1| for |z — 1] < 1/2, we have that \N/N -1/ < CN 1210712 n w1th
probability at least 1 — 2n~!. In particular, |N/ N | < C with probability at least 1 — 2n~". In
< D,,, we have that

~

addition, since |I'j |00
Apslog?d < CD,N~?(log"? d)log? d < Cn~=¢/% < Cn=3¢/8

with probability at least 1 — 2n~!
For A B,2, Hoeffding’s averaging (cf. [36], Section 5.1.6) together with the computation in Step
1.5 in the proof of Theorem 3.1 yield that

where m = |n/r|. For A B,1, Lemma 8 in [11] (applied conditionally on X7') yields that

Z{h (i—-1 r+1)hﬁ(X€:—1)r+1) - Prhjhé}

E[Aps] <E [ max
’ 1™

<n V2D, 1og"? d + n" D2 log®(dn),

SINA < 1 2
Eixp[NAp1] S \/N(logd) max T | ; h3(X,)h3 (X)+Lrga>§ lnggdh (X,)logd,

and E[max,cy, , maxi<j<d hjz(XL)} < D?log?(dn). In addition, Hoeffding’s averaging together with
Lemma 9 in [11] yield that

2 2 2(
E lgﬁﬁdunr‘ ' Z hi(X)hi(X,)| <E llg]lfﬁdm 1Zh X(z L)r+1 Vi (X (z 1)r+1)]
LEIn,T

S 1g;ae§dm 2 E[R (X{_ 1y )P (X (1)) +mTE L@ﬁﬁ max, hG (X(i 1>r+1)] logd
< D +n”' Dy log®(dn),
so that by Fubini,
E[Ap,1] < N"Y2{D,log"? d+n~"2D?log?(dn)} + N~'D2 log®(dn)

<N7V2D,log 2 d + (n A N)~1D2log?(dn).
39



Hence,
(IE[ABJ + 3372]) logZd < (n AN)"Y2D, log”? d + (n A N)"1D? log® (dn) < n=¢/?
by Condition (9), so that by Markov’s inequality,
(3371 + 3372) log?d < n—3¢/8

with probability at least 1 — Cn=¢/8.
Finally, for A B4, observe that

Apa = [N/NPIWa[3, < 2N/NP(|Anl3 + |Bnl),

where A, = U, = |I,, | 7! >er,, MX,) and By, = | L7t >oieln, Py 1 (Z,—pn)h(X,). Conditionally
on X7, the Hoffmann-Jgrgensen inequality yields that

E xp[|Bnl3]) <

~

2
(Ejxp[|Baloc])? + N~ max 1I£lja<xdh (X.),

and Lemma 8 in [11] yields that

Exn[[Bnlo] £ \/N (logd) Inax |Inr| 1 Z h2 ,) + N~'(log d) max max |h;(X,)|.

Lel 1<j<d
LEIn T SIS

Hence,

2 2 2
E‘X{L[|Bn|00] < N~ (logd) 1mjax I, o ; hi( 2(log d)? Lréllzi)i 1I£1ja<xdhj( L),
LtCin,r
and E[max,cy, , maxi<j<d hjz(XL)} < D?log?(dn). In addition, Hoeffding’s averaging together with

Lemma 9 in [11] yield that

Iy hi(X,)| <E I ¢
B | el 3 75 i YK e
m
2 -1
S gggdm 2 1E[h JX ) +mTE Lfg@; lrgfgdhg( (i- 1>r+1)] logd

< Do +n7 ' D} log® (dn),
so that by Fubini,
E[|Bn)%] < N7'D,logd 4 (nN) "' D2 log*(dn) + N~2D2 log*(dn).

Next, applying Hoeffding’s averaging and Jensen’s inequality, we have

m 2

m! Z hj(Xg—1)r+1)

=1

2
E[[An]5] < E [max,

which is bounded from above by

-1 2 X7 < 112 2
n~(logd)E Lril]az(dhj( 1)] SnoD;logod
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by Theorem 2.14.1 in [39]. Hence,
(E[|An|%: + |Bul2]) log?d < ntD21log?d + N71D, log3 d
+ (nN)"'D2 logb(dn) + N~2D2 logb(dn) <n=¢ < n~%/2,
and by Markov’s inequality,
(| Anf3 + [Bal3) log?d < n™%/®

with probability at least 1 — Cn=¢/8,
In conclusion, we have that A plog?d < Cn=3/% with probability at least 1 — Cn~%/8, and in
view of (22), this leads to the desired conclusion.

Sampling with replacement case. Conditionally on D, the vector Ufb p is Gaussian with mean

zero and covariance matrix
| N
N > AWK = U nHAXS) = Un w}
j=1
In view of the previous proof, it suffices to prove that A 5 log? < Cn3¢/8 with probability at least
1 — Cn~¢/8, where Ap is now defined by
N — N * *
Bp = [N B = U HR(X) = U 6} =T
To this end, by Markov’s inequality, it suffices to prove that E[ﬁ Bllog?d < n=¢/2. Observe that
Bp < [N A )R(X)T = o]+ 10 = Tuloo + U vk
=: 3B,l + 3B,Q + 3B,3-

We have shown that E[BB’Q] < n 2D, log"? d + n' D2 log®(dn) and so E[ABQ] log?d < n=¢/2,
In addition, Aps < 2(|An|%, + [Ba|%) where A, = U, and B, = N"' 3 {h(X}) — Un}. We
have shown that E[|A,|%] < n~'D2log?d. Next, since h(X;),j =1,...,N are iid. with mean
Uy, conditionally on X7', by the Hoffmann-Jorgensen inequality and Lemma 8 in [11], we have

E\X{L[‘Bnm S (E|Xf[|Bn‘ooD2 +N7? Lrélﬁlxr lrg]agxd h?(XL), and

Exn[[Bnleo] < \/Nl(logd) 1121?<Xd|1n7r|*1 Z h?(XL) + N~!(logd) max max |hj(X,)|.

ey L€lnr 1<j<d
Hence, using the calculations in the previous proof, we have
E[|B,|%] < N7'D,logd + (nN)~*D2 log*(dn) + N ~2D? log*(dn),

and hence E[AB,g] log?d < n~¢/2. Finally, by Lemma 8 in [11], we have

E|X{1[33,1] < \/N—l(logd) 1?;-%);1’["”"‘_1 Z h?(XL)hi(XL) + N7 max max h?(X,)logd,

€l 1<i<d 7
Leln,'r T J

and by the calculations in the previous proof, we have
E[Ap1] S NY2D,log?d+ (n A N)"1D2 log®(dn).

Hence, IE[ABJ] log?d < n~¢/2. This completes the proof. O
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Proof of Theorem 4.2. The proof is divided into three steps.
Step 1: Bounding p?%”(U ; =, Yp). Since Condition (C3-ND) implies Condition (C3-D), and

n

n1 < n by definition, by Theorem 4.1, we have that
ol (UL 5. Yp) < On¢/8

with probability at least 1 — Cn=¢/8.
Step 2: Bounding p,%”(U ¢ 4, Ya). In this step, we shall show that

n

P (UF 4, Ya) < =</

with probability at least 1 — C'n=¢/8,
Without loss of generality, we may assume S; = {1,...,n;}. Conditionally on D, the vector

UE 4 is Gaussian with mean zero and covariance matrix
P2
2 ™) - g (X)) — g}

111

On the other hand, Y4 ~ N(O,Tzfg) and min;¢j<q ngz > ¢2. Hence, the Gaussian comparison
inequality (Lemma A.4) yields that

P|D (UnA’YA) (AAIOg d)1/3
where

n1
~ -1 ~(11) ‘ (1) o '
AA—lgﬁéd Ny ;:1{9]- (X)) — 919, (Xi,) — Ge} — Pgjgel -
1=

Observe that for every 1 < j,¢ < d,

nit S G (X)) - g HE Y (X)) - g

i1=1
=1 o Z A(“ Z1 gé (Xll) - gjé@
i1=1
. Z{ 3 gj(Xz‘l)}{ﬁéil)(Xn) — 90(Xi)}
i1=1
ni ) "1 )
nrt Y G () - g5(Xa)hae(Xa) +npt S (G0 (X)) — ge(Xiy) i (X))
i1=1 i1=1

+ny O Z g] i1 gf 11) fljfle,
i1=1
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so that by the Cauchy-Schwarz inequality,

X 1 i 2 1/2 -1
A < max ny Z{gj1 9; (X)) +2A5] max ny Zg]
i1=1 i1=1
=Aan
v 12
+max iny " {g5(Xi)ge(Xi,) — Pgjge} + max 1951°

i1=1

For the notational convenience, define

ny 'Y {95 (Xi)ge(Xi,) — Pyjge}|

11=1

AA 9 := max
1<],£<d

Then, since nllzzl 19J(X ) < Pg]2 + |n1_1 Z“ 1{9]( ) - Pg?}\ < 53 + AAQ, and §; =
1121‘1:1{ j“( ) = 95(X; )}+"1 Zzl 19;(Xi,), so that

ny Zgj i)

11=1

max |g;]? §£A71+£31’3, with AAg = max

1<j<d 1<5<d ’

we have
As < Egﬁiﬁ +Aur+Ag+ AL,
where we have used the mequahty 2ab < a® + b? for a,b € R.
Now, by assumption, agA / log d < Cn=3¢/8 with probability at least 1 — Cn=¢/8. For 3,472,
Lemma 8 in [11] yields that

~ < -1 -1 40y,
E[A4p] Sny, | (logd) max ZE% )97 (Xiy)] +ny \/E Lé?i}%l gggdg](Xu) logd 23)

1_1/ Dy log'? d 4+ n7'D? log®(dn).

For 3?473, the Hoffmann-Jgrgensen inequality [39, Proposition A.1.6] yields that

E[A% 3] S (E[Aaa])* + 71 E [ max max gf(Xn)] S (B[Aas))* +ny*D; log(dn),

1<ip<ng 1<j<d

where Lemma 8 in [11] yields that

n
E[A43] Snit, | (logd) max E[ 2(Xiy)] —|—n1_1\/E [ max max g; 2(X;,)| logd

1<j<d 1<ii<ng 1<j<d

< nflpﬁg log"?d + nlen log?(dn).
Hence, using 53 < 1+ max; Plgj|? < Dy, we have
E[A? 5] < ny'Dylogd + ny2D? log*(dn). (24)
Combining (23) and (24), and using Condition (10), we conclude that

(A2 + A2 5] log?d S ) /2D, log??(dn) < n=/?,
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so that by Markov’s inequality, (3,472 + 3124,?) log? d < C'n~3¢/8 with probability at least 1—Cn=¢/8,
which leads to the conclusion of this step.

Step 3: Conclusion. Let E = {§;, 141 € S1} and 2 = {{ : v € I, ,}. Recall that =, &/, and D,
are mutually independent. Suppose that

pl%" (Uf“A’ Ya) \/ pr%n(UfL,B7 Vi) < Cn~%/3,
which holds with probability at least 1 - Cn~¢/%. Pick any hyperrectangle R € R. Observe that

Pip, (U € R) =Epp, [P(p, 5 (Ul € 05 2R — 07207 ]

The conditional probability on the right hand side is bounded from above by ~vg([an 2R —
oz;l/zUi D) + Cn=¢/® and hence

Pip, (U € B) < Eip, |15 ([on /R = a7 2Uf 1) | + Cn=</®
=Pp, (YB € [ 2R — a;1/2U£7A]> +COn~¢/8 = Pip, (UE’A €R—- %11/2}“/3]) + Cn~¢/8,

where Y ~ N(0, (1 — p,)T';) independent of D,, and Z. The first term on the far right hand side

can be written as Ejp, [IP’KD” Y/B)(Uﬁ, 4 €[R— o 2}va])], and the inner conditional probability is

bounded from above by y4([R — a}/szg]) + Cn~¢/8. Hence,
Ppp, (UL € R) <Epp, [VA = a}/%])] +Cn~/8 =P(Y € R) + Cn~/®,

Likewise, we have IP’|Dn(U£ €R)>P(Y € R)—Cn~¢/8,
Finally, the last statement of the theorem is trivial since the bootstrap distribution is taken only
with respect to {&, : 41 € Si} and {& : ¢ € I, ,}. This completes the proof. O

Proof of Corollary 4.3. This follows from Step 2 in the proof of Theorem 4.2. O

A.4. Proofs of Proposition 4.4 and 4.5. For the notational convenience, let H = maxi<;<q |h;]|.
For each fixed x € S, denote by 0,k the function of (r—1) variables, (0,h)(z2, ..., x,) = h(z,x9,..., ;).

Proof of Proposition 4.4. In this proof, the notation < signifies that the left hand side is bounded
by the right hand side up to a constant that depends only on r and ¢. For each iy € S and
k=1,...,K, let

gk (z) = 7o Z (6:h)(Xiy, .., X5,),
"’ iz,...,irESéf}c)
i< <ip
which is the U-statistic with kernel §,h for the sample {X; : i € Séi,?}. Recall that the size of each

block Séi}ﬁ) is L, |S§1,1€)| = L. Then, (") (x) is the average of g% (z),k=1,... K,

. 1 &
) = e 20" ),
k=1
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For each 7; € 51, since the blocks Sél}f), k=1,..., K are disjoint and do not contain ¢;, the vectors
gk (X;),k=1,..., K are independent with mean g(X;,) conditionally on X;,. Hence, applying
first the Hoffmann-Jgrgensen inequality [39, Proposition A.1.6] conditionally on Xj,, we have

2
E|Xi1 [{gf?d } ]

< (Ean [g%d 9 (X,) - gi(Xs,)

Further, applying Lemma 8 in [11] conditionally on X;, , we have

|

2
<K, (logd) maxZEm” {0 - )}

1<j<d

3 (X0,) - g;(Xa)

2
-2 R (v v V2
D F KR Lg}%ﬂrg?gd! (X2,) — g5(X)|

Eix, Lrgfé(d ‘/9}('”)(&1) — 95(Xa)

_ k
VK vmxn el 06,) = %) 7] o

From the variance formula for U-statistics (cf. [28], Theorem 3), we have

—17—1
/\(’le) . _ . . 2 L T_]. L_T+1 r—1 2
Eix,, [{g] (Xi) g](Xu)} ] < (r_ 1) ;( . )(r_ L )P, hy)

S LTPT (6, hy)?
It remains to bound

(k) x Y 0 (X )2
B, |, e 9 () - 5 (X 25)

Observe that the term (25) is bounded from above by

K 1/q
i1,k
(ZEXil |:1I£l]a<Xd |g]( ' )(Xu) - gj(Xi1)|2q:|> :
k=1

Applying Hoeffiding’s averaging and Theorem 2.14.1 in [39], we have

B, | ™ (X0) = 05060 P1] L0 0P o, P,

1<j<d

Hence, the term (25) is bounded from above by K91~ (log d)(PTfl\(SXilH\Qq)l/q up to a constant

that depends only on r and ¢. By Fubini and Jensen’s inequality, we have

2
E [{ max } ]
1<j<d

1/q
< (KL) Y(log d)E [PH\&XH Hﬂ + K210 (1og3 d)E [(P’"1|5Xil Hyzq) ]

g]('il) (Xiy) — gj (Xiy)

(KL) Ylogd)P"H? + K211~ (log® d) (P" H?9)'/4

(KL)"'D?log®d + K=Y~ D2 log® d,
45
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from which we conclude that
72E[A4 1] log* d < 72K L) D2 (log" d)(1 + K~/ 10g? d) < n ™74/,
so that by Markov’s inequality,
P (EEKAJ log4 d > n_3</4) < n—¢/8,
In view of Theorem 4.2 and Corollary 4.3, this leads to the conclusion of the proposition. O

Proof of Proposition 4.5. In this proof, the notation < signifies that the left hand side is bounded
by the right hand side up to a constant that depends only on r and C;. Observe that

g(“)(XZ ) - g(Xh) =M"! Z (ZZ’ - 1971)(6)(11 h)(Xail (L/))
Veln_1,r—1

L™ D {0x, B (X ) — 9(Xi)

L,EInfl,rfl

Conditionally on X7, the first term is the sum of centered independent random vectors, and hence

the Hoffmann-Jgrgensen inequality yields that

!/
By || Y (2= 00, WX, )
L n—1,r—1

2
S E|X” max Z (ZZ/ — 'L9n)<6)(21 h)(XO'il (L/)) + max max ’(6Xz’1 hj)(XUil (L/))IQ.

1 1<]<d el Llelnfl,rfl 1<J<d
L n—1,r—1

By Lemma 8 in [11],
]E|XIL max Z (ZZ/ - 1971,)(5)(,1 h)(Xazl (L/))

1<j<d
SIS LIEIn—l,T‘—l

LIEIn—l,'r—l

-1 )2
N \/M (log d) max [In—1,r-1] > (0, )Xo, (1)
+(logd) _ jnax  max (0, 7)) (Ko, (1))]-
Observe that

h; < ; .
Vel e 1 19554 1003, 73) (Xor, ()] < el 1952 A3 (X0l

In addition, applying the Hoeffding averaging and Lemma 9 in [11] conditionally on X;,, we have

-1 2
Fixi, |, Ml ,EIZ (0x3, 13)"(Xor, 1)
L n—1,r—1

r—1 2 —1 2
< max P 6w, )+ - log By, [L,Eg_amgr_lgggd|<6Xi1hj><xml<u>>| .
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Hence,
2

B e M7 3 (b, )y )
L n—1,r—1

< M~ *(log d) {P’“H2 +n"1(logd)E [mlax HQ(XL)] } + M~2(log d)*E [mlax H2(XL)]
LEln,r LEln

< M~ Y(logd){D?log? d + n~*D2 log®(dn)} + M~2D2 log"(dn).

On the other hand, applying Hoeffding averaging and Theorem 2.14.1 in [39] conditionally on
X;,, we have

Eix,, ||max [T, D {0x,h) (X, ) — 9(Xi)}

i1 1<j<d S
< -1 r—1 2
< nHlogd) P Y ox, HI.

The expectation of the left hand side is bounded by < n~!(logd)P"H? <n~1D?2 log® d.

Therefore, using Condition (15), we conclude that
T2E[A 4] log?d <52 {M D2 log" d + (nM)~ D2 log®(dn) + M~2D? log®(dn) + n~'D2 log’ d}
< T8,

In view of Theorem 4.2 and Corollary 4.3, this leads to the conclusion of the proposition. O

A.5. Proofs for Section 6.

Proof of Lemma 6.1. Recall the notation used in the proofs of Theorems 4.1 and 4.2. Then we have
max|<j<d “/7\,24,3‘ — U%J\ < 1r2A 4 and mMax|<j<d \EQBJ — a%,j| < Ap. Since minj¢j<q 01247]. > 202 in
Case (i) and minjcj<q 01237 = o? in Case (ii), the conclusion of the lemma follows from the bounds

on A B and A 4 established in the proofs of Theorems 4.1 and 4.2, respectively. ]

Proof of Corollary 6.2. We only prove Case (i) since the proof for Case (ii) is analogous. As before,
we will assume that § = P"h = 0. In this proof, let C' denote a generic constant that depends only
on o,r, and C7; its value may change from place to place. In addition, without loss of generality,
we may assume that n=¢/8 < ¢; for some sufficiently small constant ¢; depending only on ¢, r and
(4, since otherwise the conclusion of Case (i) is trivial by taking C' in the bounds sufficiently large
(say, C' > 1/c1). We begin with noting that

~2 POR ~o o2 ~u ~u

% | _|Fas o4t omOp, — g )| 104, | |98y
o? B 02 + ano? = o2 |52 ’
j 4T nop; A B

so that by Lemma 6.1, we have that maxic;<q ]832/032 — 1| < Cn=3/8/log? d with probability at
least 1 — Cn~¢/8. Choosing ¢, sufficiently small so that Cn=3¢/8/log?d < 1/2, and using the
inequalities that |z — 1| <[22 — 1| for z > 0 and |27 — 1] < 2|z — 1] for |z — 1] < 1/2, we have that

/G — 1] < Cn3%/8/log?d
ggfgd!ffg/aj | < Cn*/%/log
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with probability at least 1 — Cn~¢/8. Now, by Theorem 3.1, we have

sup |P(y/nA~V2U7, € R) —P(A™V/?Y € R)‘ < On~/8,
RER

Since A~Y2Y is Gaussian with mean zero and covariance matrix whose diagonal elements are 1,
by the Borell-Sudakov-Tsirel’son inequality together with the bound E[|[A~1/2Y|,] < Cv/logd, we

have P(!A‘1/2Y|oo > C\/log (dn)) < 2n~!. Hence, IP’(|\/EA_1/2U7’%N]OO > Cy/log(dn)) < Cn~=¢/8.
—3¢/8 /

1o 2d log(dn) 1 3/2d7

P(IVn(A™Y? = AU} yloo > t) < On /%,
where t,, C’n_C/g/log?’/2
Now, for R = H aj,bjl,a = (ay,...,aq)T, and b= (by,...,bs)T, we have
P(vnA~Y2U), \ € R) < P({—vnA™V2U] v < —a+t,} N {V/nA™V2UL y <b+t,})
+P(Vr(A? = AU yloo > tn)
SP{—AY?Y < —a+t,}N{ATV2Y <b+1t,}) + Cn~¢/8

<P(A™Y2Y € R) + Ct,\/logd + Cn~%/8,

Since Z we have

where the last inequality follows from Nazarov’s inequality. Since t,\/logd < Cn~¢/ 8/logd <
Cn=¢/8, we conclude that IP’(\/H_/A\_I/QU,,’%N € R) < P(A"Y2Y € R) + Cn~¢/%. Likewise, we have
P(\/ﬁx_l/QU{LN € R) > P(A~'/2Y € R) — Cn~¢/®. Hence we have shown that

sup |P(vnA~V2U} v € R) —P(A™Y/?Y € R)| < On~¢/%.
ReR

Similarly, using Theorem 4.2, we have that
P, (A2 = A7) Ul oo > t) < Cn=¢/®
with probability at least 1 — Cn~¢. Following arguments similar to those above, we conclude that

sup |Pp, (A"V/2Uf € R) — P(A™Y?Y € R)| < Cn~¢/®
ReR

with probability at least 1 — Cn~¢/8. This completes the proof. O

APPENDIX B. ADDITIONAL SIMULATION RESULTS

In this section, we provide additional results of the partial bootstrap Uﬁ 4 for the non-degenerate
Spearman’s p statistic. As in Section 5, we test the performance of MB-NDG-DC and MB-NDG-
RS. The computational budget parameter value is set as N = 4n3/2 and other parameter values

3/2 in N is chosen

remain the same as the simulation examples in Section 5. The exponent of n
by minimizing the error bound in the Gaussian approximation (cf. Corollary 3.2). We empirically
observe that the bootstrap approximation is sensitive to small constant values in N = Cn%/? and

we find that C' > 4 can produce reasonably accurate bootstrap approximation quality (cf. Figure

5 and 6).
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FiGURE 5. Bootstrap approximation UEA for Spearman’s p test statistic with the
divide and conquer estimation (MB-NDG-DC). Plot of the nominal size « versus
the empirical rejection probability R(a).

Fitting a linear model with the (log-)running time for the bootstrap methods as the response vari-
able and the (log-)sample size as the covariate (with the intercept term), we find that the slope coef-
ficient for p = (30, 50, 100) is (1.830, 1.829, 1.810) in the case MB-NDG-DC, and (1.955,1.961, 1.950)
in the case MB-NDG-RS. In either case, the slope coefficient again matches very well to the theoretic
value 2.
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