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Abstract. For estimating area-specific parameters (quantities) in a finite population,

a mixed model prediction approach is attractive. However, this approach strongly

depends on the normality assumption of the response values although we often en-

counter a non-normal case in practice. In such a case, transforming observations to

make them close to normality is a useful tool, but the problem of selecting suitable

transformation still remains open. To overcome the difficulty, we here propose a new

empirical best predicting method by using a parametric family of transformations to

estimate a suitable transformation based on the data. We suggest a simple estimating

method for transformation parameters based on the profile likelihood function, which

achieves consistency under some conditions on transformation functions. For measur-

ing variability of point prediction, we construct an empirical Bayes confidence interval

of the population parameter of interest. Through simulation studies, we investigate

some numerical performances of the proposed methods. Finally, we apply the proposed

method to synthetic income data in Spanish provinces in which the resulting estimates

indicate that the commonly used log-transformation is not appropriate.

Key words: Confidence interval; Empirical Bayes; Finite population; Mean squared

error; Random effect; Small area estimation.
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1 Introduction

The mixed model prediction based on random effect models has been widely used in

small area estimation (Rao and Molina, 2015). The random effect models used in small

area estimation are mainly divided into two models: the Fay-Herriot model (Fay and

Herriot, 1979) and the nested error regression model (Battese et al., 1988). Especially,

the nested error regression model has been used for estimating population parameters

in a finite population. Here we consider a finite population consisting of m areas and

each area has Ni units for i = 1, . . . ,m. Let Yij be a characteristic of the jth unit in

the ith area, the main purpose is to estimate the area-specific parameter defined as

µi =
1

Ni

Ni∑
j=1

T (Yij), (1)

where T (·) is a known (user-specified) function. The simplest choice is T (x) = x, in

which µi corresponds to the finite population mean, and many literatures have been

focused on this case; Chambers et al. (2014), Jiang and Lahiri (2006), Lahiri and

Mukherjee (2007) and Schmit et al. (2016). On the other hand, as noted by Molina

and Rao (2010), other forms of T (·) are used in practice. For example, in poverty

mapping, we often use FGT poverty measure T (x) = {(z − x)/z}αI(x < z) (Foster et

al., 1984), noting that µi corresponds to the poverty rate when α = 0.

If all the units Yij in the ith area were observed, we could calculate the true value

of µi. However, only a part of the units are available in practice. Let ni(< Ni) be the

number of sampled units and ys = {yij , j = 1, . . . , ni, i = 1, . . . ,m} be the sampled

data. It is known that the direct estimator of µi using the observed units has high

variability, especially in the case that ni is much smaller than Ni. In real application,

some covariates associated with Yij are available not only for sampled but also for non-

sampled units, which are denoted by xij with j = 1, . . . , Ni and i = 1, . . . ,m. Hence,

one aims to estimate µi based on the sampled data and information on covariates.

To this end, a typical strategy is to assume that all the units follow the nested error
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regression model:

Yij = xt
ijβ + vi + εij , j = 1, . . . , Ni, i = 1, . . . ,m, (2)

where xij and β are p-dimensional vectors of covariates and regression coefficients, vi

is the area-specific effect which follows N(0, τ2) and εij is a sampling error distributed

as N(0, σ2). Then, the conditional distribution of the non-sampled data Yij given all

the sampled data ys is given by

Yij |ys ∼ N

(
xt
ijβ +

niτ
2

σ2 + niτ2
(ȳi − x̄t

iβ),
σ2τ2

σ2 + niτ2

)
, j = ni + 1, . . . , Ni, (3)

which follows from the normality of Yij under the model (2). Then the best predictor

of µi under squared error loss is the conditional expectation E[µi|yi], which has the

form

µ̃i ≡ E[µi|ys] =
1

Ni

{ ni∑
j=1

T (yij) +

Ni∑
j=ni+1

E[T (Yij)|ys]
}
. (4)

Here, the expectation E[T (Yij)|ys] can be computed via the Monte Carlo integration

by generating a large number of random samples from the conditional distribution (3).

Moreover, the best predictor µ̃i depends on the unknown model parameters β, τ2 and

σ2 in the model (2), so that these parameters should be replaced with their estimated

counterparts. To this end, one can estimate the model parameters in the model (2)

based on the sampled data ys based on, for example, the maximum likelihood or

restricted maximum likelihood methods.

It is observed that the key assumption in deriving the best predictor (4) is the nor-

mality of Yij in (2), which enables us to obtain the simple expression of the conditional

distribution (3). However, we often encounter the case where the normality assump-

tion is not plausible for Yij . In fact, in poverty mapping, Yij is a welfare variable like

income, thereby the distribution of Yij could be skewed. In this case, Molina and Rao

(2010) proposed assuming the nested error model (2) for the transformed variables

H(Yij) instead of Yij . If Yij is right skewed, one may use H(x) = log x. However,

we still suffer from the misspecification of the transformation and the predictor of µi
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under misspecified transformation would be biased, thereby selecting suitable transfor-

mations from the data is desired to validate the prediction method. To overcome the

difficulty, we propose the adaptively transformed empirical best predicting method in

which we use a parametric family of transformations for data transformation instead

of the use of specified transformations. We derive a form of the best predictor of µi

and provide a simple estimating method for transformation parameters based on pro-

file likelihood function, which produces a consistent estimator under some regularity

conditions. We also construct an empirical Bayes confidence interval of µi for measur-

ing the variability of the point prediction. The proposed intervals are shown to have

O(m−1) coverage error, and we also suggest the parametric bootstrap calibration for

confidence intervals with further accuracy.

As related methods, Li and Lahiri (2007) suggested to use the Box-Cox transfor-

mation (Box and Cox, 1964) for the data transformation for robust estimation of finite

population totals while their method was developed under models without random

effects. Hence, our method would be more efficient. Concerning the empirical Bayes

confidence intervals, Nandram (1999) derived an empirical Bayes confidence intervals

of the finite population means, which corresponds to the case taking T (x) = x in (1).

This paper is organized as follows: In Section 2, we describe the proposed prediction

method as well as parameter estimation of the model parameters. In Section 3, we

construct an empirical Bayes confidence interval of µi. In Section 4, we present the

results from simulation studies and a data application. In Section 5, we give conclusions

and some discussions. The technical proofs are given in Appendix.

2 Adaptively Transformed Empirical Best Prediction

2.1 Transformed best predictor

LetHλ(·) be a family of transformations with parameter λ. The transformation param-

eter λ might be multidimensional, but we treat λ as a scalar parameter for notational

simplicity. The assumptions and specific choices of Hλ(·) will be discussed in the sub-

sequent section. We assume that the transformed variable Hλ(yij) follows the nested
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error regression model:

Hλ(Yij) = xt
ijβ + vi + εij , j = 1, . . . , Ni, i = 1, . . . ,m, (5)

where xij and β are p-dimensional vectors of covariates and regression coefficients,

vi and εij are an area-specific effect and a sampling error, respectively. Here we

assume that vi and εij are mutually independent and distributed as vi ∼ N(0, τ2)

and εij ∼ N(0, σ2) with unknown two variance parameters τ2 and σ2. It is worth

noting that, owing to the area effect vi, the units in the same area are mutually

correlated while the units in the different area are independent. Specifically, from

(5), it holds Cor(Hλ(Yij),Hλ(Yik)) = (τ2 + σ2)−1τ2, j ̸= k, thereby the units in

the same area are mutually correlated and the degree of correlation is determined

by the ratio τ2/σ2. From the normality assumptions of vi and εij , it follows that

Hλ(Yij) ∼ N(xt
ijβ, τ

2 + σ2). Thus, the transformation parameter λ can be chosen to

make the transformed data Hλ(yij) close to normality. We define ϕ = (βt, τ2, σ2, λ)t,

as the vector of unknown model parameters in (5). The estimation procedure will be

given in the subsequent section.

Let ys = {yij , j = 1, . . . , ni, i = 1, . . . ,m} be the sampled data. From the model

(5), we have Hλ(Yij)|ys ∼ N(θij , s
2
i + σ2), j = ni + 1, . . . , Ni, where

θij = xt
ijβ +

τ2

σ2 + niτ2

ni∑
j=1

(Hλ(yij)− xt
ijβ), si =

√
σ2τ2

σ2 + niτ2
. (6)

Hence, the best predictor of µi given in (1) can be obtained as

µ̃i(ys;ϕ) ≡ E[µi|ys] =
1

Ni


ni∑
j=1

T (yij) +

Ni∑
j=ni+1

E[T ◦H−1
λ (uij)]

 , (7)

where the expectation is taken with respect to uij ∼ N(θij , s
2
i +σ2), and T ◦H−1

λ (·) is

the composite function of T (·) and H−1
λ , the inverse function of Hλ(·). Although the

expectation E[T ◦ H−1
λ (uij)] does not have a closed form in general, it can be easily

computed via the Monte Carlo integration. We call the best predictor (7) adaptively
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transformed best predictor (ATBP).

2.2 Estimation of structural parameters

We here consider estimating the unknown model parameters ϕ in (5) based on the

marginal likelihood function. Noting that the log-marginal likelihood function of ϕ is

given by

L(ϕ) = −1

2

m∑
i=1

log |Σi| −
1

2

m∑
i=1

{Hλ(yi)−Xiβ}tΣ−1
i {Hλ(yi)−Xiβ}

− 1

2

m∑
i=1

ni log 2π +

m∑
i=1

ni∑
j=1

logH ′
λ(yij),

(8)

where (Σi)kℓ = τ2+σ2I(k = ℓ),Hλ(yi) = (Hλ(yi1), . . . , Hλ(yini))
t,Xi = (xt

i1, . . . ,x
t
ini

)t,

and H ′
λ(·) denotes the derivative of Hλ(·). The maximum likelihood estimator of ϕ

can be defined as the maximizer of L(ϕ).

For maximizing the likelihood function L(ϕ), we first note that the profile likelihood

function of λ can be expressed as

PL(λ) = ML(λ) +
m∑
i=1

ni∑
j=1

logH ′
λ(yij), (9)

where ML(λ) is the maximum likelihood of the nested error regression model with

response values Hλ(yij) and covariate vectors xij , which can be efficiently carried out

by using well-developed numerical method (e.g. Molina and Marhuenda, 2015). Using

the ease of the point evaluation of the profile likelihood PL(λ), we can obtain the

maximizer of PL(λ) by using, for example, the golden section method (Brent et al.,

1973). Once we obtain the estimator λ̂, we get the estimators of other parameters by

applying the nested error regression model to the data set {H
λ̂
(yij),xij}.

For estimating the two variance parameters τ2 and σ2, the restricted maximum

likelihood (RML) method (Jiang, 1996) might be more attractive than the maximum

likelihood method. To implement the RML estimation, the first three terms in (8)

need to be changed to the restricted maximum likelihood, but the transformation

parameter λ can be easily estimated in the same manner as the maximum likelihood

6



method based on the profile likelihood function. However, in this paper, we consider

only the maximum likelihood estimator for simplicity.

2.3 Class of transformations

We here consider the concrete choice of the family of transformations Hλ(·). To begin

with, we give some conditions to be satisfied by the transformations.

Assumption 1. (Class of transformations)

1. Hλ is a differentiable and monotone function, and the range of Hλ is R for all

λ.

2. For fixed x, Hλ(x) as the function of λ is differentiable.

3. The function |∂Hλ(w)/∂λ|, |∂2Hλ(w)/∂λ
2| and |∂2 logH ′

λ(w)/∂λ
2| with w =

H−1
λ (x) are bounded from the upper by C1{exp(C2x) + exp(−C2x)} with some

constants C1, C2 > 0.

The first condition is crucial in this context. If the range of Hλ is not R, but some

subset A ⊂ R, the inverse function H−1
λ cannot be defined on R \ A, which causes

problems in computing the best predictor (7). When the observations are positive

valued, the Box-Cox (BC) transformation (Box and Cox, 1964), Hλ(x) = λ−1(xλ − 1)

for λ ̸= 0 and H0(x) = log(x), is widely used. However, it is known that the range of

BC transformation is truncated and not whole real line, so that the BC transformation

cannot be used in this context. An alternative transformation, called dual power (DP)

transformation, has been suggested by Yang (2006):

HDP
λ (x) =

xλ − x−λ

2λ
, x > 0, λ > 0, (10)

where limλ→0H
DP
λ (x) = log x. It can be seen as the mean of two BC transformations,

and it is easy to confirm that the range of DPT is R, so that DPT can be used as a

parametric family including log-transformation in this context. The expression of the

inverse function is required in computing the transformed best predictor (7), and the
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Jacobian is also needed for computing the profile likelihood function (9). These are

given by

H
DP(−1)
λ (x) =

(
λx+

√
1 + λ2x2

)1/λ
and

dHDP
λ (x)

dx
=

1

2
(xλ−1 + x−λ−1).

In the context of small area estimation, the DP transformation was used in Sugasawa

and Kubokawa (2017) in the Fay-Herriot model. The original DP transformation

(10) can be used when the response variables are positive. When response variables

are real valued, one may use the shifted-DP transformation of the form Hλ,c(x) =

{(x+ c)λ − (x+ c)−λ}/2λ, where c ∈ (min(yij) + ε,∞) with specified small ε > 0.

Another attractive transformation is the sinh-arcsinh (SS) transformation sug-

gested in Jones and Pewsey (2009) in the context of distribution theory, which has

the form

HSS
a,b(x) = sinh(b sinh−1(x)− a), x ∈ (−∞,∞), a ∈ (−∞,∞), b ∈ (0,∞) (11)

where sinh(x) = (ex − e−x)/2 is the hyperbolic sine function, sinh−1(x) = log(x +
√
x2 + 1), and two transformation parameter a and b control skewness and tail heavi-

ness, respectively. The inverse transformation and the Jacobian are obtained as

H
SS(−1)
a,b (x) = sinh(b−1 sinh−1(x) + a), and

dHSS
a,b(x)

dx
= b

√
1 +HSS

a,b(x)
2

1 + x2
.

These transformations will be used and compared in the application presented in Sec-

tion 4.3.

2.4 Large sample properties

We here consider the large sample properties of the estimator of structural parameters.

To this end, we assume the following condition:

Assumption 2. (Assumptions under large m)

1. The true parameter vector ϕ0 is an interior point of the parameter space Φ.

8



2. 0 < mini=1,...,mNi ≤ maxi=1,...,mNi < ∞.

3. The elements of Xi are uniformly bounded and Xt
iXi is positive definite.

4. m−1
∑m

i=1X
t
iΣ

−1
i Xi converges to a positive definite matrix as m → ∞.

Since the asymptotic variance and covariance matrix of MLE can be derived from

the Fisher information matrix, we first provide the Fisher information matrix in the

following Theorem, where the proof is given in Appendix.

Theorem 1. We define the Fisher information Iϕkϕj
= −E[∂2L(ϕ)/∂ϕk∂ϕj ], then it

follows that

Iτ2τ2 =
1

2

m∑
i=1

(1tni
Σ−1

i 1ni)
2, Iτ2σ2 =

1

2

m∑
i=1

1tni
Σ−2

i 1ni , Iσ2σ2 =
1

2

m∑
i=1

tr (Σ−2
i ),

Iββ =

m∑
i=1

Xt
iΣ

−1
i Xi, Iβτ2 = Iβσ2 = 0, Iλσ2 = −

m∑
i=1

E
[
zt
iΣ

−2
i H

(1)
λ (yi)

]
,

Iλβ = −
m∑
i=1

Xt
iΣ

−1
i E

[
H

(1)
λ (yi)

]
, Iλτ2 = −

m∑
i=1

E
[
zt
iΣ

−1
i 1ni1

t
ni
Σ−1

i H
(1)
λ (yi)

]
,

Iλλ =

m∑
i=1

E
[
H

(1)
λ (yi)

tΣ−1
i H

(1)
λ (yi)

]
+

m∑
i=1

E
[
zt
iΣ

−1
i H

(2)
λ (yi)

]
−

m∑
i=1

ni∑
j=1

E

[
∂2

∂λ2
logH ′

λ(yij)

]
,

where H
(k)
λ (yi) = ∂kHλ(yi)/∂λ

k for k = 1, 2, zi = Hλ(yi) − Xiβ, and E[·] denotes

the expectation with respect to yij’s following the model (5). Then, under Assumptions

1 and 2, the maximum likelihood estimator ϕ̂ is asymptotically distributed as ϕ̂ ∼

N(ϕ, I−1
ϕ ).

From Theorem 1, it is observed that the information matrix of (βt, τ2, σ2) does

not depend on the transformation parameter λ, and their expressions are the same

as those of the traditional nested error regression models. While the two variance

parameters τ2 and σ2 are orthogonal to β in the sense that Iβτ2 = Iβσ2 = 0, the

transformation parameter λ is not orthogonal to the others. The expectations ap-

peared in the Fisher matrix is not analytically tractable, but it can be easily estimated

by replacing the expectation with its sample counterpart. In the case that λ is multidi-

mensional, the extension of Theorem 1 is straightforward. The expressions of H
(k)
λ (yi)

and ∂2 logH ′
λ(yij)/∂λ

2 could be analytically complicated and require tedious algebraic
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calculations. In such a case, the numerical derivative can be useful since we need to

compute only the point values of the derivatives.

3 Empirical Bayes Confidence Intervals

3.1 Asymptotically valid confidence intervals

Measuring the variability of the transformed empirical best predictor µ̂i is an impor-

tant issue in practice. Traditionally, the mean squared error (MSE) of µ̂i has been

used, and several methods ranging from analytical method (Prasad and Rao, 1990) to

numerical methods (Hall and Maiti, 2006) have been considered. On the other hand,

an empirical Bayes confidence interval of µi is more preferable since it can provide

distributional information than MSE though construction of the confidence interval is

generally difficult. Here, we derive an asymptotically valid empirical Bayes confidence

interval of µi.

The key to the confidence interval is the conditional distribution of µi given ys.

Noting that Cov(Hλ(Yij),Hλ(Yik)|ys) = Var(vi|ys) = s2i for j ̸= k, it follows that

(Hλ(Yi,ni+1), . . . , Hλ(YiNi))
t|ys ∼ N((θi,ni+1, . . . , θiNi)

t, s2i1Ni−ni1
t
Ni−ni

+ σ2INi−ni),

namely, the each component has the expression

Hλ(Yij)|yi = θij + sizi + σwij , j = ni + 1, . . . , Ni,

where zi and wij are mutually independent standard normal random variables, and θij

and si are defined in (6). Then the posterior distribution of µi can be expressed as

µi|yi
d
=

1

Ni


ni∑
j=1

T (yij) +

Ni∑
j=ni+1

T ◦H−1
λ (θij + sizi + σwij)

 , (12)

which is a complex function of standard normal random variables zi and wij . However,

random samples from the conditional distribution (12) can be easily simulated.

We define Qa(yi,ϕ) as the lower 100a% quantile point of the posterior distri-
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bution of µi with the true ϕ, which satisfies P(µi ≤ Qa(yi,ϕ)|yi) = a. Hence,

the Bayes confidence interval of µi with nominal level 1 − α is obtained as Iα =

(Qα/2(yi,ϕ), Q1−α/2(yi,ϕ)), which holds that P(µi ∈ Iα) = 1 − α. However, the in-

terval Iα depends on the unknown parameter ϕ, so that the feasible version of Iα is

obtained by replacing ϕ with its estimator ϕ̂, namely

INα = (Qα/2(ys, ϕ̂), Q1−α/2(ys, ϕ̂)), (13)

which we call naive empirical Bayes confidence interval of µi. The two quantiles ap-

peared in (13) can be computed by generating a large number of random samples from

the conditional distribution (12). Owing to the asymptotic properties of ϕ̂, the cover-

age probability of the naive interval (13) converges to the nominal level as the number

of areas m tends to infinity as shown in the following theorem proved in Appendix.

Theorem 2. Under Assumptions 1 and 2, it holds P(µi ∈ INα ) = 1− α+O(m−1).

3.2 Bootstrap calibrated intervals

As shown in Theorem 2, the coverage error of the naive interval (13) is of order m−1,

which is not necessarily negligible when m is not sufficiently large. Since the number

of m is usually moderate in practice, the calibrated intervals with higher accuracy

would be valuable. Following Chatterjee, et al. (2008), Hall and Maiti (2006), we

construct a second order corrected empirical Bayes confidence interval ICα satisfying

P (µi ∈ ICα ) = 1− α+ o(m−1).

To begin with, we define the bootstrap estimator of the coverage probability of

the naive interval. Let Y ∗
ij be the parametric bootstrap samples generated from the

estimated model (5) with ϕ = ϕ̂, and y∗s = {Y ∗
ij , j = 1, . . . , ni, i = 1, . . . ,m}.

Moreover, let µ∗
i be the bootstrap version of µi based on Y ∗

ij ’s. Since the coverage

probability is P(Qa/2(ys, ϕ̂) ≤ µi ≤ Q1−a/2(ys, ϕ̂)), its parametric bootstrap estimator

can be defined as

CP(a) = E∗
[
I
{
Qa/2(y

∗
s , ϕ̂) ≤ µ∗

i ≤ Q1−a/2(y
∗
s , ϕ̂)

}]
,
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where the expectation is taken with respect to the bootstrap samples Y ∗
ij ’s. Based on

the coverage probability, we define the calibrated nominal level a∗ as the solution of

the equation CP(a∗) = 1 − α, which can be solved by the bisectional method (Brent,

1973). Then, the calibrated interval is given by

ICα = (Qa∗/2(ys, ϕ̂), Q1−a∗/2(ys, ϕ̂)), (14)

which has second order accuracy as shown in the following theorem proved in Appendix.

Theorem 3. Under Assumptions 1 and 2, it holds P(µi ∈ ICα ) = 1− α+ o(m−1).

4 Numerical Studies

4.1 Evaluation of prediction errors

We first evaluate the prediction errors of the proposed predictors together with some

existing methods. To this end, we considered the following data generating processes:

(A) (2λ)−1(Y λ
ij − Y −λ

ij ) = β0 + β1Xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2)

(B) (2λ)−1(Y λ
ij − Y −λ

ij ) = β0 + β1Xij + vi + εij , vi ∼ t5(0, τ
2), εij ∼ t5(0, σ

2)

(C) Yij = exp(β0 + β1Xij)viεij , vi ∼ Γ(1/τ2, 1/τ2), εij ∼ Γ(1/σ2, 1/σ2)

(D) Yij = 0.2 exp(Uij) + 0.8U2
ij , Uij = β0 + β1Xij + vi + εij ,

vi ∼ N(0, τ2), εij ∼ N(0, σ2),

where i = 1, . . . ,m, j = 1, . . . , N , β0 = −1, β1 = 3, τ = 0.3, σ = 0.7, and Xij were

initially generated from U(1, 2) and fixed through simulation experiments. In model

(i) and (ii), we considered three values for λ, λ = 0, 0.2 and 0.4. In this study, we set

N = 200 and m = 25, and we focus on estimating the ratio of the observation with

values under z, namely

µi =
1

N

N∑
j=1

I(Yij < z), i = 1, . . . ,m, (15)

where z is defined as 0.6 times median of Yij ’s.
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Concerning the area sample sizes, we divided m = 25 areas into five groups with

equal number of areas, and we set the same number of ni within the same groups.

The group pattern of ni we considered was (20, 40, 60, 80, 100). Among the generated

Yi1, . . . , YiN , we used first ni observations yi1(= Yi1), . . . , yini(= Yini) as the sampled

data. Then, based on the sampled data yij ’s and covariates Xij ’s, we computed the

predicted value of µi based on the four methods: the proposed flexible transformed

empirical best prediction (ATP) method with DP transformation (10), the transformed

empirical best prediction (TP) method proposed by Molina and Rao (2010) with log-

transformation, the empirical best prediction (EBP) method by directly applying the

nested error regression model to the non-transfdemd observation yij , and the direct

estimator (DE) given by

µ̂D
i =

1

ni

ni∑
j=1

I(yij < z), i = 1, . . . ,m.

It should be noted that the TP method is correctly specified in scenario (A) with λ = 0

while the ATP method is overfitting in this case. In the other cases in scenario (A),

the ATP method uses the same model as the data generating model. Scenario (B) is

similar to (A), but the distribution of error terms have the t-distribution. In scenario

(C) and (D), the data generation models do not coincides with any methods.

To compare the performances of the four methods, we computed the square root

of mean squared error (RMSE) defined as

RMSEi =

√√√√ 1

R

R∑
r=1

(
µ̂
(r)
i − µ

(r)
i

)2
,

where R = 2000 in this study, µ̂
(r)
i and µ

(r)
i are the estimated and true values of µi,

respectively, in the rth iteration. The obtained values of RMSEs are averaged over the

same groups and the results are reported in Table 1.

From Table 1, we can observe that the proposed method provides better estimates

than three existing methods in almost all cases. As mentioned in the above, ATP

method is overfitting in scenario (A) with λ = 0 while TP method is correctly specified.

13



However, the results show that the performances between ATP and TP are almost the

same, which might indicate that the MSE inflation due to overfilling is not serious.

The similar observation can be done in scenario (B) with λ = 0. On the other hand, in

the other cases, the proposed ATP method can improve the estimation accuracy of TP

method as well as EBP and DE methods, by adaptively estimating the transformation

parameter from the data.

4.2 Finite sample evaluation of empirical Bayes confidence intervals

We next evaluate the finite sample performances of the empirical Bayes confidence

intervals given in Section 3. To this end, we considered the following data generating

process for population variables Yij :

(2λ)−1(Y λ
ij − Y −λ

ij ) = β0 + β1Xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2),

where j = 1, . . . , N and i = 1, . . . ,m with n = 200. We set the true parameter values

λ = 0.3, β0 = −1, β1 = 3, τ = 0.3, σ = 0.7, and Xij were initially generated from the

uniform distribution on (1, 2), which were fixed through simulation runs. We focused

on the same population parameter given in (15).

Among the generated Yi1, . . . , YiN , the first n = 50 observations Yi1, . . . , Yin were

used as the sampled data yi1, . . . , yin. Then, based on yij ’s and Xij ’s, we computed

two types pf confidence intervals for µi, naive confidence interval (13) and bootstrap

calibrated confidence interval (14), which are denoted by NCI and BCI, respectively.

To evaluate the performances of two confidence intervals, based on R = 2000 simulation

runs, we computed the empirical coverage probability (CP) and the average length of

confidence interval (AL), which are defined as

CPi =
1

R

R∑
r=1

I(µ
(r)
i ∈ CI

(r)
i ) and ALi =

1

R

R∑
r=1

|CI(r)i |,

where µ
(r)
i is the true value and CI

(r)
i is NCI or BCI in the rth iteration. In Figure,

we show the obtained CP and AL in each area for two cases m = 20 and m = 30.
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Table 1: The group-wise averaged values of simulated square root of mean squared
errors (RMSE) for four methods, proposed adaptively transformed prediction (ATP)
method, Molina and Rao’s transformed prediction (TP) method, empirical best pre-
diction (EBP) method without any data transformations, and direct estimator (DE)
for eight scenarios. All the values in the table are multiplied by 100.

Area sample size ni

Scenario Method 20 40 60 80 100

ATP 4.33 3.27 2.86 2.40 2.04
(A) λ = 0 TP 4.33 3.27 2.85 2.40 2.04

EBP 6.20 4.73 4.18 3.61 2.80
DE 8.93 5.78 4.68 3.93 3.80

ATP 4.28 3.25 2.80 2.39 1.90
(A) λ = 0.2 TP 4.42 3.38 2.94 2.54 1.99

EBP 6.24 4.64 4.09 3.68 2.58
DE 8.34 5.67 4.65 3.80 3.63

ATP 4.06 3.05 2.65 2.29 1.83
(A) λ = 0.4 TP 4.61 3.51 3.16 2.82 2.16

EBP 4.84 3.58 3.08 2.74 2.07
DE 8.45 5.34 4.48 3.43 3.33

ATP 4.58 3.33 2.81 2.31 2.01
(B) λ = 0 TP 4.58 3.33 2.80 2.31 2.01

EBP 8.92 7.38 6.10 5.76 4.47
DE 8.74 6.37 5.79 3.75 2.60

ATP 4.33 3.42 2.85 2.28 1.95
(B) λ = 0.2 TP 4.56 3.61 3.03 2.45 2.09

EBP 6.23 5.08 4.52 3.50 3.01
DE 8.24 6.45 5.73 3.64 2.58

ATP 4.13 3.25 2.70 2.19 1.93
(B) λ = 0.4 TP 4.73 3.88 3.23 2.71 2.30

EBP 4.68 3.72 3.22 2.61 2.26
DE 7.82 5.93 5.33 3.46 2.56

　 ATP 4.90 3.63 2.96 2.41 2.17
(C) TP 5.02 3.69 3.03 2.47 2.20

EBP 6.78 5.74 4.36 3.27 3.11
DE 8.67 5.31 4.16 4.07 3.05

ATP 4.54 3.44 2.98 2.53 2.03
(D) TP 5.05 4.04 3.48 2.97 2.36

EBP 5.25 4.20 3.38 2.90 2.32
DE 9.85 5.76 4.74 3.60 3.45

Concerning CP, the naive method tends to produce shorter confidence intervals, so that

the coverage probability is smaller than the nominal level for all areas, which is more

serious in case m = 20 than m = 30. This comes from the accuracy of NCI presented

in Theorem 2, which mentions that the coverage accuracy of NCI is O(m−1). On the
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other hand, bootstrap method can improve the drawbacks of the naive method, and

provides reasonable CP around the nominal level under both m = 20 and m = 30.

The results clearly support the theoretical property given in Theorem 3 presenting

BCI is second order accurate. Since undervaluation of estimation risk may produce

serious problems in practice, we should be use the bootstrap method when the number

of areas is not large.
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Figure 1: Simulated coverage probability (CP) and average length (AL) of two con-
fidence intervals, naive confidence interval (NCI) and bootstrap calibrated confidence
interval (BCI) for m = 20 (upper) and m = 30 (lower).
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4.3 Example: poverty mapping in Spain

We applied the proposed method to estimation of poverty indicators in Spanish provinces,

using the synthetic income data available in sae package (Molina and Marhuenda,

2015) in R language, in which the equalized annual net income are given. The similar

data set was used in Molina and Rao (2010) and Molina et al. (2014). As auxil-

iary variables, we considered the indicators of the five quinquennial groupings of the

variable age, the indicator of having Spanish nationality, the indicators of the three

levels of the variable education level, and the indicators of the three categories of the

variable employment, with categories unemployed, employed and inactive. For each

auxiliary variable, one of the categories was considered as base reference, omitting the

corresponding indicator and then including an intercept in the model. The poverty

measures we focused on were the FGT poverty measures (Foster et al., 1984):

T (x) =

(
x− z

z

)α

I(x < z),

where z is a fixed poverty line, and it corresponds to poverty incidence or head count

ratio (α = 0), poverty gap (α = 1) and poverty severalty (α = 2). In this example,

we focused on poverty ratio (α = 0), and we set z as the 0.6 times the median of

incomes. Let Eij be the income of jth individual in ith area. Such data are available

for m = 52 areas and the sample sizes are are ranging from 20 to 1420. Since the small

portion of Eij take negative values, we assume the nested error regression model with

shifted-DPT:

SDP: (2λ)−1
{
(Eij + c)1/λ − (Eij + c)−1/λ

}
= xt

ijβ + vi + εij , (16)

noting that the model has two transformation parameters λ and c. We also considered

two submodel of (16). In both models, we set c = c∗ ≡ min(Eij) + 1 to ensure that

Eij + c∗ is positive for all (i, j). The first submodel is denied by putting c = c∗ in (16),

which is referred to SDP-s. The second sub-model is the shifted-log transformation
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model:

SL: log(Eij + c∗) = xt
ijβ + vi + εij , (17)

which has no longer parameters and was used in Molina and Rao (2010). Finally, we

also applied the model with sinh-arcsinh transformation presented in Section 2.3:

SS: sinh(b sinh−1(Eij)− a) = xt
ijβ + vi + εij , (18)

which has two transformation parameter a and b.

By maximizing the profile likelihood function of transformation parameters, we

obtained as follows:

(SDP) λ̂ = 0.090 (1.99× 10−3), ĉ = 4319 (170.69)

(SDP-s) λ̂ = 0.290 (8.18× 10−4)

(SS) â = −0.584 (8.06× 10−4), b̂ = 0.463 (1.55× 10−6),

where the values in the parentheses are the corresponding standard errors calculated

from the Fisher information matrix given in Theorem 1. From the above result, it

can be observed that the approximate 95% confidence intervals of the transforma-

tion parameter λ in SDP and SDP-s are bounded from 0, which means that the log-

transformed model would be inappropriate. Moreover, we computed AIC and BIC

based on the maximum marginal likelihood, and the results are given in Table 2 in

which the values scaled by the number of sampled units (N = 17199) are reported.

The results show that the SDP fits the best among the four models in terms of both

AIC and BIC while the SL model fits the worst. Hence, the use of parametric transfor-

mation can improve AIC and BIC in this application. To see the fitting of the models

in terms of normality assumption of the error terms, we computed the standardized

residuals defined as

rij =
Ĥ(yij)− xt

ijβ̂√
τ̂2 + σ̂2

, j = 1, . . . , ni, i = 1, . . . ,m,
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where Ĥ is the estimated transformation function, noting that rij ’s asymptotically

follow the standard normal distributions if the assumed model is correctly specified.

In Figure 2, we shows QQ-plots of rij ’s of the four models. We can observe that

the normality assumptions in the three models with parametric transformations, SDP,

SDP-s and SS, seem plausible from Figure 2. However, the QQ-plot for SL shows that

the distribution of standardized residuals is skewed and the normality assumption

would not be appropriate.

Finally, we calculated the estimated values of the poverty rates µi from the direct

estimator (DE), and four model based methods. For computing the empirical best

predictor of µi, we used 500 random samples for Monte Carlo integration. The obtained

values are given in Table 3. In the parentheses, we provided the bootstrap empirical

Bayes confidence intervals of µi with 200 bootstrap iterations. It can be seen that the

direct estimator produces quite different estimates of µi from the model based methods

when area sample size ni is not large like in Avila and Tarragona. On the other hand,

in provinces with large samples sizes, the differences of estimates between DE and the

other model methods are relatively small. We can also observe that SL method tend

to produce smaller estimates than the other model based methods. However, from

AIC and BIC values and QQ-plot in Figure 2, the validity of SL method is highly

doubtful in this case, so that the predicted values given in Table 3 would not be

reliable. As shown in Table 3, the use of different transformation function leads to

significantly different predicted values of µi. Hence, it would be valuable to select an

adequate transformation function by estimating transformation parameters based on

the sampled data.

Table 2: AIC and BIC of four models. The values are scaled by the number of sampled
units (N = 17199).

SDP SDP-s SS SL

AIC 20.2241 20.2260 20.2415 20.2883
BIC 20.2305 20.2318 20.2478 20.2937
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Figure 2: QQ-plots of standardized residuals in four models.

5 Conclusions and Discussion

We have introduced the use of a parametric family of transformations for estimating

(predicting) general area specific parameters based on the mixed effects models. We

have provided the best predictor of the parameter as well as the maximum likelihood

method for estimating model parameters. Moreover, for measuring variability of the

predictor, we constructed an empirical Bayes confidence interval of the area param-

eter. The simulation and empirical studies have revealed that the use of parametric
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Table 3: Estimated poverty rates from the direct estimator (DE) and four model based
methods in five provinces. The bootstrap empirical Bayes confidence intervals are given
in the parenthesis.

area ni DE SDP SDP-s SS SL

Avila 58 0.57 2.71 2.84 3.12 2.42
(1.63, 4.05) (1.87, 4.31) (2.00, 4.50) (1.57, 3.62)

Tarragona 134 9.43 8.19 8.48 9.07 7.44
(6.02, 10.42) (6.38, 10.82) (7.28 ,11.27) (5.83, 9.35)

Santander 434 6.16 6.79 7.02 7.39 6.09
(5.75, 8.07) (6.03, 8.03) (6.38, 8.49) (5.21, 6.99)

Sevilla 482 3.70 4.95 5.18 5.53 4.29
(4.15, 5.75) (4.45 ,6.07) (4.77, 6.35) (3.73, 4.90)

Oviedo 803 5.24 4.78 4.97 5.36 4.25
(4.14, 5.44) (4.45, 5.51) (4.75, 6.00) (3.77, 4.74)

transformations would improve the prediction accuracy of the existing method using

specified transformations.

Although we considered an empirical Bayes approach in this paper, the hierarchi-

cal Bayes approach as considered in Molina et al. (2014), by assigning some prior

distributions for model parameters, would be useful. Moreover, one may use more

flexible method for the regression part like the penalized spline as used in Opsomer

et al. (2008). The detailed investigation of these issues are left to a valuable future

study.
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Appendix

A1. Proof of Theorem 1. From the likelihood function (8), its first order deriva-
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tives are given by

∂L

∂β
=

m∑
i=1

Xt
iΣ

−1
i zi,

∂L

∂τ2
= −1

2

m∑
i=1

1tni
Σ−1

i 1ni −
1

2

m∑
i=1

zt
iΣ

−1
i 1ni1

t
ni
Σ−1

i zi

∂L

∂σ2
= −1

2

m∑
i=1

tr (Σ−1
i )− 1

2

m∑
i=1

zt
iΣ

−2
i zi,

∂L

∂λ
= −

m∑
i=1

zt
iΣ

−1
i H

(1)
λ (yi) +

m∑
i=1

ni∑
j=1

∂

∂λ
logH ′

λ(yij),

where zi = Hλ(yi)−Xiβ. Since E[zi] = 0, it follows that E[∂2L/∂β∂τ2] = E[∂2L/∂β∂σ2] =

0. The other elements of the Fisher information can be obtained by a straightforward

calculation. Moreover, under Assumptions 1 and 2, the each element of the Fisher

information matrix is finite, so that the asymptotic normality of ϕ̂ follows.

A2. Proof of Theorem 2. Let ϕ0 is the true values of parameters. It suffices to

show that P (µi ≤ Qa(yi, ϕ̂)) = a+ O(m−1) for a ∈ (0, 1). We first note that It holds

that

P (µi ≤ Qa(yi, ϕ̂)) = E[P (µi ≤ Qa(yi, ϕ̂)|ys)] = E[F (Qa(yi, ϕ̂); yi,ϕ0)],

where F (·; yi,ϕ0) is a distribution function of µi given yi. LetG(yi, ϕ̂,ϕ0) = F (Qa(yi, ϕ̂); yi,ϕ0),

noting that 0 ≤ G(yi, ϕ̂,ϕ0) ≤ 1 and G(yi,ϕ0,ϕ0) = a. The Taylor expansion of

G(yi, ϕ̂,ϕ0) shows that

G(yi, ϕ̂,ϕ0) = G(yi,ϕ0,ϕ0) +
∑
j

Gϕj
(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)

+
1

2

∑
j,k

Gϕjϕk
(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)(ϕ̂k − ϕk)

+
1

6

∑
j,k,ℓ

Gϕjϕkϕℓ
(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ∗(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ),

where ϕ∗ is on the line connecting ϕ̂ and ϕ0. Then, it follows that

P (µi ≤ Qa(yi, ϕ̂)) = E[G(yi, ϕ̂,ϕ0)] = a+R1 +
1

2
R2 +

1

6
R3,
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where

R1 = E
[
Gϕ(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂− ϕ0)
]

R2 =
∑
j,k

E
[
Gϕjϕk

(yi,ϕ,ϕ0)
∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)(ϕ̂k − ϕk)
]

R3 =
∑
j,k,ℓ

E
[
Gϕjϕkϕℓ

(yi,ϕ,ϕ0)
∣∣
ϕ=ϕ∗(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)

]
.

Using the Cauchy-Schwarz inequality, we have

E
[
Gϕjϕk

(yi,ϕ,ϕ0)
∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)(ϕ̂k − ϕk)
]

≤
{
E[(ϕ̂j − ϕj)

4]
} 1

4
{
E[(ϕ̂k − ϕk)

4]
} 1

4

√
E
[
Gϕjϕk

(yi,ϕ,ϕ0)
2
∣∣
ϕ=ϕ0

]
.

From the asymptotic normality of ϕ̂ given in Theorem 1, it holds that E[|ϕ̂k − ϕk|r] =

O(m−r/2). Moreover, since the range of G(yi,ϕ,ϕ0) is (0, 1), the partial derivatives of

G(yi,ϕ,ϕ0) are bounded. Then, we obtain R2 = O(m−1). Using the similar evalua-

tion, we can show that R3 = O(m−1). Regarding R1, it is noted that

E
[
Gϕ(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂− ϕ0)
]
= E

[
Gϕ(yi,ϕ,ϕ0)E[ϕ̂− ϕ0|yi]

]
.

From Lohr and Rao (2009), it holds E[ϕ̂ − ϕ0|yi] = m−1bϕ − I−1
ϕ ∂Li(yi,ϕ0)/∂ϕ +

op(m
−1), where

∑m
i=1 Li(yi,ϕ0) ≡ L(ϕ) and bϕ = limm→∞mE[ϕ̂− ϕ0] is the asymp-

totic bias of ϕ̂. Hence, we have

E
[
Gϕ(yi,ϕ,ϕ0)E[ϕ̂− ϕ0|yi]

]
=

1

m
E [Gϕ(yi,ϕ,ϕ0)] bϕ − E

[
Gϕ(yi,ϕ,ϕ0)I

−1
ϕ

∂

∂ϕ
Li(yi;ϕ0)

]
+ o(m−1),

which is O(m−1). Therefore, the proof is completed.

A3. Proof of Theorem 3. From the proof of Theorem 2, we have

Fa(ϕ0) ≡ P (µi ≤ Qa(yi, ϕ̂)) = a+
ca(ϕ0)

m
+ o(m−1),
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where ca(ϕ) is a smooth function of ϕ. Let a∗ and â∗ be satisfying Fa∗(ϕ0) = a and

Fa∗(ϕ̂) = a, respectively. Then, from the above expansion, we have â∗ − a∗ = o(m−1),

thereby

P (µi ≤ Qâ∗(yi, ϕ̂)) = P (µi ≤ Qa∗(yi, ϕ̂)) + o(m−1) = a+ o(m−1),

which completes the proof.

A4. Checking assumptions of transformations. We here check the assumption

3 in Assumption 1 for the dual power (DP) transformation (10) and sinh-arcsinh (SS)

transformation (11).

(DP transformation) We first note that H−1
λ (x) = O(x1/λ) as x → ∞. By

putting x = −t for t > 0, we have

H−1
λ (x) = (

√
1 + λ2t2 − λt)1/λ =

1

(
√
1 + λ2t2 + λt)1/λ

= O(t−1/λ)

as t → ∞. A straightforward calculation shows that

∂Hλ(x)

∂λ
=

xλ log x+ x−λ log x

2λ
+

xλ − x−λ

2λ2
,

thereby, it follows that

∣∣∣∣∂Hλ

∂λ
(H−1

λ (x))

∣∣∣∣ = O(|x| log |x|) +O(|x|−1 log |x|) +O(|x|) +O(|x|−1) = O(|x| log |x|)

as |x| → ∞. Moreover, since

∂2Hλ(x)

∂λ2
=

xλ(log x)2 − x−λ(log x)2

2λ
− xλ − x−λ

λ3
,

the similar evaluation leads to
∣∣∂2Hλ(w)/∂λ

2
∣∣ = O(|x|(log |x|)2) as |x| → ∞. Regard-

ing ∂2 logH ′
λ(x)/∂λ

2, it holds that

∣∣∣∣∂2 logH ′
λ(w)

∂λ2

∣∣∣∣ = ∣∣∣∣ 4(logw)2

w2(wλ−1 + w−λ−1)2

∣∣∣∣ = O((log |x|)2|x|2)
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as |x| → ∞, so that the DP transformation satisfies the assumption. When the location

parameter is used, namely, Hλ,c(x) = {(x + c)λ − (x + c)−λ}/2λ, it is noted that

∂kHλ,c(x)/∂c
k = ∂kHλ,c(x)/∂x

k, so that the quite similar evaluation shows that the

shifted-DP transformation also satisfies the assumption.

(SS transformation) It follows that

∂Ha,b(x)

∂a
= − cosh(b sinh−1(x)− a),

∂Ha,b(x)

∂b
= cosh(b sinh−1(x)− a) sinh−1(x).

Note that sinh−1(x) = O(log |x|) as |x| → ∞, so that H−1
a,b (x) = O(exp(b−1 log |x|)) =

O(|x|1/b). Then, we have

∂Ha,b

∂a
(H−1

a,b (x)) = O(exp(b log |x|1/b)) = O(|x|),

∂Ha,b

∂b
(H−1

a,b (x)) = O(exp(b log |x|1/b) log |x|1/b) = O(|x| log |x|),

as |x| → ∞. Moreover, it holds that

∂2Ha,b(x)

∂2a
= sinh(b sinh−1(x)− a),

∂2Ha,b(x)

∂2b
= sinh(b sinh−1(x)− a){sinh−1(x)}2

∂2Ha,b(x)

∂a∂b
= − sinh(b sinh−1(x)− a) sinh−1(x),

thereby the similar evaluation shows that ∂2Ha,b(x)/∂
2a = O(|x|), ∂2Ha,b(x)/∂

2b =

O(|x|(log |x|)2) and ∂2Ha,b(x)/∂a∂b = O(|x| log |x|) as |x| → ∞. On the other hand, a

straightforward calculation shows that

∂

∂a
logH ′

a,b(x) =
Ha,b(x)

1 +Ha,b(x)2
∂Ha,b(x)

∂a
,

∂

∂b
logH ′

a,b(x) =
1

b
+

Ha,b(x)

1 +Ha,b(x)2
∂Ha,b(x)

∂b
,

which are bounded by the function ∂Ha,b(x)/∂a and ∂Ha,b(x)/∂b, respectively. A

straightforward calculations show that the second partial derivatives of logH ′
a,b(x)

are bounded by polynomial functions of the second partial derivatives of Ha,b(x) and

Ha,b(x), thereby the assumption is satisfied.
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