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JACKKNIFE MULTIPLIER BOOTSTRAP: FINITE SAMPLE

APPROXIMATIONS TO THE U-PROCESS SUPREMUM WITH

APPLICATIONS

XIAOHUI CHEN AND KENGO KATO

Abstract. This paper is concerned with finite sample approximations to the supremum of a non-

degenerate U -process of a general order indexed by a function class. We are primarily interested

in situations where the function class as well as the underlying distribution change with the

sample size, and the U -process itself is not weakly convergent as a process. Such situations

arise in a variety of modern statistical problems. We first consider Gaussian approximations,

namely, approximate the U -process supremum by the supremum of a Gaussian process, and

derive coupling and Kolmogorov distance bounds. Such Gaussian approximations are, however,

not often directly usable in statistical problems since the covariance function of the approximating

Gaussian process is unknown. This motivates us to study bootstrap-type approximations to the

U -process supremum. We propose a novel jackknife multiplier bootstrap (JMB) tailored to the

U -process, and derive coupling and Kolmogorov distance bounds for the proposed JMB method.

All these results are non-asymptotic, and established under fairly general conditions on function

classes and underlying distributions. Key technical tools in the proofs are new local maximal

inequalities for U -processes, which may be useful in other contexts. We also discuss applications

of the general approximation results to testing for qualitative features of nonparametric functions

based on generalized local U -processes.

1. Introduction

This paper is concerned with finite sample approximations to the supremum of a U -process of a

general order indexed by a function class. We begin with describing our setting. Let X1, . . . , Xn

be independent and identically distributed (i.i.d.) random variables defined on a probability

space (Ω,A,P) and taking values in a measurable space (S,S) with common distribution P . For

a given integer r > 2, let H be a class of jointly measurable functions (kernels) h : Sr → R
equipped with a measurable envelope H (i.e., H is a non-negative function on Sr such that
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2 X. CHEN AND K. KATO

H > suph∈H |h|). Consider the associated U -process

Un(h) := U (r)
n (h) :=

1

|In,r|
∑

(i1,...,ir)∈In,r

h(Xi1 , . . . , Xir), h ∈ H, (1)

where In,r = {(i1, . . . , ir) : 1 6 i1, . . . , ir 6 n, ij 6= ik for j 6= k} and |In,r| = n!/(n − r)! denotes

the cardinality of In,r. Without loss of generality, we may assume that each h ∈ H is symmetric,

i.e., h(x1, . . . , xr) = h(xi1 , . . . , xir) for every permutation i1, . . . , ir of 1, . . . , r, and the envelope

H is symmetric as well. Consider the normalized U -process

Un(h) =
√
n{Un(h)− E[Un(h)]}, h ∈ H. (2)

The main focus of this paper is to derive finite sample approximation results for the supremum

of the normalized U -process, namely, Zn := suph∈HUn(h)/r, in the case where the U -process is

non-degenerate, i.e., Var(E[h(X1, . . . , Xr) | X1]) > 0 for all h ∈ H. The function classH is allowed

to depend on n, i.e., H = Hn, and we are primarily interested in situations where the normalized

U -process Un is not weakly convergent as a process (beyond finite dimensional convergence). For

example, there are situations where Hn depends on n, but Hn is further indexed by a parameter

set Θ independent of n. In such cases, one can think of Un as a U -process indexed by Θ and can

consider weak convergence of the U -process in the space of bounded functions on Θ, i.e., `∞(Θ).

However, even in such cases, there are a variety of statistical problems where the U -process is

not weakly convergent in `∞(Θ), even after a proper normalization. The present paper covers

such “difficult” (and in fact yet more general) problems.

A U -process is a collection of U -statistics indexed by a family of kernels. U -processes are

powerful tools for a broad range of statistical applications such as testing for qualitative features

of functions in nonparametric statistics [33, 22, 1], cross-validation for density estimation [38],

and establishing limiting distributions of M -estimators [see, e.g., 3, 45, 46, 16]. There are two

perspectives on U -processes: 1) they are infinite-dimensional versions of U -statistics (with one

kernel); 2) they are stochastic processes that are nonlinear generalizations of empirical processes.

Both views are useful in that: 1) statistically, it is of greater interest to consider a rich class

of statistics rather than a single statistic; 2) mathematically, we can borrow the insights from

theory of empirical processes to derive limit or approximation theorems for U -processes. Impor-

tantly, however, 1) extending U -statistics to U -processes requires substantial efforts and different

techniques; and 2) generalization from empirical processes to U -processes is highly nontrivial

especially when U -processes are not weakly convergent as processes. In classical settings where

indexing function classes are fixed (i.e., independent of n), it is known that Uniform Central

Limit Theorems (UCLTs) in the Hoffmann-Jørgensen sense hold for U -processes under metric

(or bracketing) entropy conditions, where U -processes are weakly convergent in spaces of bounded

functions [39, 3, 7, 16] (these references also cover degenerate U -processes where limiting pro-

cesses are Gaussian chaoses rather than Gaussian processes). Under such classical settings, [4, 52]
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study limit theorems for bootstraps for U -processes; see also [5, 8, 2, 29, 28, 30, 50] as references

on bootstraps for U -statistics. [23] introduce a notion of the local U -process, motivated by a den-

sity estimator of a function of several sample variables proposed by [21], and establish a version

of UCLTs for local U -processes. More recently, [10] studies Gaussian and bootstrap approxima-

tions for high-dimensional (order-two) U -statistics, which can be viewed as U -processes indexed

by finite function classes Hn with increasing cardinality in n. To the best of our knowledge,

however, no existing work covers the case where the indexing function class H = Hn 1) may

change with n; 2) may have infinite cardinality for each n; and 3) need not verify UCLTs. This

is indeed the situation for many of nonparametric specification testing problems [33, 22, 1]; see

examples in Section 4 for details.

In this paper, we develop a general non-asymptotic theory for directly approximating the

supremum Zn without referring a weak limit of the underlying U -process {Un(h) : h ∈ H}.
Specifically, we first establish a general Gaussian coupling result to approximate Zn by the

supremum of a Gaussian process WP in Section 2. Our Gaussian approximation result builds

upon recent development in modern empirical process theory [13, 12, 14] and high-dimensional U -

statistics [10]. As a significant departure from the existing literature [23, 3, 13, 14], our Gaussian

approximation for U -processes has a multi-resolution nature, which neither parallelizes the theory

of U -processes with fixed function classes nor that of empirical processes. In particular, unlike

the U -processes with fixed function classes, the higher-order degenerate terms are not necessarily

negligible compared with the Hájek projection (empirical) process (in the sense of the Hoeffding

projections [27]) and they may impact error bounds of the Gaussian approximation.

However, the covariance function of the Gaussian process WP depends on the underlying

distribution P which is unknown, and hence the Gaussian approximation developed in Section

2 is not directly applicable to statistical problems such as computing critical values of a test

statistic defined by the supremum of a U -process. On the other hand, the (Gaussian) multiplier

bootstrap developed in [12, 14] for empirical processes is not directly applicable to U -processes

since the Hájek projection process also depends on P and hence it is unknown. Our second main

contribution is to provide a fully data-dependent procedure for approximating the distribution of

Zn. Specifically, we propose a novel jackknife multiplier bootstrap (JMB) properly tailored to U -

processes in Section 3. The key insight of the JMB is to replace the (unobserved) Hájek projection

process associated with Un by its jackknife estimate [cf. 9]. We establish finite sample validity of

the JMB (i.e., conditional multiplier CLT) with explicit error bounds. As a distinguished feature,

our error bounds involve a delicate interplay among all levels of the Hoeffding projections. In

particular, the key innovations are a collection of new powerful local maximal inequalities for

level-dependent degenerate components associated with the U -process (see Section 5). To the

best of our knowledge, there has been no theoretical guarantee on bootstrap consistency for U -

processes whose function classes change with n and which do not converge weakly as processes.
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Our finite sample bootstrap validity results with explicit error bounds fill this important gap in

literature, although we only focus on the supremum functional.

It should be emphasized that our approximation problem is different from the problem of

approximating the whole U -process {Un(h) : h ∈ H}. In testing monotonicity of nonparametric

regression functions, [22] consider a test statistic defined by the supremum of a bounded U -process

of order-two and derive a Gaussian approximation result for the normalized U -process. Their idea

is a two-step approximation procedure: first approximate the U -process by its Hájek projection

process and then apply Rio’s coupling result [42], which is a Komlós-Major-Tusnády (KMT) [32]

type strong approximation for empirical processes indexed by Vapnik-Červonenkis type classes

of functions from an m-dimensional hyper-cube [0, 1]m to [−1, 1] with bounded variations. See

also [36, 31] for extensions of the KMT construction to other function classes. It is worth

noting that the two-step approximation of U -processes based on KMT type approximations in

general requires more restrictive conditions on the function class and the underlying distribution

in statistical applications (see our examples in Section 4 for more discussions). Our regularity

conditions on the function class and the underlying distribution to ensure validity of Gaussian and

bootstrap approximations are easy to verify and are less restrictive than those required for KMT

type approximations since we directly approximate the supremum of a U -process rather than the

whole U -process. In particular, both Gaussian and bootstrap approximation results obtained in

the present paper allow classes of functions with unbounded envelopes, provided suitable moment

growth conditions are satisfied.

To illustrate the general approximation results for suprema of U -processes, we consider the

problem of testing qualitative features of the conditional distribution and regression functions in

nonparametric statistics [33, 22, 1]. In Section 4, we propose a unified test statistic for specifi-

cations (such as monotonicity, linearity, convexity, concavity, etc.) of nonparametric functions

based on the generalized local U -process (the name is inspired by [23]). Instead of attempting

to establish a Gumbel type limiting distribution for the extreme-value test statistic (which is

known to have slow rates of convergence; see [26, 41]), we apply the JMB to approximate the

finite sample distribution of the proposed test statistic. Notably, the JMB is valid for a larger

spectrum of bandwidths, allows for an unbounded envelope, and the error in size of the JMB

is decreasing polynomially fast in n. It is worth noting that [33], who develop a test for the

conditional stochastic monotonicity based on the supremum of a (second-order) U -process and

derive a Gumbel limiting distribution for their test statistic under the null, state a conjecture

that a bootstrap resampling method would yield the test whose error in size is decreasing polyno-

mially fast in n [33, p.594]. The results of the present paper affirmatively answer this conjecture

for a different version of bootstrap, namely, the JMB, in a more general setting. In addition,
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our general theory can be used to develop a version of the JMB that is uniformly valid in com-

pact bandwidth sets. Such “uniform-in-bandwidth” type results allow one to consider tests with

data-dependent bandwidth selection procedures, which are not covered in [22, 33, 1].

1.1. Organization. The rest of the paper is organized as follows. In Section 2, we derive

non-asymptotic Gaussian approximation error bounds for the U -process supremum in the non-

degenerate case. In Section 3, we develop and study a jackknife multiplier bootstrap (with

Gaussian weights) tailored to the U -process to further approximate the distribution of the U -

process supremum in a data-dependent manner. In Section 4, we discuss applications of the

general results developed in Sections 2 and 3 to testing for qualitative features of nonparametric

functions based on generalized local U -processes. In Section 5, we prove new local maximal

inequalities for U -processes that are key technical tools in the proofs for the results in the previous

sections. In Section 6, we present the proofs for Sections 2–4. Appendix contains auxiliary

technical results.

1.2. Notation. For a non-empty set T , let `∞(T ) denote the Banach space of bounded real-

valued functions f : T → R equipped with the sup-norm ‖f‖T := supt∈T |f(t)|. For a pseudo-

metric space (T, d), let N(T, d, ε) denote the ε-covering number for (T, d) where ε > 0. See [48,

Section 2.1] for details. For a probability space (T, T , Q) and a measurable function f : T → R,

we use the notation Qf :=
∫
fdQ, whenever the integral is well-defined. For q ∈ [1,∞], let

‖ · ‖Q,q denote the Lq(Q)-seminorm, i.e., ‖f‖Q,q := (Q|f |q)1/q := (
∫
|f |qdQ)1/q for finite q while

‖f‖Q,∞ denotes the essential supremum of |f | with respect to Q. For a measurable space (S,S)

and a positive integer r, Sr = S × · · · × S (r times) denotes the product space equipped with

the product σ-field Sr. For a generic random variable Y (not necessarily real-valued), let L(Y )

denote the law (distribution) of Y . For a, b ∈ R, let a ∨ b = max{a, b} and a ∧ b = min{a, b}.
Let bac denote the integer part of a ∈ R. “Constants” refer to finite, positive, and non-random

numbers.

2. Gaussian approximation for suprema of U-processes

In this section, we derive non-asymptotic Gaussian approximation error bounds for the U -

process supremum in the non-degenerate case, which is essential for establishing the bootstrap

validity in Section 3. The goal is to approximate the supremum of the normalized U -process,

suph∈HUn(h)/r, by the supremum of a suitable Gaussian process, and derive bounds on such

approximations.

We first recall the setting. Let X1, . . . , Xn be i.i.d. random variables defined on a probability

space (Ω,A,P) and taking values in a measurable space (S,S) with common distribution P . For

a technical reason, we assume that S is a separable metric space and S is its Borel σ-field. For

a given integer r > 2, let H be a class of symmetric measurable functions h : Sr → R equipped
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with a symmetric measurable envelope H. For our purpose, it is without loss of generality

to assume that each h ∈ H is P r-centered, i.e., P rh = E[h(X1, . . . , Xr)] = 0. Recall the U -

process Un(h), h ∈ H defined in (1) and its normalized version Un(h), h ∈ H defined in (2). In

applications, the function class H may depend on n, i.e., H = Hn. However, in Sections 2 and 3,

we will derive non-asymptotic results that are valid for each sample size n, and therefore suppress

the possible dependence of H = Hn on n for the notational convenience.

We will use the following notation. For a symmetric measurable function h : Sr → R and

k = 1, . . . , r, let P r−kh denote the function on Sk defined by

(P r−kh)(x) = E[h(x1, . . . , xk, Xk+1, . . . , Xr)]

=

∫
· · ·
∫
h(x1, . . . , xk, xk+1, . . . , xr)dP (xk+1) · · · dP (xr),

whenever the latter integral exists and is finite for every (x1, . . . , xk) ∈ Sk. Provided that P r−kh

is well-defined, P r−kh is symmetric and measurable.

In this paper, we focus on the case where the function class H is VC (Vapnik-Červonenkis)

type, whose formal definition is stated as follows.

Definition 2.1 (VC type class). A function class H on Sr with envelope H is said to be VC

type with characteristics A, v if supQN(H, ‖ · ‖Q,2, ε‖H‖Q,2) 6 (A/ε)v for all 0 < ε 6 1, where

supQ is taken over all finitely discrete distributions on Sr.

We make the following assumptions on the function class H and the distribution P .

(PM) The function class H is pointwise measurable, i.e., there exists a countable subset H′ ⊂ H
such that for every h ∈ H, there exists a sequence hk ∈ H′ with hk → h pointwise.

(VC) The function class H is VC type with characteristics A > (e2(r−1)/16) ∨ e and v > 1 for

envelope H. The envelope H satisfies that H ∈ Lq(P r) for some q ∈ [4,∞] and P r−kH

is everywhere finite for every k = 1, . . . , r.

(MT) Let G := P r−1H := {P r−1h : h ∈ H} and G := P r−1H. There exist (finite) constants

bh > bg ∨ σh > bg ∧ σh > σg > σg > 0

such that the following hold:

‖G‖P,q 6 bg, sup
g∈G
‖g‖`P,` 6 σ2

gb
`−2
g , ` = 2, 3, 4, inf

g∈G
‖g‖P,2 > σg,

‖P r−2H‖P 2,q 6 bh, and sup
h∈H
‖P r−2h‖`P 2,` 6 σ

2
hb
`−2
h , ` = 2, 4,

where q appears in Condition (VC).

Some comments on the conditions are in order. Condition (PM) is made to avoid measura-

bility complications. Condition (PM) ensures that, e.g., suph∈HUn(h) = suph∈H′ Un(h), so that

suph∈HUn(h) is a (proper) random variable. See [48, Section 2.2] for details.
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Condition (VC) ensures that G is VC type as well with characteristics 4
√
A and 2v for envelope

G = P r−1H; see Lemma 5.4 ahead. Since G ∈ L2(P ) by Condition (VC), it is seen from Dudley’s

criterion on sample continuity of Gaussian processes (see, e.g., [25, Theorem 2.3.7]) that the

function class G is P -pre-Gaussian, i.e., there exists a tight Gaussian random variable WP in

`∞(G) with mean zero and covariance function

E[WP (g)WP (g′)] = P (gg′), g, g′ ∈ G.

Recall that a Gaussian process W = {W (g) : g ∈ G} is a tight Gaussian random variable in

`∞(G) if and only if G is totally bounded for the intrinsic pseudo-metric dW (g, g′) = (E[(W (g)−
W (g′))2])1/2, g, g′ ∈ G, and W has sample paths almost surely uniformly dW -continuous [48,

Section 1.5]. In applications, G may depend on n, and so the Gaussian process WP (and its

distribution) may depend on n as well, although such dependences are suppressed in Sections 2

and 3. The VC type assumption made in Condition (VC) covers many statistical applications.

However, it is worth noting that in principle, we can derive corresponding results for Gaussian

and bootstrap approximations under more general complexity assumptions on the function class,

but the resulting bounds would be more complicated and may not be clear enough. For the

clarity of exposition, we focus on VC type function classes.

Condition (MT) assumes that infg∈G ‖g‖P,2 > σg > 0, which implies that the U -process is

non-degenerate. In statistical applications, the function class H is often normalized such that

each function g ∈ G has (approximately) unit variance. In such cases, we may take σg = σg = 1

or 0 < c 6 σg 6 σg 6 C for some constants 0 < c < C independent of n; see Section 4 for details.

Under these conditions on the function class H and the distribution P , we will first construct

a random variable, defined on the same probability space as X1, . . . , Xn, which is equal in distri-

bution to supg∈GWP (g) and “close” to Zn with high-probability. To ensure such constructions,

a commonly employed assumption is that the probability space is rich enough. For the sake of

clarity, we will assume in Sections 2 and 3 that the probability space (Ω,A,P) is such that

(Ω,A,P) = (Sn,Sn, Pn)× (Ξ, C, R)× ((0, 1),B(0, 1), U(0, 1)), (3)

where X1, . . . , Xn are the coordinate projections of (Sn,Sn, Pn), multiplier random variables

ξ1, . . . , ξn to be introduced in Section 3 depend only on the “second” coordinate (Ξ, C, R), and

U(0, 1) denotes the uniform distribution (Lebesgue measure) on (0, 1) (B(0, 1) denotes the Borel

σ-field on (0, 1)). The augmentation of the last coordinate is reserved to generate a U(0, 1)

random variable independent of X1, . . . , Xn and ξ1, . . . , ξn, which is needed when applying the

Strassen-Dudley theorem and its conditional version in the proofs of Proposition 2.1 and Theorem

3.1; see Appendix B for the Strassen-Dudley theorem and its conditional version. We will also

assume that the Gaussian process WP is defined on the same probability space (e.g. one can

generate WP by the previous U(0, 1) random variable), but of course supg∈GWP (g) is not what

we want, since there is no guarantee that supg∈GWP (g) is close to Zn.
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Now, we are ready to state the first result of this paper. Recall the notation given in Condition

(MT), and define

Kn = v log(A ∨ n) and χn =
r∑

k=3

n−(k−1)/2‖P r−kH‖Pk,2Kk/2
n

with the convention that
∑r

k=3 = 0 if r = 2. The following proposition derives Gaussian coupling

bounds for Zn = suph∈HUn(h)/r.

Proposition 2.1 (Gaussian coupling bounds). Let Zn = suph∈HUn(h)/r. Suppose that Condi-

tions (PM), (VC), and (MT) hold, and that K3
n 6 n. Then, for every n > r + 1 and γ ∈ (0, 1),

there exists a random variable Z̃n such that L(Z̃n) = L(supg∈GWP (g)) and

P(|Zn − Z̃n| > C$n) 6 C ′(γ + n−1),

where C,C ′ > 0 are constants depending only on r, and

$n := $n(γ) :=
(σ2

gbgK
2
n)1/3

γ1/3n1/6
+

1

γ

(
bgKn

n1/2−1/q
+
σhKn

n1/2
+

bhK
2
n

n1−1/q
+ χn

)
. (4)

In the case of q =∞, “1/q” is interpreted as 0.

In statistical applications, bounds on the Kolmogorov distance are often more useful than

coupling bounds. For two real-valued random variables V, Y , let ρ(V, Y ) denote the Kolmogorov

distance between the distributions of V and Y , i.e.,

ρ(V, Y ) := sup
t∈R
|P(V 6 t)− P(Y 6 t)|.

For the notational convenience, let Z̃ = supg∈GWP (g).

Corollary 2.2 (Bounds on the Kolmogorov distance between Zn and supg∈GWP (g)). Assume

all the conditions in Proposition 2.1. Then, there exists a constant C > 0 depending only on r, σg

and σg such that

ρ(Zn, Z̃) 6 C

{(
b2gK

7
n/n

)1/8
+
(
b2gK

3
n/n

1−2/q
)1/4

+
(
σ2
hK

3
n/n

)1/4
+
(
bhK

5/2
n /n1−1/q

)1/2
+ χ1/2

n K1/4
n

}
.

In particular, if the function class H and the distribution P are independent of n, then

ρ(Zn, Z̃) = O({(log n)7/n}1/8).

Remark 2.1 (Comparisons with Gaussian approximations to suprema of empirical processes).

Our Gaussian coupling (Proposition 2.1) and approximation (Corollary 2.2) results are level-

dependent on the Hoeffding projections of the U -process Un (cf. (16) and (17) for formal defini-

tions of the Hoeffding projections and decomposition). Specifically, we observe that: 1) σg, σg, bg
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quantify the contribution from the Hájek (empirical) process associated with Un; 2) σh, bh are

related to the second-order degenerate component associated with Un; 3) χn contains the effect

from all higher order projection terms of Un. For statistical applications in Section 4 where

the function class H = Hn changes with n, the second and higher order projections terms are

not necessarily negligible and we have to take into account the contributions of all higher order

projection terms. Hence, the Gaussian approximation for the U -process supremum of a general

order is not parallel with the approximation results for the empirical process supremum [13, 14].

3. Bootstrap approximation for suprema of U-processes

The Gaussian approximation results derived in the previous section are often not directly

applicable in statistical applications such as computing critical values of a test statistic defined

by the supremum of a U -process. This is because the covariance function of the approximating

Gaussian process WP (g), g ∈ G, is often unknown. In this section, we study a Gaussian multiplier

bootstrap, tailored to the U -process, to further approximate the distribution of the random

variable Zn = suph∈HUn(h)/r in a data-dependent manner. The Gaussian approximation results

will be used as building blocks for establishing validity of the Gaussian multiplier bootstrap.

We begin with noting that, in contrast to the empirical process case studied in [12] and [14],

devising (Gaussian) multiplier bootstraps for the U -process is not straightforward. From the

Gaussian approximation results, the distribution of Zn is well approximated by the Gaussian

supremum supg∈GWP (g). Hence, one might be tempted to approximate the distribution of

supg∈GWP (g) by the conditional distribution of the supremum of the the multiplier process

G 3 g 7→ 1√
n

n∑
i=1

ξi{g(Xi)− g}, (5)

where ξ1, . . . , ξn are i.i.d. N(0, 1) random variables independent of the data Xn
1 := {X1, . . . , Xn},

and g = n−1
∑n

i=1 g(Xi). However, a major problem of this approach is that, in statistical

applications, functions in G are unknown to us since functions in G are of the form P r−1h for

some h ∈ H and depend on the (unknown) underlying distribution P . Therefore, we must devise

a multiplier bootstrap properly tailored to the U -process.

Motivated by this fundamental challenge, we propose and study the following version of Gauss-

ian multiplier bootstrap in the present paper. Let ξ1, . . . , ξn be i.i.d. N(0, 1) random variables

independent of the data Xn
1 (these multiplier variables will be assumed to depend only on the

“second” coordinate in the probability space construction (3)). We introduce the following mul-

tiplier process:

U]n(h) =
1√
n

n∑
i=1

ξi

 1

|In−1,r−1|
∑

(i,i2,...,ir)∈In,r

h(Xi, Xi2 , . . . , Xir)− Un(h)

 , h ∈ H. (6)
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It is seen that {U]n(h) : h ∈ H} is a centered Gaussian process conditionally on the data Xn
1 , and

can be regarded as a version of the (infeasible) multiplier process (5) with each g(Xi) replaced

by a jackknife estimate. In fact, the multiplier process (5) can be alternatively represented as

H 3 h 7→ 1√
n

n∑
i=1

ξi{(P r−1h)(Xi)− P r−1h}, (7)

where P r−1h = n−1
∑n

i=1 P
r−1h(Xi). For x ∈ S, denote by δx the Dirac measure at x, and denote

by δxh the function on Sr−1 defined by (δxh)(x2, . . . , xr) = h(x, x2, . . . , xr) for (x2, . . . , xr) ∈
Sr−1. For each i = 1, . . . , n and a function f on Sr−1, let U

(r−1)
n−1,−i(f) denote the U -statistic with

kernel f for the sample without the i-th observation, i.e.,

U
(r−1)
n−1,−i(f) =

1

|In−1,r−1|
∑

(i,i2,...,ir)∈In,r

f(Xi2 , . . . , Xir).

Then the proposed multiplier process (6) can be alternatively written as

U]n(h) =
1√
n

n∑
i=1

ξi

[
U

(r−1)
n−1,−i(δXih)− Un(h)

]
,

that is, our multiplier process (6) replaces each (P r−1h)(Xi) in the infeasible multiplier process

(7) by its jackknife estimate U
(r−1)
n−1,−i(δXih).

In practice, we approximate the distribution of Zn by the conditional distribution of the supre-

mum of the multiplier process Z]n := suph∈HU]n(h) given Xn
1 , which can be further approximated

by Monte Carlo simulations on the multiplier variables.

To the best of our knowledge, our multiplier bootstrap method for U -processes is new in the

literature, at least in this generality; see Remark 3.1 for comparisons with other bootstraps for

U -processes. We call the resulting bootstrap method the jackknife multiplier bootstrap (JMB)

for U -processes.

Now, we turn to proving validity of the proposed JMB. We will first construct couplings Z]n and

Z̃]n (a real-valued random variable) such that: 1) L(Z̃]n | Xn
1 ) = L(Z̃), where L(· | Xn

1 ) denotes

the conditional law given Xn
1 (i.e., Z̃]n is independent of Xn

1 and has the same distribution as

Z̃ = supg∈GWP (g)); and at the same time 2) Z]n and Z̃]n are “close” to each other. Construction

of such couplings leads to validity of the JMB. To see this, suppose that Z]n and Z̃]n are close

to each other, namely, P(|Z]n − Z̃]n| > r1) 6 r2 for some small r1, r2 > 0. To ease the notation,

denote by P|Xn
1

and E|Xn
1

the conditional probability and expectation given Xn
1 , respectively (i.e.,

the notation P|Xn
1

corresponds to taking probability with respect to the “latter two” coordinates

in (3) while fixing Xn
1 ). Then,

P
{
P|Xn

1
(|Z]n − Z̃]n| > r1) > r

1/2
2

}
6 r1/2

2
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by Markov’s inequality, so that, on the event {P|Xn
1

(|Z]n− Z̃]n| > r1) 6 r1/2
2 } whose probability is

at least 1− r1/2
2 , for every t ∈ R,

P|Xn
1

(Z]n 6 t) 6 P|Xn
1

(Z̃]n 6 t+ r1) + r
1/2
2 = P(Z̃ 6 t+ r1) + r

1/2
2 ,

and likewise P|Xn
1

(Z]n 6 t) > P(Z̃ 6 t− r1)− r1/2
2 . Hence, on that event,

sup
t∈R

∣∣∣P|Xn
1

(Z]n 6 t)− P(Z̃ 6 t)
∣∣∣ 6 sup

t∈R
P(|Z̃ − t| 6 r1) + r

1/2
2 .

The first term on the right hand side can be bounded by using the anti-concentration inequality

for the supremum of a Gaussian process (cf. [13, Lemma A.1] which is stated in Lemma A.1

in Appendix A), and combining the Gaussian approximation results, we obtain a bound on the

Kolmogorov distance between L(Z]n | Xn
1 ) and L(Zn) on an event with probability close to one,

which leads to validity of the JMB.

The following theorem is the main result of this paper and derives bounds on such couplings.

To state the next theorem, we need the additional notation. For a symmetric measurable function

f on S2, define f�2 = f�2
P by

f�2(x1, x2) :=

∫
f(x1, x)f(x, x2)dP (x).

Let νh := ‖(P r−2H)�2‖1/2
P 2,q/2

.

Theorem 3.1 (Bootstrap coupling bounds). Let Z]n = suph∈HU]n(h). Suppose that Conditions

(PM), (VC), and (MT) hold. Furthermore, suppose that

σhK
1/2
n 6 σgn

1/2, νhKn 6 σgn
3/4−1/q, (σhbh)

1/2K3/4
n 6 σgn

3/4,

bhK
3/2
n 6 σgn

1−1/q, and χn 6 σg.
(8)

Then, for every n > r + 1 and γ ∈ (0, 1), there exists a random variable Z̃]n such that L(Z̃]n |
Xn

1 ) = L(supg∈GWP (g)) and

P(|Z]n − Z̃]n| > C$]
n) 6 C ′(γ + n−1),

where C,C ′ > 0 are constants depending only on r, and

$]
n := $]

n(γ) :=
1

γ3/2

{
{(bg ∨ σh)σgK

3/2
n }1/2

n1/4
+

bgKn

n1/2−1/q
+

(σgνh)
1/2Kn

n3/8−1/(2q)

+
σ

1/2
g (σhbh)

1/4K
7/8
n

n3/8
+

(σgbh)
1/2K

5/4
n

n1/2−1/(2q)
+ σ

1/2
g χ1/2

n K1/2
n

}
.

(9)

In the case of q =∞, “1/q” is interpreted as 0.
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It is not difficult to see that νqh 6 ‖P
r−2H‖q

P 2,q
6 bqh, but in our applications, νh � bh, and

this is why we introduced such a seemingly complicated definition for νh. To see that νh 6 bh,

observe that by the Cauchy-Schwarz and Jensen inequalities,

νqh =

∫∫ {∫
(P r−2H)(x1, x)(P r−2H)(x, x2)dP (x)

}q/2
dP (x1)dP (x2)

6

{∫∫
(P r−2H)q/2(x1, x2)dP (x1)dP (x2)

}2

6
∫∫

(P r−2H)q(x1, x2)dP (x1)dP (x2) 6 bqh.

The growth condition (8) is not serious restriction. In applications, the function class H is often

normalized in such a way that σg is of constant order, and under this normalization, the growth

condition (8) is a merely necessary condition for the coupling bound (9) to tend to zero.

The proof of Theorem 3.1 is lengthly and involved. A delicate part of the proof is to sharply

bound the sup-norm distance between the conditional covariance function of the multiplier pro-

cess U]n and the covariance function of WP , which boils down to bounding the term∥∥∥∥∥ 1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− P r−1h(Xi)}2

∥∥∥∥∥
H

.

To this end, we make use of the following observation: for a P r−1-integrable function f on

Sr−1, U
(r−1)
n−1,−i(f) is a U -statistic of order (r − 1), and denote by Sn−1,−i(f) its first Hoeffding

projection term. Conditionally on Xi, U
(r−1)
n−1,−i(δXih)−P r−1h(Xi)−Sn−1,−i(δXih) is a degenerate

U -process, and we will bound the expectation of the squared supremum of this term conditionally

on Xi using “simpler” maximal inequalities (Corollary 5.6 ahead). On the other hand, the term

n−1
∑n

i=1{Sn−1,−i(δXih)}2 is decomposed into

n−1(non-degenerate U -statistic of order 2) + (degenerate U -statistic of order 3),

where the order of degeneracy of the latter term is 1, and we will apply “sharper” local max-

imal inequalities (Corollary 5.5 ahead) to bound the suprema of both terms. Such a delicate

combination of different maximal inequalities turns out to be crucial to yield sharper regularity

conditions for validity of the JMB in our applications. In particular, if we bound the sup-norm

distance between the conditional covariance function of U]n and the covariance function of WP in

a cruder way, then this will lead to more restrictive conditions on bandwidths in our applications,

especially for the “uniform-in-bandwidth” results (cf. Condition (T5′) in Theorem 4.4).

The following corollary derives a “high-probability” bound for the Kolmogorov distance be-

tween L(Z]n | Xn
1 ) and L(Z̃) (here a high-probability bound refers to a bound holding with

probability at least 1− Cn−c for some constants C, c > 0).
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Corollary 3.2 (Validity of the JMB). Suppose that Conditions (PM), (VC), and (MT) hold and

let

ηn :=
{(bg ∨ σh)K

5/2
n }1/2

n1/4
+

bgK
3/2
n

n1/2−1/q
+

ν
1/2
h K

3/2
n

n3/8−1/(2q)

+
(σhbh)

1/4K
11/8
n

n3/8
+

b
1/2
h K

7/4
n

n1/2−1/(2q)
+ χ1/2

n Kn

with the convention that 1/q = 0 in the case of q = ∞. Then, there exist constants C,C ′

depending only on r, σg, and σg such that, with probability at least 1− Cη1/4
n ,

sup
t∈R

∣∣∣P|Xn
1

(Z]n 6 t)− P(Z̃ 6 t)
∣∣∣ 6 C ′η1/4

n .

If the function classH and the distribution P are independent of n, then η
1/4
n is of order n−1/16,

which is polynomially decreasing in n but appears to be non-sharp. Sharper bounds could be

derived by improving on γ−3/2 in front of the n−1/4 term in (9). The proof of Theorem 3.1 consists

of constructing a “high-probability” event on which, e.g., the sup-norm distance between the

conditional covariance function of U]n and the covariance function of WP is small. To construct

such a high-probability event, the current proof repeatedly relies on Markov’s inequality, which

could be replaced by more sophisticated deviation inequalities. However, this is at the cost of

more technical complications and more restrictive moment conditions.

Remark 3.1 (Connections to other bootstraps). There are several versions of bootstraps for

U -processes. The most celebrated one is the empirical bootstrap

U∗n(h) =
1

|In,r|
∑

(i1,...,ir)∈In,r

{
h(X∗i1 , . . . , X

∗
ir)− Vn(h)

}
, h ∈ H,

where X∗1 , . . . , X
∗
n are i.i.d. draws from the empirical distribution n−1

∑n
i=1 δXi and Vn(h) =

n−r
∑n

i1,...,ir=1 h(Xi1 , . . . , Xir) is the V -statistic associated with h (cf. [5, 2, 10]). Another exam-

ple is the randomly reweighted bootstrap

U [n(h) =
1

|In,r|
∑

(i1,...,ir)∈In,r

(wi1 · · ·wir − E[wi1 · · ·wir ])h(Xi1 , . . . , Xir), h ∈ H,

where w1, . . . , wn is a sequence of random weights independent of Xn
1 = {X1, . . . , Xn} [29,

30, 17, 51]. The randomly reweighted bootstrap is a generalized bootstrap procedure, in-

cluding: 1) the empirical bootstrap with multinomial weights; 2) the Bayesian bootstrap with

wi = ηi/(n
−1
∑n

j=1 ηj) and η1, . . . , ηn being i.i.d. exponential random variables with mean one

(i.e., (w1, . . . , wn) follows a scaled Dirichlet distribution) [43, 34, 35, 52]. If H is a fixed VC

type function class and the distribution P is independent of n (hence the distribution of the ap-

proximating Gaussian process WP is independent of n), then the conditional distributions (given

Xn
1 ) of the empirical bootstrap process {U∗n(h) : h ∈ H} and the Bayesian bootstrap process
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{U [n(h) : h ∈ H} (with Dirichlet weights) are known to have the same weak limit as the U -

process {Un(h) : h ∈ H}, where the weak limit is the Gaussian process WP in the non-degenerate

case [4, 52]. The proposed multiplier process in (6) is closely connected to the empirical and

randomly reweighted bootstraps in the sense that the latter two bootstraps also implicitly con-

struct an empirical process whose conditional covariance function is close to that of WP under

the supremum norm [cf. 10]. Recall that the conditional covariance function of U]n can be viewed

as a jackknife estimate of the covariance function of WP . For the special case where r = 2

and H = Hn is such that |Hn| < ∞ and |Hn| is allowed to increase with n, [10] shows that the

Gaussian multiplier, empirical and randomly reweighted bootstraps (with i.i.d. Gaussian weights

wi ∼ N(1, 1)) all achieve similar error bounds. In the U -process setting, it would be possible

to establish finite sample validity for the empirical and more general randomly reweighted boot-

straps, but this is at the price of a much more involved technical analysis which we do not pursue

in the present paper.

4. Applications: Testing for qualitative features based on generalized local

U-processes

In this section, we discuss applications of the general results in the previous sections to gen-

eralized local U -processes, which are motivated from testing for qualitative features of functions

in nonparametric statistics (see below for concrete statistical problems).

Let m > 1, r > 2 be fixed integers and let V be a separable metric space. Suppose that

n > r + 1, and let Di = (Xi, Vi), i = 1, . . . , n be i.i.d. random variables taking values in Rm × V
with joint distribution P defined on the product σ-field on Rm × V (we equip Rm and V with

the Borel σ-fields). The variable Vi may include some components of Xi. Let Φ be a class

of symmetric measurable functions ϕ : Vr → R, and let L : Rm → R be a (fixed) “kernel

function”, i.e., an integrable function on Rm (with respect to the Lebesgue measure) such that∫
Rm L(x)dx = 1. For b > 0 (“bandwidth”), we use the notation Lb(·) = b−mL(·/b). For a given

sequence of bandwidths bn → 0, let

hn,ϑ(d1, . . . , dr) := ϕ(v1, . . . , vr)

r∏
k=1

Lbn(x− xk), ϑ = (x, ϕ) ∈ Θ := X × Φ,

where X ⊂ Rm is a (nonempty) compact subset. Consider the U -process

Un(hn,ϑ) := U (r)
n (hn,ϑ) :=

1

|In,r|
∑

(i1,...,ir)∈In,r

hn,ϑ(Di1 , . . . , Dir),

which we call, following [23], the generalized local U -process. The indexing function class is

{hn,ϑ : ϑ ∈ Θ} which depends on the sample size n. The U -process Un(hn,ϑ) can be seen as a

process indexed by Θ, but in general is not weakly convergent in the space `∞(Θ), even after a

suitable normalization (an exception is the case where X and Φ are finite sets, and in that case,
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under regularity conditions, the vector {
√
nbmn (Un(hn,ϑ) − P rhn,ϑ)}ϑ∈Θ converges weakly to a

multivariate normal distribution). In addition, we will allow the set Θ to depend on n.

We are interested in approximating the distribution of the normalized version of this process

Sn = sup
ϑ∈Θ

√
nbmn {Un(hn,ϑ)− P rhn,ϑ}

rcn(ϑ)
,

where cn(ϑ) > 0 is a suitable normalizing constant. The goal of this section is to characterize

conditions under which the JMB developed in the previous section is consistent for approxi-

mating the distribution of Sn (more generally we will allow the normalizing constant cn(ϑ) to

be data-dependent). There are a number of statistical applications where we are interested in

approximating distributions of such statistics. We provide a couple of examples. All the test sta-

tistics discussed in Examples in 4.1 and 4.2 are covered by our general framework. In Examples

4.1 and 4.2, α ∈ (0, 1) is a nominal level.

Example 4.1 (Testing conditional stochastic dominance). Let X,Y be real-valued random vari-

ables, and denote by FY |X(y | x) the conditional distribution function of Y given X. Consider

the problem of testing the conditional stochastic dominance

H0 : FY |X(y | x) 6 FY |X(y | x′) ∀y ∈ R whenever x > x′.

Testing for the conditional stochastic dominance is an important topic in a variety of applied

fields such as in economics [47, 6, 20]. For this problem, [33] consider a test for H0 based on a

local Kendall’s tau statistic, inspired by [22]. Let (Xi, Yi), i = 1, . . . , n be i.i.d. copies of (X,Y ).

[33] consider the U -process

Un(x, y) =
1

n(n− 1)

∑
16i 6=j6n

{1(Yi 6 y)− 1(Yj 6 y)}sign(Xi −Xj)Lbn(x−Xi)Lbn(x−Xj),

where bn → 0 is a sequence of bandwidths, and sign(·) is the sign function

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

.

They propose to reject the null hypothesis if

Sn = sup
(x,y)∈X×Y

Un(x, y)

cn(x)

is large, where X ,Y are subsets of the supports of X,Y , respectively and cn(x) > 0 is a suitable

normalizing constant. [33] argue that as far as the size control is concerned, it is enough to

choose, as a critical value, the (1 − α)-quantile of Sn when X,Y are independent, under which

Un(x, y) is centered. Under independence between X and Y , and under regularity conditions,

they derive a Gumbel limiting distribution for a properly scaled version of Sn using techniques
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from [40], but do not consider bootstrap approximations to Sn. It should be noted that [33]

consider a slightly more general setup than that described above in the sense that they allow Xi

not to be directly observed but assume that estimated Xi are available, and also cover the case

where X is multidimensional.

Example 4.2 (Testing curvature and monotonicity of nonparametric regression). Consider the

nonparametric regression model

Y = f(X) + ε, E[ε | X] = 0,

where Y is a scalar outcome variable, X is an m-dimensional vector of regressors, ε is an error

term, and f is the conditional mean function f(x) = E[Y | X = x]. We observe i.i.d. copies

Vi = (Xi, Yi), i = 1, . . . , n of V = (X,Y ). We are interested in testing for qualitative features

(e.g., curvature, monotonicity) of the regression function f .

[1] consider a simplex statistic to test linearity, concavity, convexity of f under the assumption

that the conditional distribution of ε given X is symmetric. To define their test statistics,

for x1, . . . , xm+1 ∈ Rm, let ∆◦(x1, . . . , xm+1) = {
∑m+1

i=1 aixi : 0 < aj < 1, j = 1, . . . ,m +

1,
∑m+1

i=1 ai = 1} denote the interior of the simplex spanned by x1, . . . , xm+1, and define D =⋃m+2
j=1 Dj , where

Dj =

{
(x1, . . . , xm+2) ∈ Rm×(m+2) :

x1, . . . , xj−1, xj+1, . . . , xm+2 are affinely independent

and xj ∈ ∆◦(x1, . . . , xj−1, xj+1, . . . , xm+2)

}
.

It is not difficult to see that D1, . . . ,Dm+2 are disjoint, and if, e.g., (x1, . . . , xm+2) ∈ Dm+2, then

there exists a unique vector (a1, . . . , am+1) ∈ Rm+1 with 0 < ai < 1 for all i and
∑m+1

i=1 ai = 1

such that xm+2 =
∑m+1

i=1 aixi.

For given vi = (xi, yi) ∈ Rm × R, i = 1, . . . ,m + 2, if (x1, . . . , xm+2) ∈ D, then there exist

a unique index j = 1, . . . ,m + 2 and a unique vector (a1, . . . , aj−1, aj+1, . . . , am+2) such that

0 < ai < 1 for all i 6= j,
∑

i 6=j ai = 1, and xj =
∑

i 6=j aixi; then, define

w(v1, . . . , vm+2) =
∑
i 6=j

aiyi − yj .

The index j and vector (a1, . . . , aj−1, aj+1, . . . , am+2) are in fact functions of xi’s. It is not difficult

to see that D is symmetric (i.e., its indicator function is symmetric), and w(v1, . . . , vm+2) is well-

defined and symmetric in its arguments.

Under this notation, [1] consider the following localized simplex statistic

Un(x) =
1

|In,m+2|
∑

(i1,...,im+2)∈In,m+2

ϕ(Vi1 , . . . , Vim+2)

m+2∏
k=1

Lbn(x−Xik), (10)

where ϕ(v1, . . . , vm+2) = 1{(x1, . . . , xm+2) ∈ D}sign(w(v1, . . . , vm+2)). It is seen that Un is a

U -process of order (m + 2). To test concavity and convexity of f , [1] propose to reject the
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hypotheses if

Sn = sup
x∈X

Un(x)

cn(x)
and Sn = inf

x∈X

Un(x)

cn(x)
,

are large, respectively, where X is a subset of the support of X and cn(x) > 0 is a suitable

normalizing constant. The infimum statistic Sn can also be written as the supremum of a U -

process by replacing ϕ by −ϕ, so we will focus on Sn. Precisely speaking, they consider to take

discrete deign points x1, . . . , xG with G = Gn → ∞, and take the supremum or infimum on the

discrete grids {x1, . . . , xG}. [1] argue that as far as the size control is concerned, it is enough

to choose, as a critical value, the (1 − α)-quantile of Sn when f is linear, under which Un(x) is

centered due to the symmetry assumption on the distribution of ε conditionally on X. Under

linearity of f , [1, Theorem 6] claims to derive a Gumbel limiting distribution for a properly

scaled version of Sn, but the authors think that their proof needs a further justification. The

proof of Theorem 6 in [1] proves that, in their notation, the marginal distributions of Ũn,h(x∗g)

converge to N(0, 1) uniformly in g = 1, . . . , G (see their equation (A.1)), and the covariances

between Ũn,h(x∗g) and Ũn,h(x∗g′) for g 6= g′ are approaching zero faster than the variances, but

what they need to show is that the joint distribution of (Ũn,h(x∗1), . . . , Ũn,h(x∗G)) is approximated

by N(0, IG) in a suitable sense, which is lacking in their proof. An alternative proof strategy is

to apply Rio’s coupling [42] to the Hájek process associated to Un, but it seems non-trivial to

apply Rio’s coupling since it is non-trivial to verify that the function ϕ is of bounded variation.

On the other hand, [22] study testing monotonicity of f when m = 1 and ε is independent of X.

Specifically, they consider testing whether f is increasing, and propose to reject the hypothesis if

Sn = sup
x∈X

Ǔn(x)

cn(x)
,

is large, where X is a subset of the support of X,

Ǔn(x) =
1

n(n− 1)

∑
16i 6=j6n

sign(Yj − Yi)sign(Xi −Xj)Lbn(x−Xi)Lbn(x−Xj), (11)

and cn(x) > 0 is a suitable normalizing constant. [22] argue that as far as the size control is

concerned, it is enough to choose, as a critical value, the (1 − α)-quantile of Sn when f ≡ 0,

under which Un(x) is centered. Under f ≡ 0, and under regularity conditions, [22] derive a

Gumbel limiting distribution for a properly scaled version of Sn, but do not study bootstrap

approximations to Sn.

Remark 4.1 (Alternative tests for concavity or convexity of f). Instead of the original localized

simplex statistic (10) proposed in [1], we may consider the following modified version:

Ũn(x) =
1

|In,m+2|
∑

(i1,...,im+2)∈In,m+2

ϕ̃(Vi1 , . . . , Vim+2)

m+2∏
k=1

Lbn(x−Xik),
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where ϕ̃(v1, . . . , vm+2) = 1{(x1, . . . , xm+2) ∈ D}w(v1, . . . , vm+2), and test concavity or convexity

of f if the scaled supremum or infimum of Ũn is large or small, respectively. These alternative

tests will work without the symmetry assumption on the conditional distribution of ε, which is

maintained in [1]. Our results below also cover these alternative tests.

Remark 4.2 (Comments on [15]). [15] considers testing monotonicity of the regression function f

without the assumption that the error term ε is independent of X. [15] studies, e.g., U -statistics

given by replacing sign(Yj − Yi) in (11) by Yj − Yi, and the test statistic defined by taking

the maximum of such U -statistics over a discrete set of design points and bandwidths whose

cardinality may grow with the sample size (indeed, the cardinality can be much larger than the

sample size). His analysis is conditional on Xi’s, and he cleverly avoids U -process machineries

and applies directly high-dimensional Gaussian and bootstrap approximation theorems developed

in [11]. It should be noted that [15] considers more general test statistics and studies multi-step

procedures to improve on powers of his tests.

Now, we go back to the general case. In applications, a typical choice of the normalizing

constant cn(ϑ) is cn(ϑ) = b
m/2
n

√
VarP (P r−1hn,ϑ) where VarP (·) denotes the variance under P ,

so that each b
m/2
n cn(ϑ)−1P r−1hn,ϑ is normalized to have unit variance, but other choices (such as

cn(ϑ) ≡ 1) are also possible. The choice cn(ϑ) = b
m/2
n

√
VarP (P r−1hn,ϑ) depends on the unknown

distribution P and needs to be estimated in practice. Suppose in general (i.e., cn(ϑ) need not to

be b
m/2
n

√
VarP (P r−1hn,ϑ)) that there is an estimator ĉn(ϑ) = ĉn(ϑ;Dn

1 ) > 0 for cn(ϑ) for each

ϑ ∈ Θ, and instead of original Sn, consider

Ŝn := sup
ϑ∈Θ

√
nbmn {Un(hn,ϑ)− P rhn,ϑ}

rĉn(ϑ)
.

We consider to approximate the distribution of Ŝn by the conditional distribution of the JMB

analogue of Ŝn: Ŝ]n := supϑ∈Θ b
m/2
n U]n(hn,ϑ)/ĉn(ϑ), where

U]n(hn,ϑ) =
1√
n

n∑
i=1

ξi

[
U

(r−1)
n−1,−i(δDihn,ϑ)− Un(hn,ϑ)

]
, ϑ ∈ Θ,

and ξ1, . . . , ξn are i.i.d. N(0, 1) random variables independent of Dn
1 = {Di}ni=1. Recall that for

a function f on (Rm × V)r−1, U
(r−1)
n−1,−i(f) denotes the U -statistic with kernel f for the sample

without the i-th observation, i.e., U
(r−1)
n−1,−i(f) = |In−1,r−1|−1

∑
(i,i2,...,ir)∈In,r f(Di2 , . . . , Dir).

Let ζ, c1, c2, and C1 be given positive constants such that C1 > 1 and c2 ∈ (0, 1), and let

q ∈ [4,∞]. Denote by X ζ the ζ-enlargement of X , i.e., X ζ := {x ∈ Rm : infx′∈X |x−x′| 6 ζ} where

| · | denotes the Euclidean norm. Let CovP (·, ·) and VarP (·) denote the covariance and variance

under P , respectively. For the notational convenience, for arbitrary r variables d1, . . . , dr, we use

the notation dk:` = (dk, dk+1, . . . , d`) for 1 6 k 6 ` 6 r. We make the following assumptions.

(T1) Let X be a non-empty compact subset of Rm such that its diameter is bounded by C1.
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(T2) The random vector X has a Lebesgue density p(·) such that ‖p‖X ζ 6 C1.

(T3) Let L : Rm → R be a continuous kernel function supported in [−1, 1]m such that the

function class L := {x 7→ L(ax + b) : a ∈ R, b ∈ Rm} is VC type for envelope ‖L‖Rm =

supx∈Rm |L(x)|.
(T4) Let Φ be a pointwise measurable class of symmetric functions Vr → R that is VC type with

characteristics A, v for a finite and symmetric envelope ϕ ∈ Lq(P r) such that logA 6

C1 log n and v 6 C1. In addition, the envelope ϕ satisfies that (E[ϕq(V1:r) | X1:r =

x1:r])
1/q 6 C1 for all x1:r ∈ X ζ × · · · × X ζ if q is finite, and ‖ϕ‖P r,∞ 6 C1 if q =∞

(T5) nb
3mq/[2(q−1)]
n > C1n

c2 with the convention that q/(q − 1) = 1 when q =∞, and 2m(r −
1)bn 6 ζ/2.

(T6) b
m/2
n

√
VarP (P r−1hn,ϑ) > c1 for all n and ϑ ∈ Θ.

(T7) c1 6 cn(ϑ) 6 C1 for all n and ϑ ∈ Θ. For each fixed n, if xk → x in X and ϕk → ϕ

pointwise in Φ, then cn(xk, ϕk)→ cn(x, ϕ).

(T8) With probability at least 1− C1n
−c2 ,

sup
ϑ∈Θ

∣∣∣∣ ĉn(ϑ)

cn(ϑ)
− 1

∣∣∣∣ 6 C1n
−c2 .

Some comments on the conditions are in order. Condition (T1) allows the set X to depend

on n, i.e., X = Xn, but its diameter is bounded (by C1). For example, X can be discrete grids

whose cardinality increases with n but its diameter must be bounded (an implicit assumption

here is that the dimension m is fixed; in fact the constants appearing in the following results

depend on the dimension m, so that m should be considered as fixed). Condition (T2) is a mild

restriction on the density of X. It is worth mentioning that V may take values in a generic

measurable space, and even if V takes values in a Euclidean space, V need not be absolutely

continuous with respect to the Lebesgue measure (we will often omit the qualification “with

respect to the Lebesgue measure”). In Examples 4.1 and 4.2, the variable V consists of the

pair of regressor vector and outcome variable, i.e., V = (X,Y ) with Y being real-valued, and

our conditions allow the distribution of Y to be generic. In contrast, [22, 33] assume that the

joint distribution of X and Y have a continuous density (or at least they require the distribution

function of Y to be continuous) and thereby ruling out the case where the distribution of Y

has a discrete component. This is essentially because they rely on Rio’s coupling [42] when

deriving limiting null distributions of their test statistics. Rio’s coupling is a powerful KMT [32]

type strong approximation result for general empirical processes, but requires the underlying

distribution to be defined on a hyper-cube and to have a density bounded away from zero on the

hyper-cube. Our JMB does not require Y to have a density for its validity and thereby having a

wider applicability in this respect.

Condition (T3) is a standard regularity condition on kernel functions L. Sufficient conditions

under which L is VC type are found in [38, 24, 25]. Condition (T4) allows the envelope ϕ
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to be unbounded. Condition (T4) allows the function class Φ to depend on n, as long as the

VC characteristics A and v satisfy that A 6 C1 log n and v 6 C1. For example, Φ can be a

discrete set whose cardinality is bounded by Cnc for some constants c, C > 0. Condition (T5)

relaxes bandwidth requirements in [22, 33] where m = 1 and q = ∞. For example, [22] assume

nb2n/(log n)4 → ∞ and bn log n → 0 for size control. Further, our general theory allows us to

develop a version of the JMB that is uniformly valid in compact bandwidth sets, which can be

used to develop versions of tests that are valid with data-dependent bandwidths in Examples 4.1

and 4.2; see Section 4.1 ahead for details.

Condition (T6) is a high-level condition and implies the U -process to be non-degenerate. Let

ϕ[r−1](v1, x2:r) := E[ϕ(v1, V2:r) | X2:r = x2:r]
∏r
j=2 p(xj), and observe that

(P r−1hn,ϑ)(x1, v1) = Lbn(x− x1)

∫
ϕ[r−1](v1, x− bnx2:r)

r∏
j=2

L(xj)dx2:r

for ϑ = (x, ϕ), where x− bnx2:r = (x− bnx2, . . . , x− bnxr). From this expression, in applications,

it is not difficult to find primitive regularity conditions that guarantee Condition (T6). To keep

the presentation concise, however, we assume Condition (T6).

Condition (T7) is concerned with the normalizing constant cn(ϑ). For the special case where

cn(ϑ) = b
m/2
n

√
VarP (P r−1hn,ϑ), Condition (T7) is implied by Conditions (T4) and (T6). Condi-

tion (T8) is also a high-level condition, which together with (T7) implies that there is a uniformly

consistent estimate ĉn(ϑ) of cn(ϑ) in Θ with polynomial error rates. Construction of ĉn(ϑ) is

quite flexible: for cn(ϑ) = b
m/2
n

√
VarP (P r−1hn,ϑ), one natural example is the jackknife estimate

ĉn(ϑ) =

√√√√bmn
n

n∑
i=1

{
U

(r−1)
n−1,−i(δDihn,ϑ)− Un(hn,ϑ)

}2
, ϑ ∈ Θ. (12)

The following lemma verifies that the jackknife estimate (12) obeys Condition (T8) for cn(ϑ) =

b
m/2
n

√
VarP (P r−1hn,ϑ). However, it should be noted that other estimates for this normalizing

constant are possible depending on applications of interest; see [22, 33, 1].

Lemma 4.1 (Estimation error of the normalizing constant). Suppose that Conditions (T1)-(T7)

hold. Let cn(ϑ) = b
m/2
n

√
VarP (P r−1hn,ϑ), ϑ ∈ Θ and ĉn(ϑ) be defined in (12). Then there exist

constants c, C depending only on r,m, ζ, c1, c2, C1, L such that

P
{

sup
ϑ∈Θ

∣∣∣∣ ĉn(ϑ)

cn(ϑ)
− 1

∣∣∣∣ > Cn−c
}
6 Cn−c.

Now, we are ready to state finite sample validity of the JMB for approximating the distribution

of the supremum of a generalized local U -process.

Theorem 4.2 (JMB validity for the supremum of a generalized local U -process). Suppose that

Conditions (T1)–(T8) hold. Then there exist constants c, C depending only on r,m, ζ, c1, c2, C1, L
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such that the following holds: for every n, there exists a tight Gaussian random variable WP,n(ϑ), ϑ ∈
Θ in `∞(Θ) with mean zero and covariance function

E[WP,n(ϑ)WP,n(ϑ′)] = bmn CovP (P r−1hn,ϑ, P
r−1hn,ϑ′)/{cn(ϑ)cn(ϑ′)} (13)

for ϑ, ϑ′ ∈ Θ, and it follows that

sup
t∈R

∣∣∣P(Ŝn 6 t)− P(S̃n 6 t)
∣∣∣ 6 Cn−c,

P
{

sup
t∈R

∣∣∣P|Dn1 (Ŝ]n 6 t)− P(S̃n 6 t)
∣∣∣ > Cn−c

}
6 Cn−c,

(14)

where S̃n := supϑ∈ΘWP,n(ϑ).

Theorem 4.2 leads to the following corollary, which is another form of validity of the JMB. For

α ∈ (0, 1), let q
Ŝ]n

(α) = q
Ŝ]n

(α;Dn
1 ) denote the conditional α-quantile of Ŝ]n given Dn

1 , i.e.,

q
Ŝ]n

(α) = inf
{
t ∈ R : P|Dn1 (Ŝ]n 6 t) > α

}
.

Corollary 4.3 (Size validity of the JMB test). Suppose that Conditions (T1)–(T8) hold. Then

there exist constants c, C depending only on r,m, ζ, c1, c2, C1, L such that

sup
α∈(0,1)

∣∣∣P{Ŝn 6 qŜ]n(α)
}
− α

∣∣∣ 6 Cn−c.
4.1. Uniformly valid JMB test in bandwidth. A version of Theorem 4.2 continues to hold

if we additionally take the supremum over a set of possible bandwidths. For a given bandwidth

b ∈ (0, 1), let

hϑ,b(d1, . . . , dr) = ϕ(v1, . . . , vr)

r∏
k=1

Lb(x− xk),

and for a given candidate set of bandwidths Bn ⊂ [bn, bn] with 0 < bn 6 bn < 1, consider

Sn := sup
(ϑ,b)∈Θ×Bn

√
nbm{Un(hϑ,b)− P rhϑ,b}

rc(ϑ, b)
and

Ŝn := sup
(ϑ,b)∈Θ×Bn

√
nbm{Un(hϑ,b)− P rhϑ,b}

rĉ(ϑ, b)
,

where cn(ϑ, b) > 0 is a suitable normalizing constant and ĉ(ϑ, b) > 0 is an estimate of c(ϑ, b).

Following a similar argument used in the proof of Theorem 4.2, we are able to derive a version of

the JMB that is also valid uniformly in bandwidth, which opens new possibilities to develop tests

that are valid with data-dependent bandwidths in Examples 4.1 and 4.2. For related discussions,

we refer the readers to Remark 3.2 in [33] for testing conditional stochastic monotonicity and

[19] for kernel type estimators.

Consider the JMB analogue of Ŝn:

Ŝ]n = sup
(ϑ,b)∈Θ×Bn

bm/2

ĉn(ϑ, b)
√
n

n∑
i=1

ξi

[
U

(r−1)
n−1,−i(δDihϑ,b)− Un(hϑ,b)

]
.
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Let κn = bn/bn denote the ratio of the largest and smallest possible values in the bandwidth set

Bn, which intuitively quantifies the size of Bn. To ease the notation and to facilitate comparisons,

we only consider q =∞. We make the following assumptions instead of Conditions (T5)–(T8).

(T5′) nb
3m/2
n > C1n

c2κ
m(r−2)
n , κn 6 C1b

−1/(2r)
n , and 2m(r − 1)bn 6 ζ/2.

(T6′) bm/2
√

VarP (P r−1hϑ,b) > c1 for all n and (ϑ, b) ∈ Θ× Bn.

(T7′) c1 6 cn(ϑ, b) 6 C1 for all n and (ϑ, b) ∈ Θ×Bn. For each fixed n, if xk → x in X , ϕk → ϕ

pointwise in Φ, and bk → b in Bn, then cn(xk, ϕk, bk)→ cn(x, ϕ, b).

(T8′) With probability at least 1− C1n
−c2 , sup(ϑ,b)∈Θ×Bn

∣∣∣ ĉn(ϑ,b)
cn(ϑ,b) − 1

∣∣∣ 6 C1n
−c2 .

Theorem 4.4 (Bootstrap validity for the supremum of a generalized local U -process: unifor-

m-in-bandwidth result). Suppose that Conditions (T1)-(T4) with q =∞, and Conditions (T5′)–

(T8′) hold. Then there exist constants c, C depending only on r,m, ζ, c1, c2, C1, L such that the fol-

lowing holds: for every n, there exists a tight Gaussian random variable WP,n(ϑ, b), (ϑ, b) ∈ Θ×Bn
in `∞(Θ× Bn) with mean zero and covariance function

E[WP,n(ϑ, b)WP,n(ϑ′, b′)]

= bm/2(b′)m/2CovP (P r−1hϑ,b, P
r−1hϑ′,b′)/{cn(ϑ, b)cn(ϑ′, b′)}

for (ϑ, b), (ϑ′, b′) ∈ Θ×Bn, and the result (14) continues to hold with S̃n := sup(ϑ,b)∈Θ×BnWP,n(ϑ, b).

If bn = bn = bn (i.e., Bn = {bn} is a singleton set), then Conditions (T5′)–(T8′) reduce to

(T5)–(T8) and Theorem 4.4 covers Theorem 4.2 with q = ∞ as a special case. Condition (T5′)

states that the size of the bandwidth set Bn cannot be too large. Conditions (T6′)–(T8′) are

completely parallel with Conditions (T6)–(T8). Note that such “uniform-in-bandwidth” type

results are not covered in [22, 33, 1].

5. Local maximal inequalities for U-processes

In this section, we prove local maximal inequalities for U -processes, which are of indepen-

dent interest and can be useful for other applications. These multi-resolution local maximal

inequalities are key technical tools in proving the results stated in the previous sections.

We first review some basic terminologies and facts about U -processes. For a textbook treat-

ment on U -processes, we refer to [16]. Let r > 1 be a fixed integer and let X1, . . . , Xn be i.i.d.

random variables taking values in a measurable space (S,S) with common distribution P . For a

symmetric measurable function f : Sr → R and k = 1, . . . , r, we define P r−kf : Sk → R by

P r−kf(x1, . . . , xk) =

∫
· · ·
∫
f(x1, . . . , xk, xk+1, . . . , xr)dP (xk+1) · · · dP (xr),

where we assume that the integral exists and is finite for every (x1, . . . , xk) ∈ Sk.

Definition 5.1 (Kernel degeneracy). A symmetric measurable function f : Sr → R with P rf = 0

is said to be degenerate of order k with respect to P if P r−kf(x1, . . . , xk) = 0 for all x1, . . . , xk ∈ S.
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In particular, f is said to be completely degenerate if f is degenerate of order r− 1, and f is said

to be non-degenerate if f is not degenerate of any positive order.

Let F be a class of symmetric measurable functions f : Sr → R (F need not be P r-centered).

We assume that there is a symmetric measurable envelope F for F such that P rF 2 < ∞.

Furthermore, we assume that each P r−kF is everywhere finite. Consider the associated U -process

U (r)
n (f) =

1

|In,r|
∑

(i1,...,ir)∈In,r

f(Xi1 , . . . , Xir), f ∈ F , (15)

where In,r = {(i1, . . . , ir) : 1 6 ij 6 n, ij 6= ik if 1 6 j 6= k 6 r} and |In,r| = n!/(n − r)! denotes

the cardinality of In,r. For each k = 1, . . . , r, the Hoeffding projection (with respect to P ) is

defined by

(πkf)(x1, . . . , xk) := (δx1 − P ) · · · (δxk − P )P r−kf. (16)

The Hoeffding projection πkf is a completely degenerate kernel of k variables. Then, the Hoeffd-

ing decomposition of U
(r)
n (f) is given by

U (r)
n (f)− P rf =

r∑
k=1

(
r

k

)
U (k)
n (πkf). (17)

In what follows, let σk be any positive constant such that supf∈F ‖P r−kf‖Pk,2 6 σk 6

‖P r−kF‖Pk,2 whenever ‖PF r−k‖Pk,2 > 0 (take σk = 0 when ‖P r−kF‖Pk,2 = 0), and let

Mk = max
16i6bn/kc

(P r−kF )(Xik
(i−1)k+1),

where Xik
(i−1)k+1 = (X(i−1)k+1, . . . , Xik).

We will assume certain uniform covering number conditions for the function class F . For

k = 1, . . . , r, define the uniform entropy integral

Jk(δ) := Jk(δ,F , F ) :=

∫ δ

0
sup
Q

[
1 + logN(P r−kF , ‖ · ‖Q,2, τ‖P r−kF‖Q,2)

]k/2
dτ,

where P r−kF = {P r−kf : f ∈ F}, and supQ is taken over all finitely discrete distributions on

Sk. Note that P r−kF is an envelope for P r−kF . To avoid measurablity complications, we will

assume that F is pointwise measurable. It is not difficult to see from the dominated convergence

theorem that, if F is pointwise measurable and P rF < ∞ (which we have assumed), then

πkF := {πkf : f ∈ F} and P r−kF for k = 1, . . . , r are all pointwise measurable.

In the remainder of this section, the notation . signifies that the left hand side is bounded by

the right hand side up to a constant that depends only on r. Recall that ‖ · ‖F = supf∈F | · |.

Theorem 5.1 (Local maximal inequalities for U -processes). Suppose that F is poinwise mea-

surable and that Jr(1) <∞. Let δk = σk/‖P r−kF‖Pk,2 for k = 1, . . . , r. Then

nk/2E[‖U (k)
n (πkf)‖F ] . Jk(δk)‖P r−kF‖Pk,2 +

J2
k (δk)‖Mk‖P,2

δ2
k

√
n

(18)
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for every k = 1, . . . , r. If ‖P r−kF‖Pk,2 = 0, then the right hand side is interpreted as 0.

In view of Lemma A.2 (and approximating P r−k by finitely discrete distributions), the as-

sumption that Jr(1) < ∞ ensures that Jk(1) < ∞ (and hence Jk(δ) < ∞ for every δ > 0) for

k = 1, . . . , r− 1. The proof of Theorem 5.1 relies on the following lemma on the uniform entropy

integrals.

Lemma 5.2 (Properties of the maps δ 7→ Jk(δ)). Assume that Jr(1) <∞. Then, the following

properties hold for every k = 1, . . . , r. (i) The map δ 7→ Jk(δ) is non-decreasing and concave.

(ii) For c > 1, Jk(cδ) 6 cJk(δ). (iii) The map δ 7→ Jk(δ)/δ is non-increasing. (iv) The map

(x, y) 7→ Jk(
√
x/y)
√
y is jointly concave in (x, y) ∈ [0,∞)× (0,∞).

Proof of Lemma 5.2. The proof is almost identical to [13, Lemma A.2], and hence omitted. �

Proof of Theorem 5.1. It suffices to prove (18) when ‖P r−kF‖Pk,2 > 0 and Jk(1) < ∞, since

otherwise there is nothing to prove (recall that we have assumed that P rF 2 <∞, which ensures

that ‖P r−kF‖Pk,2 < ∞). Let ε1, . . . , εn be i.i.d. Rademacher random variables independent of

Xn
1 . From the randomization theorem for U -processes [16, Theorem 3.5.3], we have that

E[‖U (k)
n (πkf)‖F ] . E

∥∥∥∥∥∥ 1

|In,k|
∑

(i1,...,ik)∈In,k

εi1 · · · εik(πkf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
F


. E

∥∥∥∥∥∥ 1

|In,k|
∑

(i1,...,ik)∈In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
F

 ,

where the second inequality follows from Jensen’s inequality. Conditionally on Xn
1 ,

Rn,k(f) :=
1√
|In,k|

∑
(i1,...,ik)∈In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik), f ∈ F

is a Rademacher chaos process of order k. Denote by PIn,k = |In,k|−1
∑

(i1,...,ik)∈In,k δ(Xi1 ,...,Xik )

the empirical distribution on all possible k-tuples of Xn
1 ; then Corollary 3.2.6 in [16] yields that

‖Rn,k(f)−Rn,k(f ′)‖ψ2/k|Xn
1
. ‖P r−kf − P r−kf ′‖PIn,k ,2, ∀f, f

′ ∈ F ,
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where ‖ · ‖ψ2/k|Xn
1

denotes the Orlicz (quasi-)norm associated with ψ2/k(u) = eu
2/k − 1 evaluated

conditionally on Xn
1 . So, Corollary 5.1.8 in [16] together with Fubini’s theorem yield that

E

∥∥∥∥∥∥ 1√
|In,k|

∑
(i1,...,ik)∈In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
F



. E


∥∥∥∥∥∥
∥∥∥∥∥∥ 1√
|In,k|

∑
(i1,...,ik)∈In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
F

∥∥∥∥∥∥
ψ2/k|Xn

1


. E

[∫ σIn,k

0

[
1 + logN(P r−kF , ‖ · ‖PIn,k ,2, τ)

]k/2
dτ

] (
σ2
In,k

:= sup
f∈F
‖P r−kf‖2PIn,k ,2

)

= E

[
‖P r−kF‖PIn,k ,2

∫ σIn,k/‖P
r−kF‖PIn,k ,2

0

[
1 + logN(P r−kF , ‖ · ‖PIn,k ,2, τ‖P

r−kF‖PIn,k ,2)
]k/2

dτ

]
6 E

[
‖P r−kF‖PIn,k ,2Jk(σIn,k/‖P

r−kF‖PIn,k ,2)
]
.

Since Jk(
√
x/y)
√
y is jointly concave in (x, y) ∈ [0,∞) × (0,∞) by Lemma 5.2 (iv), Jensen’s

inequality yields that

nk/2E[‖U (k)
n (πkf)‖F ] . ‖P r−kF‖Pk,2Jk(z), where z :=

√
E[σ2

In,k
]/‖P r−kF‖2

Pk,2
. (19)

Now, we shall bound E[σ2
In,k

]. To this end, we will use Hoeffding’s averaging [cf. 44, Section

5.1.6]. Let

Sf,k(x1, . . . , xn) =
1

m

m∑
i=1

(P r−kf)2(x(i−1)k+1, . . . , xik), m = bn/kc.

Then, the U -statistic ‖P r−kf‖2PIn,k ,2 = |In,k|−1
∑

In,k
(P r−kf)2(Xi1 , . . . , Xik) is the average of the

variables Sf,k(Xj1 , . . . , Xjn), taken over all the permutations j1, . . . , jn of 1, . . . , n. Hence,

E[σ2
In,k

] 6 E

[
sup
f∈F

Sf,k(X
n
1 )

]
= E

[∥∥∥∥∥ 1

m

m∑
i=1

(P r−kf)2(Xik
(i−1)k+1)

∥∥∥∥∥
F

]
=: Bn,k,
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so that z 6 z̃ :=
√
Bn,k/‖P r−kF‖2Pk,2. Observe that, since the blocks Xik

(i−1)k+1, i = 1, . . . ,m are

i.i.d.,

Bn,k 6(1) σ2
k + E

[∥∥∥∥∥ 1

m

m∑
i=1

{
(P r−kf)2(Xik

(i−1)k+1)− E[(P r−kf)2(Xik
(i−1)k+1)]

}∥∥∥∥∥
F

]

6(2) σ2
k + 2E

[∥∥∥∥∥ 1

m

m∑
i=1

εi(P
r−kf)2(Xik

(i−1)k+1)

∥∥∥∥∥
F

]

6(3) σ2
k + 8E

[
Mk

∥∥∥∥∥ 1

m

m∑
i=1

εi(P
r−kf)(Xik

(i−1)k+1)

∥∥∥∥∥
F

]

6(4) σ2
k + 8‖Mk‖P,2

√√√√√E

∥∥∥∥∥ 1

m

m∑
i=1

εi(P r−kf)(Xik
(i−1)k+1)

∥∥∥∥∥
2

F

,
where (1) follows from the triangle inequality, (2) follows from the symmetrization inequality [48,

Lemma 2.3.1], (3) follows from the contraction principle [25, Corollary 3.2.2], and (4) follows from

the Cauchy-Schwarz inequality. By the Hoffmann-Jørgensen inequality [48, Proposition A.1.6],√√√√√E

∥∥∥∥∥ 1

m

m∑
i=1

εi(P r−kf)(Xik
(i−1)k+1)

∥∥∥∥∥
2

F


. E

[∥∥∥∥∥ 1

m

m∑
i=1

εi(P
r−kf)(Xik

(i−1)k+1)

∥∥∥∥∥
F

]
+m−1‖Mk‖P,2.

The analysis of the expectation on the right hand side is rather standard. From the first half of

the proof of Theorem 5.2 in [13] (or repeating the first half of this proof with r = k = 1), we

have that

E

[∥∥∥∥∥ 1√
m

m∑
i=1

εi(P
r−kf)(Xik

(i−1)k+1)

∥∥∥∥∥
F

]

. ‖P r−kF‖Pk,2
∫ z̃

0
sup
Q

√
1 + logN(P r−kF , ‖ · ‖Q,2, τ‖P r−kF‖Q,2)dτ.

Since the integral on the right hand side is bounded by Jk(z̃), we have that

Bn,k . σ
2
k + n−1‖Mk‖2P,2 + n−1/2‖Mk‖P,2‖P r−kF‖Pk,2Jk(z̃).

Therefore, we conclude that

z̃2 . ∆2 +
‖Mk‖P,2√

n‖P r−kF‖Pk,2
Jk(z̃), where ∆2 :=

σ2
k ∨ n−1‖Mk‖2P,2
‖P r−kF‖2

Pk,2

.
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By Lemma 5.2 (i) and applying [49, Lemma 2.1] with J(·) = Jk(·), r = 1, A2 = ∆2, and B2 =

‖Mk‖P,2/(
√
n‖P r−kF‖Pk,2), we have

Jk(z) 6 Jk(z̃) . Jk(∆)

[
1 + Jk(∆)

‖Mk‖P,2√
n‖P r−kF‖Pk,2∆2

]
. (20)

Combining (19) and (20), we arrive at

nk/2E[‖U (k)
n (πkf)‖F ] . Jk(∆)‖P r−kF‖Pk,2 +

J2
k (∆)‖Mk‖P,2√

n∆2
. (21)

Note that ∆ > δk and recall that δk = σk/‖P r−kF‖Pk,2. Since the map δ 7→ Jk(δ)/δ is non-

increasing by Lemma 5.2 (iii), we have

Jk(∆) 6 ∆
Jk(δk)

δk
= max

{
Jk(δk),

‖Mk‖P,2Jr(δk)√
n‖P r−kF‖Pk,2δk

}
.

In addition, since Jk(δk)/δk > Jk(1) > 1, we have

Jk(∆) 6 max

{
Jk(δk),

‖Mk‖P,2J2
k (δk)√

n‖P r−kF‖Pk,2δ2
k

}
.

Finally, since

J2
k (∆)‖Mk‖P,2√

n∆2
6
J2
k (δk)‖Mk‖P,2√

nδ2
k

,

the desired inequality (18) follows from (21). �

In the case where the function class F is VC type, we may derive a more explicit bound on

nk/2E[‖U (k)
n (πkf)‖F ].

Corollary 5.3 (Local maximal inequalities for U -processes indexed by VC type classes). If F
is pointwise measurable and VC type with characteristics A > (e2(r−1)/16) ∨ e and v > 1, then

nk/2E[‖U (k)
n (πkf)‖F ]

. σk
{
v log(A‖P r−kF‖Pk,2/σk)

}k/2
+
‖Mk‖P,2√

n

{
v log(A‖P r−kF‖Pk,2/σk)

}k
(22)

for every k = 1, . . . , r.

Remark 5.1. (i). [23, Theorem 8] establishes a local maximal inequality for a U -process indexed

by a VC type class with a bounded envelope. The bound in [23, Theorem 8] is uniform over all

Hoeffding projection levels k = 1, . . . , r. In contrast, our Corollary 5.3 is sharper than Theorem

8 in [23] in the sense that the bound in (22) is of the multi-resolution nature, which allows us to

obtain better rates of convergence for kernel type statistics. In particular, σ2
k (or ‖Mk‖P,2) can

be potentially much smaller than σ2
r (or ‖Mr‖P,2), which is indeed the case in the applications

considered in Section 4. Furthermore, Corollary 5.3 allows the envelope F to be unbounded.
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(ii). Theorem 5.1 and Corollary 5.3 generalize Theorem 5.2 and Corollary 5.1 in [13] to U -

processes. In fact, Theorem 5.1 and Corollary 5.3 reduce to Theorem 5.2 and Corollary 5.1 in

[13] when r = k = 1, respectively.

Before proving Corollary 5.3, we first verify the following fact about VC type properties.

Lemma 5.4. If F is VC type with characteristic A, v, then for every k = 1, . . . , r− 1, P r−kF is

also VC type with characteristics 4
√
A and 2v for envelope P r−kF , i.e.,

sup
Q
N(P r−kF , ‖ · ‖Q,2, τ‖P r−kF‖Q,2) 6 (4

√
A/τ)2v, 0 < ∀τ 6 1.

Proof of Lemma 5.4. Using an approximation argument [cf. 48, Problem 2.5.1], for every (not

necessarily finitely discrete) probability measure R on (Sr,Sr) such that RF 2 <∞, we have that

N(F , ‖ · ‖R,2, τ‖F‖R,2) 6 (4A/τ)v, 0 < ∀τ 6 1.

Hence, applying Lemma A.2 in Appendix A with r = s = 2, for every finitely discrete distribution

Q on Sk, we have that

N(P r−kF , ‖ · ‖Q,2, τ‖P r−kF‖Q,2) 6 (16A/τ2)v = (4
√
A/τ)2v, 0 < ∀τ 6 1.

This completes the proof. �

Proof of Corollary 5.3. For the notational convenience, put A′ = 4
√
A and v′ = 2v. Then,

Jk(δ) 6
∫ δ

0
(1 + v′ log(A′/τ))k/2dτ 6 A′(v′)k/2

∫ ∞
A′/δ

(1 + log τ)k/2

τ2
dτ.

Integration by parts yields that for c > ek−1,∫ ∞
c

(1 + log τ)k/2

τ2
dτ =

[
−(1 + log τ)k/2

τ

]∞
c

+
k

2

∫ ∞
c

(1 + log τ)k/2

τ2(1 + log τ)
dτ

6
(1 + log c)k/2

c
+

1

2

∫ ∞
c

(1 + log τ)k/2

τ2
dτ.

Since A′/δ > A′ > er−1 > ek−1 for 0 < δ 6 1, we conclude that∫ ∞
A/δ′

(1 + log τ)k/2

τ2
dτ 6

2δ(1 + log(A′/δ))k/2

A′
.
δ(log(A/δ))k/2

A′
.

Combining Theorem 5.1, we obtain the desired inequality (22). �

The appearance of ‖P r−kF‖Pk,2/σk inside the log may be annoying in applications, but there

is a clever way to delete this term. Namely, choose σ′k = σk ∨ (n−1/2‖P r−kF‖Pk,2) and apply

Corollary 5.4 with σk replaced by σ′k; then the bound for nk/2E[‖U (k)
n (f)‖F ] is

. σk {v log(A ∨ n)}k/2 +
‖P r−kF‖Pk,2√

n
{v log(A ∨ n)}k/2 +

‖Mk‖P,2√
n
{v log(A ∨ n)}k .
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Since v log(A ∨ n) > 1 by our assumption, the second term is bounded by the third term. We

state the resulting bound as a separate corollary, since this form would be most useful in (at least

our) applications.

Corollary 5.5. If F is pointwise measurable and VC type with characteristics A > (e2(r−1)/16)∨e
and v > 1, then,

nk/2E[‖U (k)
n (πkf)‖F ] . σk {v log(A ∨ n)}k/2 +

‖Mk‖P,2√
n
{v log(A ∨ n)}k

for every k = 1, . . . , r. Furthermore, ‖Mk‖P,2 6 n1/q‖P r−kF‖Pk,q for every k = 1, . . . , r and

q ∈ [2,∞], where “1/q” for the q =∞ case is interpreted as 0.

Proof of Corollary 5.5. The first half of the corollary is already proved. The latter half is trivial.

�

If one is interested in bounding E[‖U (r)
n (f) − P rf‖F ], then it suffices to apply (18) or (22)

repeatedly for k = 1, . . . , r. However, it is often the case that lower order Hoeffding projection

terms are dominating, and for bounding higher order Hoeffding projection terms, it would suffice

to apply the following simpler (but less sharp) maximal inequalities.

Corollary 5.6 (Alternative maximal inequalities for U -processes). Let p ∈ [2,∞). Suppose that

F is pointwise measurable and that Jr(1) <∞. Then, there exists a constant Cr,p depending only

on r, p such that

nk/2(E[‖U (k)
n (πkf)‖pF ])1/p 6 Cr,pJk(1)‖P r−kF‖Pk,2∨p

for every k = 1, . . . , r. If F is VC type with characteristics A > (e2(r−1)/16) ∨ e and v > 1, then

Jk(1) . (v logA)k/2 for every k = 1, . . . , r.

Proof of Corollary 5.6. The last assertion follows from a similar computation to that in the proof

of Corollary 5.3. Hence we focus here on the first assertion. The proof is a modification to the

proof of Theorem 5.1, and we shall use the notation used in the proof. The randomization

theorem and Jensen’s inequality yield that npk/2E[‖U (k)
n (πkf)‖pF ] is bounded by

E

∥∥∥∥∥∥ 1√
|In,k|

∑
In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
p

F

 ,
up to a constant depending only on r, p, where ε1, . . . , εn are i.i.d. Rademacher random variables

independent of Xn
1 . Denote by E|Xn

1
the conditional expectation given Xn

1 . Since the ψ2/k-(quasi-

)norm bounds the Lp-norm from above up to a constant that depends only on k (and hence r)
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and p,

E|Xn
1

∥∥∥∥∥∥ 1√
|In,k|

∑
In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
p

F


6 C

∥∥∥∥∥∥
∥∥∥∥∥∥ 1√
|In,k|

∑
In,k

εi1 · · · εik(P r−kf)(Xi1 , . . . , Xik)

∥∥∥∥∥∥
F

∥∥∥∥∥∥
p

ψk/2|Xn1

for some constant C depending only on r and p. The entropy integral bound for Rademacher

chaoses (see the proof of Theorem 5.1) yields that the right hand side is bounded by, after

changing of variables,

‖P r−kF‖pPIn,k ,2J
p
k

(
σIn,k/‖P

r−kF‖PIn,k ,2
)

up to a constant depending only on r, p. Now, the desired result follows from bounding σIn,k/‖P r−kF‖PIn,k ,2
by 1, and observation that E[‖P r−kF‖pPIn,k ,2] 6 ‖P r−kF‖p

Pk,2∨p by Jensen’s inequality. �

Remark 5.2. Corollary 5.6 is an extension of Theorem 2.14.1 in [48]. For p = 1, Corollary 5.6 is

often less sharp than Theorem 5.1 since σk 6 ‖P r−kF‖Pk,2 and in some cases σk � ‖P r−kF‖Pk,2.

However, Corollary 5.6 is useful for directly bounding higher order moments of ‖U (k)
n (πkf)‖F .

For the empirical process case (i.e., k = 1), bounding higher order moments of the supremum is

essentially reduced to bounding the first moment by the Hoffmann-Jørgensen inequality. There

is an analogous Hoffmann-Jørgensen type inequality for U -processes [see 16, Theorem 4.1.2],

but for k > 2, bounding higher order moments of ‖U (k)
n (πkf)‖F using this Hoffmann-Jørgensen

inequality combined with the local maximal inequality in Theorem 5.1 would be more involved.

6. Proofs for Sections 2–4

In what follows, let B(R) denote the Borel σ-field on R. For a set B ⊂ R and δ > 0, let Bδ

denote the δ-enlargement of B, i.e., Bδ = {x ∈ R : infy∈B |x− y| 6 δ}.

6.1. Proofs for Section 2. We begin with stating the following lemma.

Lemma 6.1. Work with the setup described in Section 2. Suppose that Conditions (PM), (VC),

and (MT) hold. Let Ln := supg∈G n
−1/2

∑n
i=1 g(Xi) and Z̃ := supg∈GWP (g). Then, there exist

universal constants C,C ′ > 0 such that P(Ln ∈ B) 6 P(Z̃ ∈ BCδn) + C ′(γ + n−1) for every

B ∈ B(R), where

δn =
(σ2

gbgK
2
n)1/3

γ1/3n1/6
+

bgKn

γn1/2−1/q
. (23)

In the case of q =∞, “1/q” is interpreted as 0.

The proof is a minor modification to that of Theorem 2.1 in [14]. Differences are 1) Lemma

6.1 allows q = ∞, and constants C,C ′ to be independent of q; 2) the error bound δn contains

bgKn/(γn
1/2−1/q) instead of bgKn/(γ

1/qn1/2−1/q); and 3) our definition of Kn is slightly different
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from theirs. For completeness, in Appendix C, we provide a sketch of the proof for Lemma 6.1,

which points out required modifications to the proof of Theorem 2.1 in [14].

Proof of Proposition 2.1. In view of the Strassen-Dudley theorem (see Theorem B.1), it suffices

to verify that there exist constants C,C ′ depending only r such that

P(Zn ∈ B) 6 P(Z̃ ∈ BC$n) + C ′(γ + n−1)

for every B ∈ B(R). In what follows, C,C ′ denote generic constants that depend only on r; their

values may vary from place to place.

We shall follow the notation used in Section 5. Consider the Hoeffding decomposition for

Un(h) = U
(r)
n (h): U

(r)
n (h) = rU

(1)
n (P r−1h) +

∑r
k=2

(
r
k

)
U

(k)
n (πkh), or

Un(h) =
√
nU (r)

n (h) = rGn(P r−1h) +
√
n

r∑
k=2

(
r

k

)
U (k)
n (πkh),

where Gn(P r−1h) := n−1/2
∑n

i=1(P r−1h)(Xi) is the Hájek (empirical) process associated with

Un. Recall that G = P r−1H = {P r−1h : h ∈ H}, and let Ln = supg∈G Gn(g) and Rn =

‖
√
n
∑r

k=2

(
r
k

)
U

(k)
n (πkh)/r‖H. Then, since |Zn − Ln| 6 Rn, Markov’s inequality and Lemma 6.1

yield that for every B ∈ B(R),

P(Zn ∈ B) 6 P({Zn ∈ B} ∩ {Rn 6 γ−1E[Rn]}) + P(Rn > γ−1E[Rn])

6 P(Ln ∈ Bγ−1E[Rn]) + γ

6 P(Z̃ ∈ BCδn+γ−1E[Rn]) + C ′(γ + n−1), (24)

where δn is given in (23).

It remains to bound E[Rn]. To this end, we shall separately apply Corollary 5.5 for k = 2 and

Corollary 5.6 for k = 3, . . . , r. First, applying Corollary 5.5 to F = H for k = 2 yields that

nE[‖U (2)
n (π2h)‖H] 6 C

(
σhKn + bhK

2
nn
−1/2+1/q

)
.

Likewise, applying Corollary 5.6 to F = H for k = 3, . . . , r yields that

r∑
k=3

E[‖U (k)
n (πkh)‖H] 6 C

r∑
k=3

n−k/2‖P r−kH‖Pk,2Kk/2
n = Cn−1/2χn.

Therefore, we conclude that

E[Rn] 6 C
r∑

k=2

n1/2E[‖U (k)
n (πkh)‖H] 6 C ′

(
σhKnn

−1/2 + bhK
2
nn
−1+1/q + χn

)
. (25)

Combining (24) with (25) leads to the conclusion of the proposition. �

Proof of Corollary 2.2. We begin with noting that we may assume that bg 6 n1/2, since otherwise

the conclusion is trivial by taking C > 1. In this proof, the notation . signifies that the left hand

side is bounded by the right hand side up to a constant that depends only on r, σg, and σg. Let
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γ ∈ (0, 1), and pick a version Z̃n of Z̃ as in Proposition 2.1 (Z̃n may depend on γ). Proposition

2.1 together with [14, Lemma 2.1] yield that

ρ(Zn, Z̃) = ρ(Zn, Z̃n) 6 sup
t∈R

P(|Z̃n − t| 6 C$n) + C ′(γ + n−1)

= sup
t∈R

P(|Z̃ − t| 6 C$n) + C ′(γ + n−1).

Now, the anti-concentration inequality (see Lemma A.1 in Appendix A) yields that

sup
t∈R

P(|Z̃ − t| 6 C$n) . $n

{
E[Z̃] +

√
1 ∨ log(σg/(C$n))

}
. (26)

Since G is VC type with characteristics 4
√
A and 2v for envelope G (Lemma 5.4), using an

approximation argument, we have that

N(G, ‖ · ‖P,2, τ) 6 (16
√
A‖G‖P,2/τ)2v, 0 < ∀τ 6 1.

Hence, Dudley’s entropy integral bound [25, Theorem 2.3.7] yields that E[Z̃] . (σg∨(n−1/2bg))K
1/2
n .

K
1/2
n where the last inequality follows from the assumption that bg 6 n1/2. Since

√
1 ∨ log(σg/(C$n)) .

(Kn ∨ log(γ−1))1/2, we conclude that

ρ(Zn, Z̃) . (Kn ∨ log(γ−1))1/2$n(γ) + γ + n−1.

The desired result follows from balancing K
1/2
n $n(γ) and γ. �

6.2. Proofs for Section 3.

Proof of Theorem 3.1. Recall that P|Xn
1

and E|Xn
1

denote the conditional probability and expec-

tation given Xn
1 , respectively. In view of the conditional version of the Strassen-Dudley theorem

(see Theorem B.2), it suffices to find constants C,C ′ depending only on r, and an event E ∈ σ(Xn
1 )

with P(E) > 1− γ − n−1 on which

P|Xn
1

(Z]n ∈ B) 6 P(Z̃ ∈ BC$]n) + C ′(γ + n−1) ∀B ∈ B(R).

The proof of Theorem 3.1 is involved and divided into six steps. In what follows, let C denote a

generic positive constant depending only on r; the value of C may change from place to place.

Step 1: Discretization.

For 0 < ε 6 1 to be determined later, let N := N(ε) := N(G, ‖ · ‖P,2, ε‖G‖P,2). Since

‖G‖P,2 6 bg, there exists an εbg-net {gk}Nk=1 for (G, ‖ · ‖P,2). By the definition of G, each gk

corresponds to a kernel hk ∈ H such that gk = P r−1hk. Invoke that the Gaussian process WP

can be extended to the linear hull of G in such a way that WP has linear sample paths [e.g., see

25, Theorem 3.7.28]. Now, observe that

0 6 sup
g∈G

WP (g)− max
16j6N

WP (gj) 6 ‖WP ‖Gε , 0 6 sup
h∈H

U]n(h)− max
16j6N

U]n(hj) 6 ‖U]n‖Hε ,
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where Gε = {g − g′ : g, g′ ∈ G, ‖g − g′‖P,2 < 2εbg} and Hε = {h − h′ : h, h′ ∈ H, ‖P r−1h −
P r−1h′‖P,2 < 2εbg}.

Step 2: Construction of a high-probability event E ∈ σ(Xn
1 ). We divide this step into several

sub-steps.

(i). For a P -integrable function g on S, we will use the notation

Gn(g) :=
1√
n

n∑
i=1

{g(Xi)− Pg}.

Consider the function class G ·G = {gg′ : g, g′ ∈ G}. Recall that G is VC type with characteristics

4
√
A and 2v for envelope G, and by Corollary A.1 (i) in [13] (“

√
2” there should read “2”), it

follows that G · G is VC type with characteristics 8
√
A and 4v for envelope G2. Observe that for

g, g′ ∈ G, P (gg′)2 6
√
Pg4

√
P (g′)4 6 σ2

gb
2
g by Condition (MT). Hence, applying Corollary 5.5

with F = G · G, r = k = 1, and q = q/2 yields that

n−1/2‖Gn‖G·G 6 C
(
σgbgK

1/2
n n−1/2 + b2gKnn

−1+2/q
)
,

so that with probability at least 1− γ/3,

n−1/2‖Gn‖G·G 6 Cγ−1
(
σgbgK

1/2
n n−1/2 + b2gKnn

−1+2/q
)

(27)

by Markov’s inequality.

(ii). Define

Υn :=

∥∥∥∥∥ 1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− P r−1h(Xi)}2

∥∥∥∥∥
H

.

We will show that

E[Υn] 6 C
{
σ2
hKnn

−1 + ν2
hK

2
nn
−3/2+2/q + σhbhK

3/2
n n−3/2 + b2hK

3
nn
−2+2/q + χ2

n

}
. (28)

Together with Markov’s inequality, we have that with probability at least 1− γ/3,

Υn 6 Cγ
−1
{
σ2
hKnn

−1 + ν2
hK

2
nn
−3/2+2/q + σhbhK

3/2
n n−3/2 + b2hK

3
nn
−2+2/q + χ2

n

}
. (29)

The proof of the inequality (28) is lengthly and deferred after the proof of the theorem.

(iii). We shall bound E[‖Un‖2H]. Applying Corollary 5.6 to H for k = 2, . . . , r yields that

r∑
k=2

E[‖U (k)
n (πkh)‖2H] 6 C

(
b2hK

2
nn
−2 + n−1χ2

n

)
.



34 X. CHEN AND K. KATO

Next, since U
(1)
n (π1h), h ∈ H is an empirical process, we may apply the Hoffmann-Jørgensen

inequality to deduce that

E[‖U (1)
n (π1h)‖2H] 6 C

{
(E[‖U (1)

n (π1h)‖H])2 + b2gn
−2+2/q

}
6 C

(
σ2
gKnn

−1 + b2gK
2
nn
−2+2/q + b2gn

−2+2/q
)

6 C
(
σ2
gKnn

−1 + b2gK
2
nn
−2+2/q

)
,

where the second inequality follows from Corollary 5.5. Since σg 6 σh and bg 6 bh,

E[‖Un‖2H] 6 C
(
σ2
hKnn

−1 + b2hK
2
nn
−2+2/q + n−1χ2

n

)
,

so that by Markov’s inequality, with probability at least 1− γ/3,

‖Un‖2H 6 Cγ−1
(
σ2
hKnn

−1 + b2hK
2
nn
−2+2/q + n−1χ2

n

)
. (30)

(iv). Let PIn,r = |In,r|−1
∑

(i1,...,ir)∈In,r δ(Xi1 ,...,Xir ) denote the empirical distribution on all

possible r-tuples of Xn
1 . Then Markov’s inequality yields that with probability at least 1− n−1,

‖H‖PIn,r ,2 6 n
1/2‖H‖P r,2. (31)

Now, define the event E by the the intersection of the events (27), (29), (30), and (31). Then,

E ∈ σ(Xn
1 ) and P(E) > 1− γ − n−1.

Step 3: Bounding the discretization error for WP .

By the Borell-Sudakov-Tsirel’son inequality [cf. 25, Theorem 2.5.8], we have that

P
(
‖WP ‖Gε > E[‖WP ‖Gε ] + 2εbg

√
2 log n

)
6 n−1.

Note that N(Gε, ‖ · ‖P,2, τ) 6 N2(G, ‖ · ‖P,2, τ/2). Since G is VC type with characteristics 4
√
A

and 2v for envelope G, using an approximation argument, we have that N(G, ‖ · ‖P,2, τ‖G‖P,2) 6

C(16
√
A/τ)2v, so that N(Gε, ‖ · ‖P,2, τ) 6 (32

√
Abg/τ)4v. Now, Dudley’s entropy integral bound

[48, Corollary 2.2.8] yields that

E[‖WP ‖Gε ] 6 C(εbg)
√
v log(A/ε).

Choosing ε = 1/n1/2, we have that

E[‖WP ‖Gε ] 6 Cbgn−1/2
√
v log(An1/2) 6 CbgK

1/2
n n−1/2.

Since log n 6 Kn, we conclude that

P
(
‖WP ‖Gε > CbgK1/2

n n−1/2
)
6 n−1.

Step 4: Bounding the discretization error for U]n.
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Since {U]n(h) : h ∈ H} is a centered Gaussian process conditionally on Xn
1 , applying the

Borell-Sudakov-Tsirel’son inequality conditionally on Xn
1 , we have that

P|Xn
1

(
‖U]n‖Hε > E|Xn

1
[‖U]n‖Hε ] +

√
2Σn log n

)
6 n−1,

where Σn := ‖n−1
∑n

i=1{U
(r−1)
n−1,−i(δXih)− Un(h)}2‖Hε .

We first bound Σn. For any h ∈ Hε, n−1
∑n

i=1{U
(r−1)
n−1,−i(δXih) − Un(h)}2 is bounded by

n−1
∑n

i=1{U
(r−1)
n−1,−i(δXih)}2 since the average of U

(r−1)
n−1,−i, i = 1, . . . , n is Un(h) and the variance is

bounded by the second moment. Further, the term n−1
∑n

i=1{U
(r−1)
n−1,−i(δXih)}2 is bounded by

3

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− P r−1h(Xi)}2

+
3

n

n∑
i=1

{(P r−1h(Xi))
2 − P (P r−1h)2}+ 3P (P r−1h)2.

(32)

The last term on the right hand side of (32) is bounded by 12(εbg)
2. The supremum of the first

term on Hε is bounded by 12Υn since Hε ⊂ {h − h′ : h, h′ ∈ H} (the notation Υn appears in

Step 2-(ii)). For the second term, observe that {(P r−1h)2 : h ∈ Hε} ⊂ {(g− g′)2 : g, g′ ∈ G}, (g−
g′)2−P (g− g′)2 = (g2−Pg2) + 2(gg′−Pgg′) + ((g′)2−P (g′)2), and {g2 : g ∈ G} ⊂ G ·G, so that

the supremum of the second term on the right hand side of (32) is bounded by 12n−1/2‖Gn‖G·G .

Therefore, recalling that we have chosen ε = 1/n1/2, we conclude that

Σn 6 12(εbg)
2 + 12n−1/2‖Gn‖G·G + 12Υn

6 Cγ−1

{
σgbgK

1/2
n n−1/2 + b2gKnn

−1+2/q + σ2
hKnn

−1

+ ν2
hK

2
nn
−3/2+2/q + σhbhK

3/2
n n−3/2 + b2hK

3
nn
−2+2/q + χ2

n

}
on the event E.

Next, we shall bound E|Xn
1

[‖U]n‖Hε ] on the event E. Since H is VC type with characteristics

A, v, it is not difficult to see that

N(Hε, ‖ · ‖PIn,r ,2, 2τ‖H‖PIn,r ,2) 6 N2(H, ‖ · ‖PIn,r ,2, τ‖H‖PIn,r ,2) 6 (A/τ)2v.

In addition, since

d2(h, h′) := E|Xn
1

[{U]n(h)− U]n(h′)}2]

=
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− Un(h)− U (r−1)

n−1,−i(δXih
′) + Un(h′)}2

6
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− U (r−1)

n−1,−i(δXih
′)}2 6 ‖h− h′‖2PIn,r ,2,
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where the last inequality follows from Jensen’s inequality, it follows that

N(Hε, d, 2τ‖H‖PIn,r ,2) 6 (A/τ)2v.

Hence, Dudley’s entropy integral bound yields that

E|Xn
1

[‖U]n‖Hε ] 6 C
(

(n−(r−1)/2‖H‖P r,2) ∨ Σ1/2
n

)√
v log(A‖H‖PIn,k,2/(n

−(r−1)/2‖H‖P r,2))

6 C
(

(n−(r−1)/2‖H‖P r,2) ∨ Σ1/2
n

)√
v log(Anr/2)

on the event E. Since n−(r−1)/2‖H‖P r,2 6 χn, we have that

E|Xn
1

[‖U]n‖Hε ] 6 CΣ1/2
n K1/2

n

6 Cγ−1/2

{
(σgbgK

3/2
n )1/2n−1/4 + bgKnn

−1/2+1/q + σhKnn
−1/2

+ νhK
3/2
n n−3/4+1/q + (σhbh)

1/2K5/4
n n−3/4 + bhK

2
nn
−1+1/q + χnK

1/2
n

}

on the event E. Hence, we conclude that

P|Xn
1

(‖U]n‖Hε > Cδ(1)
n ) 6 n−1

on the event E, where

δ(1)
n =

1

γ1/2

{
(σgbgK

3/2
n )1/2

n1/4
+

bgKn

n1/2−1/q
+
σhKn

n1/2
+

νhK
3/2
n

n3/4−1/q

+
(σhbh)

1/2K
5/4
n

n3/4
+

bhK
2
n

n1−1/q
+ χnK

1/2
n

}
.

Step 5: Gaussian comparison.
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Let Z],εn := max16j6N U]n(hj) and Z̃ε := max16j6N WP (gj). Observe that the covariance

between U]n(hk) and U]n(h`) conditionally on Xn
1 is

Ĉk,` :=
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXihk)− Un(hk)}{U

(r−1)
n−1,−i(δXih`)− Un(h`)}

=
1

n

n∑
i=1

U
(r−1)
n−1,−i(δXihk)U

(r−1)
n−1,−i(δXih`)− Un(hk)Un(h`)

=
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXihk)− P

r−1hk(Xi)}{U (r−1)
n−1,−i(δXih`)− P

r−1h`(Xi)}

+
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXihk)− P

r−1hk(Xi)}P r−1h`(Xi)

+
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih`)− P

r−1h`(Xi)}P r−1hk(Xi)

+
1

n

n∑
i=1

(P r−1hk(Xi))(P
r−1h`(Xi))− Un(hk)Un(h`).

Recall that gk = P r−1hk for each k, so that

|Ĉk,` − P (gkg`)|

6

[
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXihk)− P

r−1hk(Xi)}2
]1/2 [

1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih`)− P

r−1h`(Xi)}2
]1/2

+

[
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXihk)− P

r−1hk(Xi)}2
]1/2 [

1

n

n∑
i=1

g2
` (Xi)

]1/2

+

[
1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih`)− P

r−1h`(Xi)}2
]1/2 [

1

n

n∑
i=1

g2
k(Xi)

]1/2

+ n−1/2|Gn(gkg`)|+ |Un(hk)Un(h`)|,

where we have used the Cauchy-Schwarz inequality. Since n−1
∑n

i=1 g
2(Xi), g ∈ G is decomposed

as Pg2 + n−1/2Gn(g2) and the supremum of the latter on G is bounded by σ2
g + n−1/2‖Gn‖G·G ,

we have that

∆n := max
16k,`6N

|Ĉj,k − P (gkg`)|

6 Υn + 2σgΥ
1/2
n + 2n−1/4Υ1/2

n ‖Gn‖1/2G·G + n−1/2‖Gn‖G·G + ‖Un‖2H
6 2Υn + 2σgΥ

1/2
n + 2n−1/2‖Gn‖G·G + ‖Un‖2H,
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where the second inequality follows from the inequality 2ab 6 a2 + b2 for a, b ∈ R. Now, the

growth condition (8) ensures that

Υn

∨
(σgΥ

1/2
n )

∨
‖Un‖2H 6 Cγ−1σg

{
σhK

1/2
n n−1/2 + νhKnn

−3/4+1/q

+ (σhbh)
1/2K3/4

n n−3/4 + bhK
3/2
n n−1+1/q + χn

}

on the event E, so that

∆n 6 Cγ
−1

[
(bg ∨ σh)σgK1/2

n n−1/2 + b2gKnn
−1+2/q

+ σg

{
νhKnn

−3/4+1/q + (σhbh)
1/2K3/4

n n−3/4 + bhK
3/2
n n−1+1/q + χn

}]
=: ∆n.

Therefore, the Gaussian comparison inequality of [14, Theorem 3.2] yields that on the event E,

P|Xn
1

(Z],εn ∈ B) 6 P(Z̃ε ∈ Bη) + Cη−1∆
1/2
n K1/2

n ∀B ∈ B(R), ∀η > 0.

Step 6: Conclusion. Let

δ(2)
n :=

1

γ1/2

{
{(bg ∨ σh)σgK

3/2
n }1/2

n1/4
+

bgKn

n1/2−1/q
+

(σgνh)
1/2Kn

n3/8−1/(2q)

+
σ

1/2
g (σhbh)

1/4K
7/8
n

n3/8
+

(σgbh)
1/2K

5/4
n

n1/2−1/(2q)
+ σ

1/2
g χ1/2

n K1/2
n

}
.

Then, from Steps 1–5, we have that for every B ∈ B(R) and η > 0,

P|Xn
1

(Z]n ∈ B) 6 P|Xn
1

(Z],εn ∈ BCδ
(1)
n ) + n−1

6 P(Z̃ε ∈ BCδ
(1)
n +η) + Cη−1δ(2)

n + n−1

6 P(Z̃ ∈ BCδ
(1)
n +η+CbgK

1/2
n n−1/2

) + Cη−1δ(2)
n + 2n−1.

Choosing η = γ−1δ
(2)
n leads to the conclusion of the theorem. �

It remains to prove the inequality (28).

Proof of the inequality (28). For a P r−1-integrable symmetric function f on Sr−1, U
(r−1)
n−1,−i(f) is

a U -statistic of order r − 1, and its first projection term is

r − 1

n− 1

n∑
j=1, 6=i

{P r−2f(Xj)− P r−1f} =: Sn−1,−i(f).
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Consider the following decomposition:

1

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− P r−1h(Xi)}2

6
2

n

n∑
i=1

{Sn−1,−i(δXih)}2 +
2

n

n∑
i=1

{U (r−1)
n−1,−i(δXih)− P r−1(δXih)− Sn−1,−i(δXih)}2.

(33)

Consider the second term. By Lemma A.2 in Appendix A, for given x ∈ S, δxH = {δxx : h ∈
H} is VC type with characteristics 2

√
A and 2v for envelope δxH. Hence, we apply Corollary

5.6 conditionally on Xi and deduce that

E
[
E
[∥∥∥U (r−1)

n−1,−i(δXih)− P r−1(δXih)− Sn−1,−i(δXih)
∥∥∥2

H

∣∣∣ Xi

]]
6 C

r−1∑
k=2

n−kE
[
‖P r−k−1(δxH)‖2Pk,2|x=Xi

]
Kk
n = C

r−1∑
k=2

n−k‖P r−k−1H‖2Pk+1,2K
k
n.

Since
∑r−1

k=2 n
−k‖P r−k−1H‖2

Pk+1,2
Kk
n =

∑r
k=3 n

−(k−1)‖P r−kH‖2
Pk,2

Kk−1
n 6 Cχ2

n, the expectation

of the supremum on H of the second term on the right hand side of (33) is at most Cχ2
n.

For the first term, observe that

n−1
n∑
i=1

{Sn−1,−i(δXih)}2

=
(r − 1)2

n(n− 1)2

n∑
i=1

∑
j 6=i

∑
k 6=i

{
(P r−2h)(Xi, Xj)(P

r−2h)(Xi, Xk)− (P r−2h)(Xi, Xj)(P
r−1h)(Xi)

− (P r−2h)(Xi, Xk)(P
r−1h)(Xi) + (P r−1h)2(Xi)

}
.

Let F = {P r−2h : h ∈ H} and F = P r−2H, and observe that for f ∈ F ,

n∑
i=1

∑
j 6=i

∑
k 6=i

{
f(Xi, Xj)f(Xi, Xk)− f(Xi, Xj)(Pf)(Xi)− f(Xi, Xk)(Pf)(Xi) + (Pf)2(Xi)

}
= n(n− 1){P 2f2 − P (Pf)2}

+
∑

(i,j)∈In,2

{
f2(Xi, Xj)− 2f(Xi, Xj)(Pf)(Xi) + (Pf)2(Xi)− P 2f2 + P (Pf)2

}
+

∑
(i,j,k)∈In,3

{
f(Xi, Xj)f(Xi, Xk)− f(Xi, Xj)(Pf)(Xi)− f(Xi, Xk)(Pf)(Xi) + (Pf)2(Xi)

}
.

Since P 2f2−P (Pf)2 6 σ2
h , we focus on bounding the suprema of the last two terms. The second

term is proportional to a non-degenerate U -statistic of order 2, and the third term is proportional

to a degenerate U -statistic of order 3. Define the function classes

F1 :=
{

(x1, x2) 7→ f2(x1, x2)− 2f(x1, x2)(Pf)(x1) + (Pf)2(x1) : f ∈ F
}
,
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F0
2 :=

(x1, x2, x3) 7→

 f(x1, x2)f(x1, x3)− f(x1, x2)(Pf)(x1)

− f(x1, x3)(Pf)(x1) + (Pf)2(x1)

 : f ∈ F

 ,

F2 :=
{

(x2, x3) 7→ E[f(X1, x2, x3)] : f ∈ F0
2

}
,

F3 :=
{

(x1, x2, x3) 7→ f(x1, x2, x3)− E[f(X1, x2, x3)] : f ∈ F0
2

}
,

together with their envelopes

F1(x1, x2) := F 2(x1, x2) + 2F (x1, x2)(PF )(x1) + (PF )2(x1),

F 0
2 (x1, x2, x3) := F (x1, x2)F (x1, x3) + F (x1, x2)(PF )(x1) + F (x1, x3)(PF )(x1) + (PF )2(x1),

F2(x2, x3) := E[F 0
2 (X1, x2, x3)],

F3(x1, x2, x3) := F 0
2 (x1, x2, x3) + F2(x2, x3),

respectively. Lemma A.2 yields that F is VC type with characteristics 2
√
A, 2v for envelope F ,

and Corollary A.1 (i) in [13] together with Lemma A.2 yield that F1,F2,F3 are VC type with

characteristics bounded by CA,Cv for envelopes F1, F2, F3, respectively. Functions in F1 are not

symmetric, but after symmetrization we may apply Corollaries 5.5 and 5.6 for k = 1 and k = 2,

respectively. Together with the Jensen and Cauchy-Schwarz inequalities, we deduce that

E[‖U (2)
n (f)− P 2f‖F1 ] 6 C

{
sup
f∈F
‖f2‖P 2,2K

1/2
n n−1/2 + ‖F 2‖P 2,q/2Knn

−1+2/q + ‖F 2‖P 2,2Knn
−1

}
6 C

(
σhbhK

1/2
n n−1/2 + b2hKnn

−1+2/q
)
,

where we have used that ‖P r−2h‖4P 2,4 6 σ
2
hb

2
h for h ∈ H by Condition (MT).

Next, observe that

‖U (3)
n (f)‖F0

2
6 ‖U (2)

n (f)‖F2 + ‖U (3)
n (f)‖F3 .

Since for f ∈ F0
2 , E[f(x1, X2, X3)] = E[f(X1, x2, X3)] = E[f(X1, X2, x3)] = E[f(x1, X2, x3)] =

E[f(x1, x2, X3)] = 0 for all x1, x2, x3 ∈ S, both U
(2)
n (f), f ∈ F2 and U

(3)
n (f), f ∈ F3 are completely

degenerate. So, applying Corollary 5.5 to F2 and F3 after symmetrization, combined with the

Jensen and Cauchy-Schwarz inequalities, we deduce that

E[‖U (3)
n (f)‖F0

2
] 6 C

{∥∥‖f�2‖P 2,2

∥∥
F Knn

−1 + ‖F�2‖P 2,q/2K
2
nn
−3/2+2/q

+ sup
f∈F
‖f2‖P 2,2K

3/2
n n−3/2 + ‖F 2‖P 2,q/2K

3
nn
−2+2/q

}

6 C

{∥∥‖f�2‖P 2,2

∥∥
F Knn

−1 + ‖F�2‖P 2,q/2K
2
nn
−3/2+2/q

+ σhbhK
3/2
n n−3/2 + b2hK

3
nn
−2+2/q

}
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where recall that f�2(x1, x2) := f�2
P (x1, x2) :=

∫
f(x1, x)f(x, x2)dP (x) for a symmetric measur-

able function f on S2. For f ∈ F , observe that by the Cauchy-Schwarz inequality,

‖f�2‖2P 2,2 =

∫∫ (∫
f(x1, x)f(x, x2)dP (x)

)2

dP (x1)dP (x2)

6

(∫∫
f2(x1, x2)dP (x1)dP (x2)

)2

= ‖f‖4P 2,2 6 σ
4
h .

On the other hand, ‖F�2‖P 2,q/2 = ν2
h by the definition of νh. Therefore, we conclude that

E

[∥∥∥∥∥n−1
n∑
i=1

{Sn−1,−i(δXih)}2
∥∥∥∥∥
H

]

6 C
{
σ2
hKnn

−1 + ν2
hK

2
nn
−3/2+2/q + σhbhK

3/2
n n−3/2 + b2hK

3
nn
−2+2/q + χ2

n

}
.

This completes the proof. �

Proof of Corollary 3.2. This follows from the discussion before Theorem 3.1 combined with the

anti-concentration inequality (Lemma A.1), and optimization with respect to γ. Note that it is

without loss of generality to assume that ηn 6 σ
1/2
g since otherwise the result is trivial by taking

C or C ′ large enough, and hence the growth condition (8) is automatically satisfied. �

6.3. Proofs for Section 4. We first prove Theorem 4.2 and Corollary 4.3, and then prove

Lemma 4.1 and Theorem 4.4.

Proof of Theorem 4.2. For the notational convenience, we will assume that each hn,ϑ is P r-

centered; otherwise replace hn,ϑ by hn,ϑ − P rhn,ϑ, and the proof below applies to the non-

centered case as well. In what follows, the notation . signifies that the left hand side is bounded

by the right hand side up to a constant that depends only on r,m, ζ, c1, c2, C1, L. We also write

a ' b if a . b and b . a. In addition, let c, C,C ′ denote generic constants depending only on

r,m, ζ, c1, c2, C1, L; their values may vary from place to place. We divide the rest of the proof

into three steps.

Step 1. Let

S]n := sup
ϑ∈Θ

b
m/2
n

cn(ϑ)
√
n

n∑
i=1

ξi

[
U

(r−1)
n−1,−i(δDihn,ϑ)− Un(hn,ϑ)

]
.

In this step, we shall show that the result (14) holds with Ŝn and Ŝ]n replaced by Sn and S]n,

respectively.

We first verify Conditions (PM), (VC), and (MT) for the function class

Hn =
{
bm/2n cn(ϑ)−1hn,ϑ : ϑ ∈ Θ

}
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with a symmetric envelope

Hn(d1:r) = b−(r−1/2)m
n c−1

1 ‖L‖
r
Rmϕ(v1:r)

r∏
i=1

1X ζ/2(xi)
∏

16i<j6r

1[−2,2]m(b−1
n (xi − xj)).

Condition (PM) follows from our assumption. For Condition (VC), that Hn is VC type with

characteristics A′, v′ with logA′ . log n, v′ . 1 follows from a slight modification of the proof of

Lemma 3.1 in [22]. The latter part follows from our assumption. Condition (VC) guarantees the

existence of a tight Gaussian random variable WP,n(g), g ∈ P r−1Hn =: Gn in `∞(Gn) with mean

zero and covariance function E[WP,n(g)WP,n(g′)] = CovP (g, g′) for g, g′ ∈ Gn. Let WP,n(ϑ) =

WP,n(gn,ϑ) for ϑ ∈ Θ where gn,ϑ = b
m/2
n cn(ϑ)−1P r−1hn,ϑ. It is seen that WP,n(ϑ), ϑ ∈ Θ is a

tight Gaussian random variable in `∞(Θ) with mean zero and covariance function (13).

Next, we determine the values of parameters σg, σg, bg, σh, bh, χn, νh for the function class Hn.

We will show in Step 3 that we may choose

σg ' 1, σg ' 1, bg ' b−m/2n , σh ' b−m/2n , bh ' b−3m/2
n , (34)

and bound νh and χn as

νh . b
−m(1−1/q)
n , χn . (log n)3/2/(nb3m/2n ). (35)

Given these choices and bounds, Corollaries 2.2 and 3.2 yield that

sup
t∈R

∣∣∣P(Sn 6 t)− P(S̃n 6 t)
∣∣∣ 6 Cn−c, and

P
{

sup
t∈R

∣∣∣P|Dn1 (S]n 6 t)− P(S̃n 6 t)
∣∣∣ > Cn−c

}
6 Cn−c.

(36)

Step 2. Observe that

|Ŝn − Sn| 6 sup
ϑ∈Θ

∣∣∣∣cn(ϑ)

ĉn(ϑ)
− 1

∣∣∣∣ ‖√nUn‖Hn and |Ŝ]n − S]n| 6 sup
ϑ∈Θ

∣∣∣∣cn(ϑ)

ĉn(ϑ)
− 1

∣∣∣∣ ‖U]n‖Hn . (37)

We shall bound supϑ∈Θ |cn(ϑ)/ĉn(ϑ)− 1|, ‖
√
nUn‖Hn , and ‖U]n‖Hn .

Choose n0 by the smallest n such that C1n
−c2 6 1/2; it is clear that n0 depends only on c2

and C1. It suffices to prove (14) for n > n0, since for n < n0, the result (14) becomes trivial by

taking C sufficiently large. So let n > n0. Then Condition (T8) ensures that with probability

at least 1− C1n
−c2 , infϑ∈Θ ĉn(ϑ)/cn(ϑ) > 1/2. Since |a−1 − 1| 6 4|a− 1| for a > 1/2, Condition

(T8) also ensures that

P
{

sup
ϑ∈Θ

∣∣∣∣cn(ϑ)

ĉn(ϑ)
− 1

∣∣∣∣ > Cn−c
}
6 Cn−c. (38)

Next, we shall bound ‖
√
nUn‖Hn and ‖U]n‖Hn . Given (34) and (35), and in view of the fact

that the covering number of Hn ∪ (−Hn) := {h,−h : h ∈ Hn} is at most twice that of Hn,
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applying Corollaries 2.2 and 3.2 to the function class Hn ∪ (−Hn), we deduce that

sup
t∈R

∣∣P(‖
√
nUn‖Hn 6 t)− P(‖WP,n‖Gn 6 t)

∣∣ 6 Cn−c, and

P
{

sup
t∈R

∣∣∣P|Dn1 (‖U]n‖Hn 6 t)− P(‖WP,n‖Gn 6 t)
∣∣∣ > Cn−c

}
6 Cn−c.

(Theorem 3.7.28 in [25] ensures that the Gaussian process WP,n can extended to the symmetric

convex hull of Gn in such a way that WP,n has linear, bounded, and uniformly continuous (with

respect to the intrinsic pseudo-metric) sample paths; in particular, {WP,n(g) : g ∈ Gn ∪ (−Gn)}
is a tight Gaussian random variable in `∞(Gn ∪ (−Gn)) with mean zero and covariance func-

tion E[WP,n(g)WP,n(g′)] = CovP (g, g′) for g, g′ ∈ Gn ∪ (−Gn), and supg∈Gn∪(−Gn)Wn(g) =

‖WP,n‖Gn .) Dudley’s entropy integral bound and the Borell-Sudakov-Tsirel’son inequality yield

that P{‖WP,n‖Gn > C(log n)1/2} 6 2n−1, so that

P{‖
√
nUn‖Hn > C(log n)1/2} 6 Cn−c, and

P
{
P|Dn1 {‖U

]
n‖Hn > C(log n)1/2} > Cn−c

}
6 Cn−c.

(39)

Now, the desired result (14) follows from combining (36)–(39) and the anti-concentration

inequality (Lemma A.1). In fact, the anti-concentration inequality yields that

sup
t∈R

P(|S̃n − t| 6 Cn−c) 6 C ′n−c(log n)1/2. (40)

Hence, combining the bounds (36)–(39) and (40), we have that for every t ∈ R,

P(Ŝn 6 t) 6 P(Sn 6 t+ Cn−c) + Cn−c

6 P(S̃n 6 t+ Cn−c) + Cn−c

6 P(S̃n 6 t) + Cn−c,

and likewise P(Ŝn 6 t) > P(S̃n 6 t)− Cn−c. Similarly, we have that

P
{

sup
t∈R

∣∣∣P|Dn1 (Ŝ]n 6 t)− P(S̃n 6 t)
∣∣∣ > Cn−c

}
6 Cn−c.

Step 3. It remains to verify (34) and (35). First, that we may choose σg ' 1 follows from

Conditions (T6) and (T7). For ϕ ∈ Φ and k = 1, . . . , r − 1, let

ϕ[r−k](v1:k, xk+1:r) = E[ϕ(v1:k, Vk+1:r) | Xk+1:r = xk+1:r]
r∏

j=k+1

p(xj),

and define ϕ[r−k] similarly. Then, for k = 1, . . . , r,

(P r−khn,ϑ)(d1:k) =

 k∏
j=1

Lbn(x− xj)

∫
[−1,1]m(r−k)

ϕ[r−k](v1:k, x−bnxk+1:r)

 r∏
j=k+1

L(xj)

 dxk+1:r,
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where x− bnxk+1:r = (x− bnxk+1, . . . , x− bnxr). Likewise, we have that

(P r−kHn)(d1:k) . b
−(k−1/2)m
n

(
k∏
i=1

1X ζ/2(xi)

) ∏
16i<j6k

1[−2,2]m(b−1
n (xi − xj))


×
∫

[−2,2]m(r−k)
ϕ[r−k](v1:k, x1 − bnxk+1:r)dxk+1:r.

Suppose first that q is finite and let ` ∈ [2, q]. Observe that by Jensen’s inequality,

‖P r−khn,ϑ‖`Pk,` 6 C
`b−(`−1)mk
n

∫
[−1,1]mr

E
[
ϕ`(V1:r) | X1:r = x− bnx1:r

] k∏
j=1

p(x− bnxj)

 dx1:r

6 C`b−(`−1)mk
n

∫
[−1,1]mr

E
[
ϕ`(V1:r) | X1:r = x− bnx1:r

]
dx1:r 6 C

`b−(`−1)mk
n ,

so that suph∈Hn ‖P
r−kh‖Pk,` . b

−m[(k−1/2)−k/`]
n . Hence, we may choose σg ' 1 and σh ' b

−m/2
n .

Similarly, Jensen’s inequality and the symmetry of ϕ yield that

‖P r−kHn‖`Pk,` 6 C
`b−(k−1/2)m`+m(k−1)
n

×
∫
X ζ/2×[−2,2]m(r−1)

E
[
ϕ`(V1:r) | X1 = x1, X2:r = x1 − bnx2:j

]
p(x1)

k∏
j=2

p(x1 − bnxj)dx1:r

6 C`b−(k−1/2)m`+m(k−1)
n

∫
X ζ/2×[−2,2]m(r−1)

E
[
ϕ`(V1:r) | X1 = x1, X2:r = x1 − bnx2:j

]
dx1:r

6 C`b−(k−1/2)m`+m(k−1)
n ,

so that ‖P r−kHn‖Pk,` . b
−m[(1−1/`)k−(1/2−1/`)]
n . Hence, we may choose bg ' b

−m/2
n , bh ' b

−3m/2
n ,

and bound χn as

χn .
r∑

k=3

n−(k−1)/2(log n)k/2b−mk/2n .
(log n)3/2

nb
3m/2
n

.

Similar calculations yield that

‖(P r−2Hn)�2‖q/2
P 2,q/2

6 Cqb−m(q−1)
n

∫
X ζ/2×[−2,2]m(r−1)

E [ϕq(V1:r) | X1 = x1, X2:r = x1 − bnx2:j ] dx1:r

6 Cqb−m(q−1)
n .

Hence, νh . b
−m(1−1/q)
n .

It is not difficult to verify that (34) and (35) hold in the q = ∞ case as well under the

convention that 1/q = 0 for q =∞. This completes the proof. �

Proof of Corollary 4.3. Let ηn := Cn−c where the constants c, C are those given in Theorem 4.2.

Denote by q
Ŝn

(α) and q
S̃n

(α) the α-quantiles of Ŝn and S̃n, respectively. Define the event

En :=

{
sup
t∈R

∣∣∣P|Dn1 (Ŝ]n 6 t)− P(S̃n 6 t)
∣∣∣ 6 ηn} ,
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whose probability is at least 1− ηn. On this event,

P|Dn1
{
Ŝ]n 6 qS̃n(α+ ηn)

}
> P

{
S̃n 6 qS̃n(α+ ηn)

}
− ηn

= α+ ηn − ηn = α,

where the second equality follows from the fact that the distribution function of S̃n is continuous

(cf. Lemma A.1). This shows that the inequality

q
Ŝ]n

(α) 6 q
S̃n

(α+ ηn)

holds on the event En, so that

P
{
Ŝn 6 qŜ]n(α)

}
6 P

{
Ŝn 6 qS̃n(α+ ηn)

}
+ P(Ecn)

6 P
{
S̃n 6 qS̃n(α+ ηn)

}
+ 2ηn

= α+ 3ηn.

The above distribution presumes that α + ηn < 1, but if α + ηn > 1, then the last inequality is

trivial. Likewise, we have that

P
{
Ŝn 6 qŜ]n(α)

}
> α− 3ηn.

This completes the proof. �

Proof of Lemma 4.1. As in the proof of Theorem 4.2, we will assume that each hn,ϑ is P r-

centered. We begin with noting that∣∣∣∣ ĉn(ϑ)

cn(ϑ)
− 1

∣∣∣∣ 6 ∣∣∣∣ ĉ2
n(ϑ)

c2
n(ϑ)

− 1

∣∣∣∣ 6 1

n

n∑
i=1

[
{U (r−1)

n−1,−i(δDi h̆n,ϑ)− Un(h̆n,ϑ)}2 − 1
]
,

where h̆n,ϑ = b
m/2
n cn(ϑ)−1hn,ϑ. Note that VarP (P r−1h̆n,ϑ) = 1 by the definition of cn(ϑ). Recall

from the proof of Theorem 4.2 that the function class Hn = {h̆n,ϑ : ϑ ∈ Θ} is VC type with

characteristics A′, v′ with logA′ . log n, v′ . 1 for envelope Hn. Now, from Step 5 in the proof

of Theorem 3.1 applied with H = Hn, we have that, for every γ ∈ (0, 1), with probability at least

1− γ − n−1,∥∥∥∥∥ 1

n

n∑
i=1

[
{U (r−1)

n−1,−i(δDih)− Un(h)}2 − 1
]∥∥∥∥∥
Hn

6 Cγ−1

[
(bg ∨ σh)σgK1/2

n n−1/2 + b2gKnn
−1+2/q

+ σg

{
νhKnn

−3/4+1/q + (σhbh)
1/2K3/4

n n−3/4 + bhK
3/2
n n−1+1/q + χn

}]
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for some constant C depending only on r. The desired result follows from the choices of param-

eters σg, bg, σh, bh, χn, and νh given in the proof of Theorem 4.2 together with choosing γ = n−c

for some constant c sufficiently small but depending only on r,m, ζ, c1, c2, C1, L. �

Proof of Theorem 4.4. The proof follows from similar arguments to those in the proof of Theorem

4.2, so we only highlight the differences. Define the function class

Hn =
{
bm/2cn(ϑ, b)−1hϑ,b : ϑ ∈ Θ, b ∈ Bn

}
with a symmetric envelope

Hn(d1:r) = b−(r−1/2)m
n c−1

1 ‖L‖
r
Rmϕ(v1:r)

r∏
i=1

1X ζ/2(xi)
∏

16i<j6r

1[−2,2]m(b
−1
n (xi − xj)).

Recall that we assume q =∞ in this theorem. In view of the calculations in the proof of Theorem

4.2, we may choose

σg ' 1, σg ' 1, bg ' κm(r−1)
n b−m/2n , σh ' b−m/2n , bh ' κm(r−2)

n b−3m/2
n ,

and bound νh and χn as

νh . κ
m/2
n b−mn , χn .

κ
m(r−2)
n (log n)3/2

nb
3m/2
n

.

Given these choices and bounds, the conclusion of the theorem follows from repeating the proof

of Theorem 4.2. �

Appendix A. Supporting lemmas

This appendix collects two supporting lemmas that are repeatedly used in the main text.

Lemma A.1 (An anti-concentration inequality for the Gaussian supremum). Let (S,S, P ) be a

probability space, and let G ⊂ L2(P ) be a P -pre-Gaussian class of functions. Denote by WP a tight

Gaussian random variable in `∞(G) with mean zero and covariance function E[WP (g)WP (g′)] =

CovP (g, g′) for all g, g′ ∈ G where CovP (·, ·) denotes the covariance under P . Suppose that there

exist constants σ, σ > 0 such that σ2 6 VarP (g) 6 σ2 for all g ∈ G. Then for every ε > 0,

sup
t∈R

P

{∣∣∣∣∣sup
g∈G

WP (g)− t

∣∣∣∣∣ 6 ε
}
6 Cσε

{
E

[
sup
g∈G

WP (g)

]
+
√

1 ∨ log(σ/ε)

}
,

where Cσ is a constant depending only on σ and σ.

Proof. See Lemma A.1 in [13]. �
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Lemma A.2. Let (X ,A), (Y, C) be measurable spaces, and let F be a class of real-valued jointly

measurable functions on X × Y equipped with finite envelope F . Let R be a probability measure

on (Y, C), and for a jointly measurable function f : X × Y → R, define f : X → R by

f(x) :=

∫
f(x, y)dR(y)

whenever the latter integral is well-defined and is finite for every x ∈ X . Suppose that F is

everywhere finite, and let F = {f : f ∈ F}. Then, for every finite r, s > 1,

sup
Q
N(F , ‖ · ‖Q,r, 2ε‖F‖Q,r) 6 sup

Q
N(F , ‖ · ‖Q×R,s, εr‖F‖Q×R)

where supQ is taken over all finitely discrete distributions on X .

Proof. See Lemma A.1 in [22]. �

Appendix B. Strassen-Dudley theorem and its conditional version

In this appendix, we state the Strassen-Dudley theorem together with its conditional version

due to [37]. These results play fundamental roles in the proofs of Proposition 2.1 and Theorem

3.1. In what follows, let (S, d) be a Polish metric space equipped with its Borel σ-field B(S).

For any set A ⊂ S and δ > 0, let Aδ = {x ∈ S : infy∈A d(x, y) 6 δ}. We first state the

Strassen-Dudley theorem.

Theorem B.1 (Strassen-Dudley). Let X be an S-valued random variable defined on a probability

space (Ω,A,P) which admits a uniform random variable on (0, 1) independent of X. Let α, β > 0

be given constants, and let G be a Borel probability measure on S such that P(X ∈ A) 6 G(Aα)+β

for all A ∈ B(S). Then there exists an S-valued random variable Y such that L(Y )(:= P◦Y −1) =

G and P(d(X,Y ) > α) 6 β.

For a proof of the Strassen-Dudley theorem, we refer to [18]. Next, we state a conditional

version of the Strassen-Dudley theorem due to [37, Theorem 4].

Theorem B.2 (Conditional version of Strassen-Dudley). Let X be an S-valued random variable

defined on a probability space (Ω,A,P), and let G be a countably generated sub σ-field of A.

Suppose that there is a uniform random variable on (0, 1) independent of G ∨ σ(X), and let

Ω × B(S) 3 (ω,A) 7→ G(A | G)(ω) be a regular conditional distribution given G, i.e., for each

fixed A ∈ B(S), G(A | G) is measurable with respect to G, and for each fixed ω ∈ Ω, G(· | G)(ω)

is a probability measure on B(S). If

E∗
[

sup
A∈B(S)

{P(X ∈ A | G)−G(Aα | G)}

]
6 β, (41)

then there exists an S-valued random variable Y such that the conditional distribution of Y given

G is identical to G(· | G), and P(d(X,Y ) > α) 6 β.



48 X. CHEN AND K. KATO

Remark B.1. (i) The map (ω,A) 7→ P(X ∈ A | G)(ω) should be understood as a regular

conditional distribution (which is guaranteed to exist since X takes values in a Polish space). (ii)

E∗ denotes the outer expectation.

For completeness, we provide a self-contained proof of Theorem B.2, since [37] do not provide

its direct proof.

Proof of Theorem B.2. Since G is countably generated, there exists a real-valued random variable

W such that G = σ(W ). For n = 1, 2, . . . and k ∈ Z, let Dn,k = {k/2n 6 W < (k + 1)/2n}. For

each n, {Dn,k : k ∈ Z} forms a partition of Ω. Pick any D from {Dn,k : n = 1, 2, . . . ; k ∈ Z}; let

PD = P(· | D) and G(· | D) =
∫
G(· | G)dPD. Then, the Strassen-Dudley theorem yields that

there exists an S-valued random variable YD such that L(YD) = G(· | D) and PD(d(X,YD) >

α) 6 ε(D) := supA∈B(S){PD(A)−G(Aα | D)}.
For each n = 1, 2, . . . , let Yn =

∑
k∈Z YDn,k1Dn,k , and observe that

P(d(X,Yn) > α) =
∑
k

PDn,k(d(X,YDn,k) > α)P(Dn,k) 6
∑
k

ε(Dn,k)P(Dn,k).

Let M be any (proper) random variable such that M > supA∈B(S){P(X ∈ A | G)−G(Aα | G)},
and observe that

PD(X ∈ A)−G(Aα | D) = EPD [P(X ∈ A | G)−G(Aα | G)] 6 EPD [M ],

where the notation EPD denotes the expectation under PD. So,∑
k

ε(Dn,k)P(Dn,k) 6
∑
k

EPDn,k [M ]P(Dn,k) = E[M ],

and taking infimum with respect to M yields that the left hand side is bounded by β.

Next, we shall verify that {L(Yn) : n > 1} is uniformly tight. In fact,

P(Yn ∈ A) =
∑
k

P({YDn,k ∈ A} ∩Dn,k) =
∑
k

PDn,k(YDn,k ∈ A)P(Dn,k)

=
∑
k

G(A | Dn,k)P(Dn,k) = E[G(A | G)],

and since any Borel probability measure on a Polish space is tight by Ulam’s theorem, {L(Yn) :

n > 1} is uniformly tight. This implies that the family of joint laws {L(X,W, Yn) : n > 1}
is uniformly tight and hence has a weakly convergent subsequence by Prohorov’s theorem. Let

L(X,W, Yn′)
w→ Q (the notation

w→ denotes weak convergence), and observe that the marginal

law of Q on the “first two” coordinates, S × R, is identical to L(X,W ).

We shall verify that there exists an S-valued random variable Y such that L(X,W, Y ) =

Q. Since S is polish, there exists a unique regular conditional distribution, B(S) × (S × R) 3
(A, (x,w)) 7→ Qx,w(A) ∈ [0, 1], for Q given the first two coordinates. By the Borel isomorphism

theorem [18, Theorem 13.1.1], there exists a bijective map π from S onto a Borel subset of R
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such that π and π−1 are Borel measurable. Pick and fix any (x,w) ∈ S × R, and observe that

Qx,w ◦π−1 extends to a Borel probability measure on R. Denote by Fx,w the distribution function

of Qx,w ◦ π−1, and let F−1
x,w denotes its quantile function. Let U be a uniform random variable

on (0, 1) (defined on (Ω,A,P)) independent of (X,W ). Then F−1
x,w(U) has law Qx,w ◦ π−1, and

hence Y = π−1 ◦ F−1
X,W (U) is the desired random variable.

Now, for any bounded continuous function f on S, observe that, whenever N > n,

E[f(YN )1Dn,k ] =

∫
Dn,k

∫
f(y)G(dy | G)dP,

which implies that the conditional distribution of Y given G is identical to G(· | G). Finally, the

Portmanteau theorem yields that

P(d(X,Y ) > α) 6 lim inf
n′

P(d(X,Yn′) > α) 6 β.

This completes the proof. �

Appendix C. Proof of Lemma 6.1

We begin with noting that G is VC type with characteristics 4
√
A and 2v for envelope G.

The rest of the proof is almost the same as that of Theorem 2.1 in [14] with B(f) ≡ 0 (up to

adjustments of the notation), but we now allow q = ∞. To avoid repetitions, we only point

out required modifications. In what follows, we will freely use the notation in the proof of

[14, Theorem 2.1], but modify Kn to Kn = v log(A ∨ n), and C refers to a universal constant

whose value may vary from place to place. In Step 1, change ε to ε = 1/n1/2. For this choice,

logN(F , eP , εb) 6 C log(Ab/(εb)) = C log(A/ε) 6 CKn, and Dudley’s entropy integral bound

yields that E[‖GP ‖Fε ] 6 Cεb
√

log(Ab/(εb)) 6 Cb
√
Kn/n (there is a slip in the estimate of

E[‖GP ‖Fε ] in [14], namely, “Ab/ε” inside the log should read “Ab/(εb)”, which of course does

not affect the proof under their definition of Kn). Combining the Borell-Sudakov-Tsirel’son

inequality yields that P{‖GP ‖Fε > Cb
√
Kn/n} 6 2n−1. In Step 3, Corollary 5.5 in the present

paper (with r = k = 1) yields that E[‖Gn‖Fε ] 6 C(b
√
Kn/n+ bKn/n

1/2−1/q) 6 CbKn/n
1/2−1/q,

which is valid even when q =∞. Then, instead of applying their Lemma 6.1, we apply Markov’s

inequality to deduce that

P
{
‖Gn‖Fε > CbKn/(γn

1/2−1/q)
}
6 γ.

In Step 4, instead of their equation (14), we have that

P(Zε ∈ B) 6 P(Z̃ε ∈ BC7δ) + C

(
bσ2K2

n

δ3
√
n

+
Mn,X(δ)K2

n

δ3
√
n

+
1

n

)
∀B ∈ B(R)
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whenever δ > 2cσ−1/2(logN)3/2 · (log n) for some universal constant c (C7 comes from their

Theorem 3.1 and is universal). Finally, in Step 5, take

δ = C ′

{
(bσ2K2

n)1/3

γ1/3n1/6
+

2bKn

γn1/2−1/q

}
for some large but universal constant C ′ > 1. Under the assumption that K3

n 6 n, this choice

ensures that δ > 2cσ−1/2(logN)3/2 · (log n), and

bσ2K2
n

δ3
√
n
6

1

(C ′)3n
.

It remains to bound Mn,X(δ). For finite q, their Step 4 shows that

Mn,X(δ)K2
n

δ3
√
n

6
2qbqK2

n(logN)q−3

δqnq/2−1
.

Since logN 6 C ′′Kn for some universal constant C ′′, the right hand side is bounded by

γq(C ′′)q−3

(C ′)qKn
.

Since Kn is bounded from below by a universal positive constant (by assumption), and γ ∈ (0, 1),

by taking C ′ > C ′′, the above term is bounded by γ up to a universal constant.

Now, consider the q = ∞ case. In that case, max16j6N |X̃1j | 6 2b almost surely, and

δ
√
n/ logN > 2C ′b/(C ′′γ) > 2b provided that C ′ > C ′′. Hence Mn,X(δ) = 0 in that case.

These modifications lead to the desired conclusion. �
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[2] Miguel Arcones and Evarist Giné. On the bootstrap of U - and V -statistics. Annals of

Statistics, 20(2):655–674, 1992.
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[24] Evarist Giné and Richard Nickl. Uniform limit theorems for wavelet density estimators.

Annals of Probability, 37(4):1605–1646, 2009.



52 X. CHEN AND K. KATO
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