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FOUNDATION OF COMPETITIVE EQUILIBRIUM WITH
NON-TRANSFERABLE UTILITY

IN-KOO CHO AND AKIHIKO MATSUI

Abstract. This paper investigates the dynamic foundation of a competitive equilib-
rium, studying a sequence of random matching models between ex ante heterogeneous
buyers and sellers under two-sided incomplete information with no entry, where each
agent is endowed with non-transferable utility. The economy is populated with two sets
of infinitesimal agents, buyers and sellers, who have private information about their own
valuations of the object. In each period, buyers and sellers in the pool are matched to
draw randomly a pair of expected payoffs, which will realize if the long term relationship
is formed. Each player decides whether or not to agree to form a long term relationship,
conditioned on his private information. If both parties agree, then they leave the pool,
receiving the expected payoff in each period while the long term relationship contin-
ues. The existing long term relationship is terminated either by will or by a random
shock, upon which both parties return to the respective pools of agents. We quantify the
amount of friction by the time span of each period. We demonstrate that as the friction
vanishes, any sequence of stationary equilibrium outcomes, in which trade occurs with a
positive probability, converges to the competitive equilibrium, under a general two sided
incomplete information about the private valuation of each agent.

Keywords: Non-transferable utility, No entry, Matching, Search, Undominated equi-
librium, Competitive equilibrium, Random proposal model, Single crossing property

1. Introduction

Let us consider a textbook example of a competitive market, in which agents have
non-transferable utility and private information regarding their valuations of the object.
Neither agents’ entry into nor their exit from the economy is assumed. The market sup-
ply and demand curves intersect to determine a unique competitive equilibrium price.
The goal of this paper is to provide a decentralized dynamic foundation of the textbook
example of the Arrow Debreu economy, to understand whether or not and how the dis-
persed information can be aggregated through a decentralized trading process to achieve
an efficient allocation.

A canonical model of decentralized dynamic trading can be described roughly as follows.
The economy is populated by the two sets of infinitesimal agents, buyers and sellers,
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who may or may not have private information about their own valuations of the object.
Time is discrete. In each period, buyers and sellers in the pool of unmatched agents are
matched and negotiate over the delivery price. If the two parties agree, then the long term
relationship is formed: in each period, the seller delivers one unit of the good to the buyer
at the agreed price while the relationship lasts. Friction is quantified by the duration of
each period. We calculate an equilibrium of this model (with various additional elements)
to see whether or not the equilibrium converges to the competitive equilibrium as friction
vanishes.

To capture the key features of the textbook example of the Arrow Debreu economy, we
should add three basic elements to the decentralized dynamic trading model at the same
time. First, the utility function of each player is non-transferable. Second, each party
may have private information about the valuation of the object, and the trading can occur
under two sided incomplete information. Third, the total mass of buyers and sellers is
fixed, as we assume neither agents’ entry into nor their exit from the economy.

Despite a vast number of papers on the decentralized dynamic foundation of competitive
equilibrium, we are not aware of any model that has all three features at the same time.
Existing papers drop at least one out of the three features, in order to facilitate the analysis.
Let us review the consequence of assuming each individual feature, to demonstrate how
we solve the issues head on, instead of assuming away the difficult problems.

First, a significant majority of decentralized dynamic trading models are built on trans-
ferable utility with respect to transfer payment. However, there are cases in which non-
transferable utility is natural. In a real estate market, for example, the amount of money
one spends upon a house is so large as to affect the marginal utility of money due to
income effect.

With the transferable utility function of the agent, we can invoke the powerful technique
of Myerson (1981) that allows us to focus without loss of generality on the equilibrium
probability of trading of a revelation game (e.g., Myerson and Satterthwaite (1983), Sat-
terthwaite and Shneyerov (2007), Lauermann (2013) and Shneyerov and Wong (2008)).
One can recover the equilibrium transfer payment from the equilibrium probability of
trading and the initial condition.

Within the confines of quasi linear utility functions, Lauermann (2013) characterizes the
conditions under which a sequence of stationary equilibria of decentralized trading mod-
els converges to a competitive equilibrium. That is, a sequence of stationary equilibrium
outcomes of dynamic decentralized trading models converges to a Walrasian equilibrium
if and only if the sequence of stationary outcomes satisfies a certain set of conditions.
Lauermann (2013) then examines a number of well known examples of decentralized trad-
ing models with transferable utility, search cost and two sided incomplete information, to
prove that his characterization result is not vacuous.

Because the key conditions of Lauermann (2013), such as pairwise efficiency, are built on
transferable utility, the extension of Lauermann (2013) to a model with non-transferable
utility is impossible, without using the equilibrium price and initial endowments. If the
utility functions are not quasi linear with respect to income, the marginal utility of in-
come depends upon price and initial endowment. Therefore, the corresponding pairwise
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efficiency condition for non-transferable utility involves endogenous variables such as equi-
librium prices and becomes little different from the statement of Walrasian equilibrium
itself, as opposed to the condition on the primitives of the model.

Also, even if the conditions of Lauermann (2013) can be extended, one still has to show
that there exists a class of decentralized dynamic trading models with non-transferable
utility, search cost and two sided incomplete information, in which a sequence of equilibria
converges to a Walrasian equilibrium.1 Without the existence of a convergent sequence,
the characterization of a convergent sequence would be meaningless.

As we admit non-linear utility function with respect to the transfer payment, we can
no longer substitute the transfer payment by a function of the probability of trading. Our
key innovation is to approximate the equilibrium payoff as a function of probability of
reaching agreement per period,2 as the amount of friction vanishes. Since our focus is
a dynamic trading model with little friction, this “approximation” result facilitates the
analysis of the asymptotic behavior of agents as friction vanishes, in the same way as
Myerson’s technique does for models with transferable utility.

There are papers on decentralized trading models with non-transferable utility. Gale
(1986a) and Gale (1986b) study a bilateral trading model with general utility functions.
His model assumes that agents can trade as many times as possible with no cost. Since
there is neither search cost nor delay cost, the agents can obtain the best bundle among the
set of feasible consumption bundles, waiting for the most suitable trading opportunities
for a long time. In most models in search theory, agents are faced with trade-off between
good trade opportunity and quick trade. The present paper can be viewed as a first step
toward the convergence result in a model with non-transferable utility and search cost.

Burdett and Wright (1998) considers a search model with non-transferable utility with-
out the convergence result. The present model is built on their paper, including the trading
protocol where the transaction price is called by the third party on which a buyer and a
seller agree or not.

Green and Zhou (1998) and Kamiya and Shimizu (2006) consider search theoretic mod-
els of money with divisible money holdings. Although money is intrinsically useless object,
they can compute the value function as a function of money, which exhbits concavity. If
we read the value function as an indirect utility function, there is similarity between their
utility function and the utility functions in the present model.

Second, in many models including Gale (1987), we often assume that the private in-
formation of each agent is revealed truthfully, immediately after the agents are matched,
but before they start to negotiate the delivery price. This assumption is to avoid various
problems, arising from strategic bargaining with two sided incomplete information. In
particular, the same assumption ensures that the negotiation is efficient: the agreement is
reached immediately, if there is a positive gain from trading.

1Gale (1986a) and Gale (1986b) examined a model with non-transferable utility, assuming search cost
is 0 in the sense that until agreement is reached, agents can search without incurring any cost. Under the
assumption of transferable utility, Shneyerov and Wong (2008) obtained the convergence to a competitive
equilibrium in a model with two sided incomplete information. Cho and Matsui (2013) obtained the
convergence with non-transferable utility and search cost, but under complete information.

2This probability is different from what we usually refer to as the probability of delivery in Myerson
(1981), which the obtained by aggregating the probability per period.
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However, an important feature of the market economy is that an equilibrium is achieved
even if each agent does not know the details of the transaction the agent is engaged in, in
particular, the type of the opponent. Thus, if we want to understand how private infor-
mation is revealed through negotiation and aggregated into the competitive equilibrium
price, it seems essential to assume that the negotiation occurs under (two sided) incom-
plete information. The incomplete information can cause the delay in reaching agreement
during bilateral negotiation (Myerson and Satterthwaite (1983)).

In contrast to the models in which the private information is revealed truthfully before
negotiation (Gale (1987)), the negotiation in our model is typically inefficient: the prob-
ability of reaching agreement per period is strictly less than 1, and actually converges to
0, as friction vanishes. But, as friction vanishes, agents meet new partners more quickly,
so the number of opportunities to trade increases. Even if the probability of trading per
period vanishes because of two sided incomplete information, the increased opportunities
to meet new partners may compensate the lost opportunities to reach agreement. The
question is whether this inefficiency vanishes or not, as friction vanishes so that the fre-
quency of meeting a new partner goes to infinity. The focus of our analysis is therefore
to investigate the rate of reaching agreement and compare it to the rate of meeting a new
partner.

Third, in contrast to Rubinstein and Wolinsky (1985) and Gale (1987), we fix the total
mass of buyers and sellers in the economy. This modeling feature is essential, because
the textbook example of the Arrow Debreu economy assumes neither entry into nor exit
from the economy. As the buyers and sellers reach an agreement, they leave the pool. In
order to keep the pool of unmatched buyers and sellers from being dried up, we assume
that the long term relationship expires with a small probability. That is, instead of fresh
agents, we “recycle” sellers and buyers. This break-up probability (also known as the lay-
off probability by Burdett and Wright (1998)) vanishes as friction vanishes. As pointed
out earlier, the two sided private information in the negotiation causes the probability of
reaching an agreement per period to vanish.

In order to prove the convergence to the competitive equilibrium, we have to show that
the distribution of types of agents in the matching pool evolves in such a way that any
possible gain from trading is realized through frequent interactions between buyers and
sellers. Different types of agents may use different strategies, leaving the pool at differ-
ent rates. Let us call a buyer “profitable” if his reservation value is greater than the
corresponding Walrasian equilibrium price. Similarly, a seller is called “profitable” if her
reservation value is less than the Walrasian equilibrium price. In an equilibrium, “prof-
itable” agents reach an agreement faster than non-“profitable” agents. As the “profitable”
agents leave the pool at a faster rate than non-“profitable” agents, the distribution of the
pool is skewed toward non-“profitable” agents. In particular, without entry, the propor-
tion of “profitable” agents becomes negligible, as the friction vanishes. As a result, it is
not obvious whether or not “profitable” agents can be matched with each other sufficiently
frequently to extract all gains from trading, which is a critical step to induce a Walrasian
equilibrium.

The rest of the paper is organized as follows. We formally describe the model and
the solution concept in section 2. Section 3 states the main result that follows a series of
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intermediate results. Section 4 discusses bilateral trading mechanisms. Section 5 concludes
the paper.

2. Model

2.1. Static environment. The set I ⊂ R of agents in the market are decomposed into
K types of buyers, B1, . . . , BK , and L types of sellers, S1, . . . , SL. Each type consists of
a continuum of agents. Their generic elements as well as specific ones are denoted by Bk

and Sl, respectively.3 We assume that the good is indivisible. Each seller is endowed with
one unit of goods for sale. Each buyer demands up to one unit of goods, paying p.

Let ubk(d, p) be the utility function of type k buyer, where d ∈ {0, 1} and p ≥ 0. We
interpret d = 1 as the state in which the good is in possession of type k buyer, and d = 0 as
the state in which the good is not in possession of type k buyer. It is assumed that ubk is
twice continuously differentiable. It is analytically convenient (without loss of generality)
to normalize

ubk(1, 0) > ubk(0, 0) = 0 ∀k.

We need to impose a set of regularity conditions on ubk(1, p). We assume

ubk(1, 0) > ub,k+1(1, 0)(2.1)
∂ubk(1, p)

∂p
< 0(2.2)

∂2ubk(1, p)
∂p2

≤ 0(2.3)

∂

∂p
(ub,k+1(1, p) − ubk(1, p)) < 0.(2.4)

The first three properties are easy to interpret. (2.1) says that we rank the buyers according
to the marginal utility of the good. (2.2) says that an increase in payment reduces the
utility of the buyer, and (2.3) says that the marginal disutility of payment is increasing.
The last property is the single crossing property, which implies that the marginal disutility
of paying p is increasing as k increases. Combined with (2.1), (2.4) implies that

ubk(1, p) > ub,k+1(1, p) ∀k,∀p > 0.

Thanks to (2.2) and (2.3), we can define the reservation value bk implicitly as

ubk(1, bk) = 0

for each k, and (2.6) implies

b1 > b2 > · · · > bK .

We call type k buyer bk.

3We assume I as a subset of � to simplify the exposition. To make it more general than that, we
may consider a measure space (I,A, μ) where A is a σ-algebra, and μ is a measure. We then assume the
following properties: (i) {i} ∈ A and μ({i}) = 0; (ii) μ(I) = 2; (iii) I is partitioned into K +L measurable
sets, B1, . . . , BK , and S1, . . . , SL; (iv) an agent i ∈ Bk (k = 1, . . . , K) is called a k type buyer, and an
agent j ∈ Sl (l = 1, . . . , L) is called an l type seller.
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Similarly, we define usl(0, p) as the utility of type l seller when the good is delivered to
the buyer, and the seller obtains p. It is assumed that usl is twice continuously differen-
tiable. We normalize

usl(1, 0) = 0 > usl(0, 0).

We interpret usl(1, 0) as the payoff at the status quo (without trading), while usl(0, 0) as
her payoff, if one unit of the good is sold to the buyer at price 0.

We assume that usl(0, p) satisfies a set of regularity conditions.

usl(0, 0) > us,l+1(0, 0)(2.5)
∂usl(0, p)

∂p
> 0(2.6)

∂2usl(0, p)
∂p2

≤ 0(2.7)

∂

∂p
(us,l+1(0, p) − usl(0, p)) < 0.(2.8)

Define the marginal production cost sl implicitly as

usl(0, sl) = 0 ∀l.

We call a typical seller a type l seller or simply, an sl seller. Under the given set of
assumptions, we have

s1 < s2 < · · · < sL.

If (2.3) and (2.7) hold with equality, then the agent has the transferable utility with respect
to money. As we admit (2.3) and (2.7) to hold with inequality, we allow the agents to
have non-transferable utility for transfer payment.

We need these two conditions to ensure that the set of feasible payoff vectors between
type k buyer and type l seller is convex. Let r be the probability that the trading occurs,
and p be the payment from type k buyer to type l seller. The expected payoffs of type k
buyer and type l seller are

Ubk(r, p) = rubk(1, p) + (1 − r)ubk(0, 0), and Usl(r, p) = rusl(0, p) + (1 − r)ubk(1, 0).

Under (2.3) and (2.7) along with other conditions,

Skl = {(Ubk(r, p),Usl(r, p)) | 0 ≤ r ≤ 1, p ≥ 0,Ubk(r, p) ≥ 0, Usl(r, p) ≥ 0}
is compact, convex and comprehensive in R

2
+. As long as we can ensure Skl is compact

and convex, we can replace (2.3) and (2.7) by milder conditions.
We interpret ubk(1, p) and usl(0, q) as payoffs when the bk buyer pays p, and sl seller

receives q, for the good delivered. To simplify notation, we write for the rest of this paper
ubk(p) and usl(q) in place of ubk(1, p) and usl(0, q). We interpret ubk(p) and usl(q) as the
payoffs of bk buyer and sl seller when the good is traded, the buyer pays p, and the seller
receives q. In the sequel, it is assumed that p ≥ q holds (no free lunch), but p > q is
allowed to incorporate transaction cost.

Note that if we have a buyer and a seller, the set of feasible pair of payoffs is a convex
set; the Pareto frontier may not be a straight line. This occurs when there is the income
effect of consumption, which can be seen in the case of houses and automobiles.
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Let xk ∈ (0,∞) be the measure of type k buyers and yl ∈ (0,∞) be the measure of type
l sellers. Let

Xk =
k∑

k′=1

xk′

with X0 = 0 and

Yl =
l∑

l′=1

yl′

with Y0 = 0. These are exogenous variables. In order to make the model meaningful, we
also assume that

b1 > s1,

which ensures that gains from trade exist. To simplify notation and analysis, we assume
that ∑

k

xk =
∑

l

yl = 1

holds.4

The demand correspondence D is a non-increasing step correspondence where

D(p) =

{
[Xk−1,Xk] if p = bk

{Xk} if p ∈ (bk+1, bk).

Similarly, the supply correspondence S is a non-decreasing step correspondence given by

S(p) =

{
[Yl−1, Yl] if p = sl

{Yl} if p ∈ (sl, sl+1).

Generically, D and S intersect only at one point denoted by (p∗,X∗), which corresponds
to a competitive equilibrium.

Let us consider the case where the vertical line of the demand curve and the horizontal
line of the supply curve intersect as depicted in Figure 1 so that for appropriately chosen
k∗ and l∗, we have p∗ = sl∗ and X∗ = Xk∗−1. Note that the marginal seller’s reservation
value is the market clearing price, while the marginal buyers determine the equilibrium
quantity. We focus on this case as the remaining case can be analyzed in the same manner.

4Given the current matching technology, extending the situation to the case where the buyers’ measure
and the sellers’ measure are not equal is straightforward. To accomodate the case of, say,

�
k xk <

�
l yl,

we assume that bK = 0 so that no trade occurs if a type K buyer meets a seller. Then those sellers who
meet K type buyers can be analyzed exactly in the same manner as the one who did not meet anyone in
this period.
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�

�

sl∗−1

bk∗

sl∗

bk∗−1

Xk∗−1Yl∗−1

price

quantity0

Figure 1. K, L

2.2. Dynamic environment. Time is discrete, and its generic element is written as
t ∈ {1, 2, 3, . . . }. The time span of each period is Δ > 0. In each period, there are active
and inactive agents. Let zk

b (resp. zl
s) be the mass of type k buyers (resp. l sellers) who

are active in the matching pool. Define z = (z1
b , . . . , zK

b ; z1
s , . . . , zL

s ).
Naturally, 1 −∑k zk

b (resp. 1 −∑l z
l
s) is the mass of inactive buyers (resp. sellers).

Active buyers and sellers participate in the market for transaction. There are two pools of
active agents, one for the buyers and the other for the sellers. When a buyer (resp. seller)
is in the pool, the buyer is randomly matched with a seller (resp. buyer) in the other pool.

Since there exists no measure space that governs a coninuum of i.i.d. random variables
satisfying the law of large numbers (Feldman and Gilles (1985) and Judd (1985)), we
take Boylan’s approach with non-i.i.d. variables (Boylan (1992)) where the law of large
numbers is assumed rather than derived. First, let B′

k and S′
l be the measurable sets of

buyers and sellers in the pool, respectively, in a particular period. Write B′ = ∪kB
′
k and

S′ = ∪lS
′
l . Next, let ν be a measure that governs all the matches in the pool of this period.

We then assume, among others, the following.

ν(buyer i meets a seller in S′
l) = μ(S′

l)/μ(S′),
ν(seller j meets a buyer in B′

k) = μ(B′
l)/μ(B′),

μ

({
i ∈ B′

k

∣∣∣ i meets a seller in S′
l

and faces price in D′ ⊂ D

})
= μ(B′

k)μ(S′
l)
∫

D′
gz
kl(p, q)d(p, q).

Moreover, it is assumed that these events are independent across time.5

We assume that one buyer is matched to one seller. Since the total mass of buyers and
the total mass of sellers in the economy are equal, the size of the active buyers in the pool

5Another approach has been offered by Gilboa and Matsui (1992), who construct a finitely additive
measure on the set of countably many agents and show that one can construct another finitely additive
measure that governs the random matching with i.i.d. property of the matching where the law of large
numbers is consistent with this measure.
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is equal to the size of the active sellers:∑
k

zk
b =

∑
l

zl
s.

We assume that active buyers and sellers are randomly matched. Define

μk
b =

zk
b∑K

k′=1 zk′
b

, and μl
s =

zl
s∑L

l′=1 zl′
s

as the proportion of bk buyers and sl sellers among buyer and sellers in the pool. An
active buyer is matched to a seller with reservation value sl with probability μl

s. Similarly,
an active seller is matched to a buyer with reservation value bk with probability μk

b .
6 We

assume that the probability of a buyer (a seller) is matched to a particular type of a seller
(a buyer) is independent across the pairs.

A seller can sell one unit of a good per period, and a buyer demands at most one unit of
a good per period. Recall that sl > 0 is the marginal cost of a seller of type l ∈ {1, . . . , L},
and bk is the marginal benefit of a buyer of type k ∈ {1, . . . ,K}. When a buyer and a
seller meet, the two parties negotiate over the price of the good, according to which the
seller delivers one unit of the good in every period indefinitely, as long as the two parties
agree to continue the long term relationship. When the two parties form a partnership,
the buyer agrees to pay p and the seller agrees to receive q. We assume p ≥ q so that
there is no “free” money. We admit different prices to incorporate an inefficient bargaining
which “leaves money on the table.” Given a pair of proposed prices (p, q), a partnership
is formed if and only if the buyer accepts p, and the seller accepts q. Then, the pair of
the seller and the buyer becomes inactive by leaving the market (but not the economy).
The buyer generates ubk(p) surplus, and the seller accrue usl(q) profit per period, as long
as the partnership is in effect. If the pair fails to form a partnership, each player returns
to the respective pool, waiting for the next round’s match.7

Next, suppose that a bk buyer and an sl seller are inactive at the beginning of period
t, as they have already formed the partnership, agreeing that the buyer pays p and the

6Suppose that
�

k xk/
�

l yl = ω. If ω �= 1, then the probability of matching is adjusted accordingly.
For example, if ω > 1, then a buyer is matched to a seller with a reservation value sl with probability
μl

s/ω, while a seller is matched to a buyer with reservation value bk with probability μk
b .

7While our trading protocol is abstract, the trading procedure can be viewed as Chatterjee and Samuel-
son (1983) with a random transaction cost. Our goal is to show that a decentralized dynamic trading
mechanism can achieve efficient allocation, even if the trading protocol is inefficient because of informa-
tional and institutional frictions. We chose Chatterjee and Samuelson (1983) as a benchmark, for its
simplicity. In Chatterjee and Samuelson (1983), a buyer proposes p′ and a seller proposes q′ so that if
p′ < q′, then trading occurs and delivery price is determined as kp′ + (1 − k)q′ for some k ∈ [0, 1]. Chat-
terjee and Samuelson (1983) demonstrated that the presence of private information about the valuation
may hinder the traders from realizing all possible gains from trading.

Suppose that each agent has to pay for the transaction cost, which is drawn from a continuous density
function, which is bounded away from 0 over its domain. That is, the buyer has to pay ωb (possibly to the
mediator) in addition to kp′ +(1− k)q′, and similarly, the seller has to pay ωs out of the transfer payment
of kp′ + (1− k)q′. Define p = kp′ + (1− k)q′ + ωb and q = kp′ + (1− k)q′ − ωs as the prices a buyer and a
seller has to pay, when both parties agree to trade. Since (ωb, ωs) is a random vector, the price each party
pays may differ from each other.
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seller receives q. Having already formed a partnership, neither party is active.8 But, each
party can decide whether to continue or terminate the existing partnership. If at least
one party chooses to terminate the partnership, then the two players are dumped back to
the respective pool of matching. If both players choose to continue the partnership, the
partnership can be terminated by an exogenous shock. The probability of the exogenous
shock in each period is given by 1 − δ = 1 − e−dΔ, where d > 0. When the long term
contract is dissolved by the exogenous shock, each party returns to the pool to search for
a new partner. If the partnership continues, then the good is produced and delivered so
that the buyer generates surplus ubk(p) and the seller accrues profit usl(q).

We interpret Δ > 0 as the amount of friction in the economy. As we are interested in
the equilibrium market outcome as the friction disappears, the analysis will focus on the
limit case as Δ → 0.

When a buyer bk and a seller sl are matched in period t, two prices p and q are proposed
to the buyer and the seller randomly, and the buyer and the seller simultaneously choose
whether to accept their respective prices or not. Note that the largest total surplus from
trading is finite, i.e.,

max
k,l

sup
p,q≥0,p≥q

[ubk(p) + usl(q)] < ∞,

and

D =
⋃
k,l

{(p, q) | ubk(p) ≥ 0 and usl(q) ≥ 0, p ≥ q}

is compact.
When a bk buyer and an sl seller are matched, the buyer reports his type as bk̃ and the

seller reports her type as sl̃. Conditioned on the pair (bk̃, sl̃), a pair of prices (p, q) ∈ D
is drawn according to probability measure νz

k̃l̃
where z = (z1, . . . , zK , z1, . . . , zL) is the

profile of measures of types of the buyers and the sellers who are in the pool. As we shall
see later, we focus on the truth-telling equilibrium, i.e., k̃ = k and l̃ = l. Thus, we write
νz

kl in place of νz
k̃,l̃

, which should cause no confusion.
We assume that νz

kl has a density function gz
kl(p, q). We impose the following regularity

conditions on gz
kl(p, q).9

Assumption 2.1. gz
kl(p, q) is a continuous function of (p, q, z) and satisfies

gz
kl(p, q) > 0 ∀p, q, z.

for all (p, q) with p ≥ q and all z ∈ [0, x1] × · · · × [0, xK ] × [0, y1] × · · · × [0, yL].

In the sequel, we write νkl and gkl(p, q) in place of νz
kl, and gz

kl(p, q), respectively, when-
ever the meaning is clear from the context.

8In a certain sense, we exclude on-the-job search. However, our goal is to show that the competitive
equilibrium can be sustained even if each player has little information about the economy. In fact, the
ensuing analysis reveals that allowing on-the-job search only helps the convergence to the competitive
equilibrium.

9A first time reader can assume that νz
kl is a uniform distribution over D, as the main result can be

extended from the uniform distribution to a general distribution satisfying Assumption 2.1, following Cho
and Matsui (2013).
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Since (p, q) is drawn from D, the search process implied by νkl is not “efficient”, as the
trade between the two players may not extract the entire potential gain from trading. We
choose to admit inefficient bargaining outcomes to understand whether or not and how an
efficient outcome emerges through a decentralized trading and matching process, which
may be inefficient.

One might wonder whether νkl over D can be viewed as a reduced form of a search
process over a set of incentive compatible bilateral trading mechanism. In fact, our model
embeds Myerson and Satterthwaite (1983) into a matching model. In order to explain
that our formulation of νkl is sufficiently general to incorporate a search process over the
set of incentive compatible bilateral trading mechanism, we need first to define interim
expected payoff of each agent at t. Moreover, our present formulation is more convenient
to explain the role of the uncertainty about the private valuation of the other players and
the assumption of the infinitesimal agents in the analysis. For this reason, we will re-visit
Myerson and Satterthwaite (1983) after we analyze the model completely.

Conditioned on the available information at time t, each agent chooses whether or not
to agree to trade: the action space of each agent is {A,R} where A stands for “agree” and
R for “reject”. If both agents agree upon (p, q), then they leave the market and become
inactive. While they are out of the market, one unit of the good is delivered from the
seller to the buyer, while the buyer pays p and the seller receives q in each period, as long
as they are in the long term relationship. But, with probability 1− δ, their partnership is
terminated, and they go back to their respective pools of unmatched agents. We assume
that these shocks are i.i.d. across partnerships and across time.

On the other hand, if either agent chooses R, then the buyer and seller return to their
respective pools of unmatched agents, and wait for the next period for a new match. Note
that even if each party agrees to the long term contract, each party is given a chance at the
beginning of each period to decide whether or not to continue the long term relationship.

The timing of matches and decisions is illustrated in Figure 2.

2.3. Histories and strategies. We assume that in the t-th period, each agent i ∈ I
observes the proposed price pi,t, some additional information θi,t, his own action ri,t, and
the eventual fate di,t of this period:

si,t = (pi,t, θi,t, ri,t, di,t).

In this expression, θi,t is an additional piece of local information, i.e., the information
concerning the current opponent’s attributes, ri,t ∈ {A,R} is the reaction and di,t ∈ {0, 1}
is the status after ri,t: 0 if i returns to the pool and 1 if i leaves the pool, of agent i in
period t. Let Θi be the set of possible θi,t’s. We assume that the realization of θi,t depends
only on the attributes of the current opponent and oneself. For example, if agent i of type
bk meets a seller j of type sl, then the distribution of θi,t depends only on the reported
type s̃l, while it may or may not contain s̃l, but never contains j’s past choice, say, rj,t−1.
Henceforth, we write Θb (resp. Θs) in place of Θi if agent i is a buyer (resp. seller).

The realized payoff ui,t is given by ui,t = usl(di,t, pi,t) if i is a seller of type l, ui,t =
ubk(di,t, pi,t) if i is a buyer of type k.10

10It is verified that θi,t is not used for decision making at all.
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Figure 2. Timing of Matches and Decisions

Let hi,1 = ∅ be the null history. At the beginning of period t > 1, agent i knows

hi,t = (si,1, . . . , si,t−1)

which we call the private history of agent i in time t. Let Hi,1 = {hi,1}, Hi,t (t > 1) be
the set of all private histories of agent i in t, and Hi = ∪t≥1Hi,t be the set of all private
histories of agent i. Let Hi be endowed with a natural measure.11

Let us formalize a strategy. Let Hbk
= {hbk ,t} be the set of private history of buyer bk

(k = 1, . . . ,K). A strategy fk
b of buyer bk is a pair of a reporting strategy

ϕk
b : Hbk

→ Δ(Ξb) ∪ {∅}
and an acceptance strategy

fk
b : Hbk

× [0,∞) × Θb → Δ({A,R}),
where Ξb = {1, . . . ,K} and Δ(Ξb) is the set of probability distributions over Ξb. Similarly,
Δ({A,R}) is the set of probability distributions over Δ({A,R}). For each hbk ,t−1 ∈ Hbk

,
if dbk ,t−1 = 1 so that bk buyer is outside of the matching pool, then ϕk

b (hbk ,t) = ∅, meaning
that he has no chance to report his type to a third party. On the other hand, if dbk,t−1 = 0
so that bk buyer is in the matching pool, then bk buyer reports his type according to
a randomized strategy ϕk

b (hb,t−1) ∈ Δ(Ξb). After reporting his type, bk buyer receives a
proposal pt ∈ [0,∞) and θt, and decides whether or not to accept the proposal, conditioned
on (hbk ,t−1, pt). Let Fk

b be the set of strategies of bk buyer, and Fb =
∏

k Fk
b .

11To be precise, the natural measure in this case is the product measure where the first coordinate of
each si,t is endowed with the Lebesgue measure, and the remaining two coordinates are endowed with the
counting measures.
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Similarly, we can define the strategy of sl seller where l ∈ Ξs = {1, . . . , L} as a pair of
a reporting strategy

ϕl
s : Hsl

→ Δ(Ξs) ∪ {∅}
and an acceptance strategy

f l
s : Hsl

× [0,∞) × Θs → Δ({A,R}),
conditioned on the set Hsl

of private histories of sl seller.
Let F l

s be the set of strategies of sl seller, and Fs =
∏

l F l
s. Given f ∈ F = Fb × Fs,

let f−i ∈ F−i be a strategy profile of the agents except agent i where all the other agents
follow f .

A strategy profile f = (fi)i∈I ∈ ×i∈IFi is measurable if ∀t, ∀h ∈ Ht, ∀ open set Oξ ∈
[Δ(Ξb)∪{∅}]× [Δ(Ξs)×{∅}], ∀ open set B ⊂ [0,∞), {i ∈ I| fi(h) ∈ Oξ} and {i ∈ I| ∀p ∈
B[fi(h, p) = A]} are measurable. From now on, we focus on the measurable profiles of
strategies.

A strategy profile f = (fi)i∈I induces a distribution over outcome paths. In period t, a
social outcome is given by

st = ((si,t)i∈I , Ct),

where Ct is a coalitional structure at t that specifies the long term pairs and the set of
unmatched agents.

Given a strategy profile f ∈ F , the payoff function of agent i is given by

Ui(f) = Ef

[
(1 − β)

∞∑
t=1

βt−1ui,t

]
(2.9)

where Ef is the expectation operator induced by f. We often omit superscript “f” to simply
write “E”.

2.4. Solution concept. We consider stationary Markov perfect equilibrium with undom-
inated strategies. Let us define Nash equilibrium, before defining our solution concept.

Definition 2.2. A measurable strategy profile f∗ ∈ F is a Nash equilibrium, if for all
i ∈ I, for all fi ∈ Fi,

Ui(f∗) ≥ Ui(fi, f∗−i).

Given two private histories hi, h
′
i, and the most recent draw pi, define the continuation

game strategy of agent i as

fi(h′
i, pi|hi) = fi((hi ◦ h′

i), pi)

where hi ◦h′
i is the concatenation of hi and h′

i. Given history h, define f(·|h) = (fj(·|h))j∈I

as the profile of continuation strategies.
Given f, let us define the continuation value of agent i following private history hi,t as

Ui(f|hi,t) = Ef

[
(1 − β)

∞∑
k=0

βkui,t+k

∣∣∣ hi,t

]
.
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In an equilibrium, the continuation value of the agent in period t is a function of di,t−1

and pi,t, where di,t−1 ∈ {0, 1} indicates whether the agent is in the pool of unmatched
agents (di,t−1 = 0) or out of the pool (di,t−1 = 1) in period t − 1.

We are interested in a Markov perfect equilibrium with a small set of states: the one in
which the strategy of agent i depends only upon the state di,t−1 in the previous period and
the available information (pi,t, θi,t) of the present period. Therefore, instead of Ui(f|hi),
we consider

Wi,t((pi,t, θi,t, ri,t, 0)| di,t−1) = Ui(f|hi ◦ (pi,t, θi,t, ri,t, 0))

and

Wi,t((pi,t, θi,t, A, 1)|di,t−1) = Ui(f|hi ◦ (pi, θi,t, A, 1))

for any hi with the state of the last period being di,t−1.
In order to eliminate the pair of perpetual rejections from the set of stationary equi-

librium outcomes, we require that agent i should accept the price pi if and only if the
conditional continuation value Wi,t((pi,t, ·, A, 1)|di,t−1) of acceptance conditioned on the
opponent’s acceptance is greater than the continuation value Wi,t((pi,t, ·, ·, 0)|di,t−1) of
rejection.12

We say the outcome is stationary if for all t, t′, all i ∈ I, all hi with d′i being the state
of the last period, and all (pi, θi, ri, di),

Wi,t((pi, θi, ri, di)|d′i) = Wi,t′((pi, θi, ri, di)|d′i).
Since we focus on stationary outcomes, we write Wi(·) in place of Wi,t(·) in the sequel.

Definition 2.3. A strategy profile f∗ = (f∗i )i∈I is a stationary undominated Markov per-
fect (SUMP) equilibrium if the outcome is stationary, and for all i ∈ I, for all hi with di

being the state of the last period, and all (pi, θi),

Wi((pi, θi, A, 1)|di) > Wi((pi, θi, R, 0)|di) ⇒ f∗i (hi, pi) = A,

and

Wi((pi, θi, A, 1)|di) < Wi((pi, θi, R, 0)|di) ⇒ f∗i (hi, pi) = R.

Whenever the meaning is clear from the context, we call an SUMP equilibrium an undom-
inated equilibrium, or simply, an equilibrium, for the rest of the paper.

Note that this definition does not say anything about whether or not the opponent
accepts the proposal and therefore, pi may never be realized even if Wi((pi, ·, A, 1)|si) >
Wi((pi, ·, R, 0)|si) holds.

We have

Wi((pi,t, θi,t, A, 1)|di,t−1) = (1 − β)ui(pi,t) + βEWi((pi,t+1, θi,t+1, ri,t+1, di,t+1)|di,t = 1),

and
Wi((pi,t, θi,t, ri,t, 0)|di,t−1) = βE[Wi((pi,t+1, θi,t+1, ri,t+1, di,t+1)|di,t = 0)],

Due to the nature of random matching, θi,t and θi,t+1 are independent. Therefore, we have

Wi((pi,t, θi,t, A, 1)|di,t−1) = Wi((pi,t, θ
′
i,t, A, 1)|di,t−1),

12If the two values are equal, then the agent can either accept or reject the proposal in equilibrium.
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and
Wi((pi,t, θi,t, ri,t, 0)|di,t−1) = Wi((pi,t, θ

′
i,t, ri,t, 0)|di,t−1).

Thus, θi does not affect the continuation value, a fortiori, the decision of agent i. Moreover,
only pi,t affects the continuation value if di,t = 1 holds, and none of pi,t, ri,t and di,t−1

affect the continuation value if di,t = 0 holds. Hence, we can write

Wi(pi,t) = Wi((pi,t, θi,t, A, 1)|di,t−1)

and
Wi = Wi((pi,t, θi,t, ri,t, 0)|di,t−1).

It is straightforward to show the existence of an undominated equilibrium.

Theorem 2.4. Under Assumption 2.1, an undominated equilibrium exists.

Proof. See Appendix A. �
Given a profile ϕ of the equilibrium reporting strategies, let ν̂ϕk

b ,ϕl
s

be the equilibrium
distribution which selects (p, q) accordingly. Following the spirit of the revelation principle,
consider a mapping

(bk, sl) �→ ν̂ϕk
b ,ϕl

s

and define

νkl = ν̂ϕk
b ,ϕl

s

which is induced by a density function

gν
kl(p, q) =

∑
k′

∑
l′

gν̂
k′l′(p, q)ϕk

b (k′)ϕl
s(l

′).

Note that gν
kl satisfies Assumption 2.1.

Since the equilibrium strategy is conditioned on the private type of each player rather
than the identity of the player, it is more convenient to write W k

b as the expected payoff
of bk buyer, and W l

s as the expected payoff of sl seller, instead of Wi. The equilibrium is
determined only by the continuation game payoff. Given p, for example, buyer bk must
make the same decision as long as the continuation game payoff is the same, even if (p, q) is
drawn from a different distribution or is realized by a different reporting strategy. Thus,
W k

b is unaffected by ϕk
b or ϕl

s, as long as the reporting strategy induces the same νkl.
Hence, we can regard νkl instead of ν̂ϕk

b ,ϕl
s

as the equilibrium outcome, in which each
player reports his type truthfully.

2.5. Optimal response and value function. The optimal strategy of bk buyer is to
accept p if W k

b (p) > W k
b and reject it if W k

b (p) < W k
b . We have

W k
b (p) = (1 − β)ubk(p) + β

(
δW k

b (p) + (1 − δ)W k
b

)
.

Thus, it is verified that the optimal strategy of bk buyer is to accept p if

ubk(p) > W k
b

and reject p if

ubk(p) < W k
b .
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Similarly, the optimal strategy of sl seller is to accept q if

usl(q) > W l
s

and reject q if

usl(q) < W l
s.

Define equilibrium threshold pk of bk buyer implicitly as

ubk(pk) = W k
b

and similarly,

usl(ql) = W l
s

as the equilibrium threshold of sl seller.
Suppose that (p, q) ∈ D is drawn according to νkl. Define

Πkl = {(p, q) ∈ D | ubk(p) ≥ W k
b , usl(q) ≥ W l

s}
as the pair of prices which are accepted by both parties, and

πkl = νkl(Πkl)

as the probability of such an event. Recall that zk
b (zl

s) is the mass of type k buyers
(respectively, l sellers) in the pool. In a stationary equilibrium, the size of the pool must
remain constant, balancing the inflow and the outflow of agents from the pool of singles.

zk
b

L∑
l′=1

μl′
s πkl′ = (xk − zk

b )(1 − δ),(2.10)

zl
s

K∑
k′=1

μk′
b πk′l = (yl − zl

s)(1 − δ).(2.11)

We have

W k
b (p) = (1 − β)ubk(p) + β

(
δW k

b (p) + (1 − δ)W k
b

)
and

W k
b = (1 − β)0 + β

(
(1 −

L∑
l=1

μl
sπkl)W k

b +
L∑

l=1

μl
sπklE(W k

b (p)|Πkl)

)
.

Similarly,

W l
s(q) = (1 − β)usl(q) + β

(
δW l

s(q) + (1 − δ)W l
s

)
and

W l
s = (1 − β)0 + β

(
(1 −

K∑
k=1

μk
bπkl)W l

s +
K∑

k=1

μk
bπklE(W l

s(q)|Πkl)

)
.
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where W l
s(q) is the value function of sl seller who is in the long term relationship with a

buyer, by agreeing to receive q. After substituting W k
b (p) and W l

s(q) into W k
b and W l

s,
respectively, we have

W k
b =

β
∑L

l′=1 μl′
s πkl′E(ubk(p)|Πkl′)

1 − βδ + β
∑L

l′=1 μl′
s πkl′

(2.12)

W l
s =

β
∑K

k′=1 μk′
b πk′lE(usl(q)|Πk′l)

1 − βδ + β
∑K

k′=1 μk′
b πk′l

(2.13)

Note that the present payoff without agreement is normalized to 0. After moving terms,
we can write

W k
b =

β
∑L

l′=1 μl′
s πkl′E(ubk(p) − W k

b |Πkl′)
1 − βδ

(2.14)

W l
s =

β
∑K

k′=1 μk′
b πk′lE(usl(q) − W l

s|Πk′l)
1 − βδ

.(2.15)

3. Analysis

3.1. Overview. As depicted in Figure 1, the competitive equilibrium price is determined
by s�∗ sellers. Let us call a s�∗ seller the marginal type, that determines the market
clearing price. In the competitive equilibrium, a positive fraction of s�∗ sellers may not
trade, while all the sellers whose production cost is less than s�∗ trade, and all buyers
whose marginal utility is higher than s�∗ trade in the competitive equilibrium. Being the
marginal type, the surplus of s�∗ sellers in the competitive equilibrium is equal to 0. The
main thrust of the analysis is to show that the behavior of the marginal type, s�∗ , in
the decentralized trading model emulates the behavior of the corresponding type in the
competitive equilibrium.

The main challenge of the analysis is to prove so in the decentralized dynamic trading
model. Being the marginal type, the equilibrium payoff of s�∗ sellers should be zero in
the limit, as friction vanishes. But, along the convergent sequence of equilibria of the
present decentralized trading model, the equilibrium payoff of s�∗ sellers should be strictly
positive.13

One may wonder at this stage why we cannot directly show all (relevant) thresholds
converge to the same value. πkl is determined by the difference of the equilibrium thresh-
olds of bk buyer and sl seller. If we can show that πkl → 0 as Δ → 0 for all k and all
l with bk > sl, then it follows that all equilibrium thresholds converge to a single price,
from which we can recover the law of single price and move on to prove the convergence
to the competitive equilibrium.

The conventional models assume efficient bargaining protocol and free entry of fresh
agents, in combination with transferable utility. Transferable utility allows us to focus on
the probability of delivery without loss of generality, which greatly simplifies the analysis.

13The statements in this paragraph do not imply that it is trivial to show that other types’ behavior in
the decentralized model emulates their behavior in the competitive equilibrium. We check their behavior
one by one, which is the reason that there are many lemmata in the following subsections other than the
ones mentioned in the next paragraph.
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Thanks to free entry of fresh agents, all μk
b ’s and μl

s’s were bounded away from zero
(Gale (1987) and Mortensen and Wright (2002)). Then, one can prove that all (relevant)
thresholds converge to the same value.

In our case, however, we cannot invoke Myerson (1981) to substitute the transfer pay-
ment as a function of probability of reaching agreement. Without fresh entry of agents
into the economy, the size of pool becomes smaller, as friction vanishes. Since buyers with
high reservation values and sellers with low reservation values are matched away from their
respective pools more quickly than others, their fractions in the matching pool converge
to zero. Therefore, for k type buyers with μk

b → 0 as Δ → 0, we need to show that
μk

b/(1− βδ) > 0 holds as Δ → 0 in order to show that πkl → 0 as Δ → 0 for all (relevant)
l’s. As we need to show the “profitable” types vanish, but do so sufficiently slowly, the
actual proof is significantly more complicated than one might presume.

The core exercise is to prove five intermediate results. The first result is to address the
issues arising from non-transferable utility. The rest is to handle the challenges arising
from both non-transferable utility and no free entry.

First, we demonstrate in Lemma 3.1 that the transfer payment, and therefore, the
long run average equilibrium payoff, can be approximated as a function of probability of
reaching agreement per period,14 asymptotically. In contrast to Myerson (1981), where we
can substitute the transfer payment exactly by a function of the probability of reaching
agreement, our result holds only in the limit. As a result, the equilibrium payoff is sensitive
to the rate at which the probability of reaching agreement per period vanishes in the limit.

Second, the equilibrium payoff of s�∗ type seller vanishes at a “right” rate to ensure
that all sellers whose marginal production cost is less than s�∗ leave the market with
probability one (Lemma 3.6). Third, a positive fraction of s�∗ sellers remain in the pool
(Lemma 3.7). Fourth, the equilibrium payoff of s�∗ sellers vanishes in the limit, while it
remains positive along the convergent sequence of equilibria of the decentralized dynamic
trading models (Lemma 3.8). Fifth, the proportion of any buyer whose marginal utility is
higher than the marginal cost s�∗ must vanish from the pool in the limit (Lemma 3.13).
The convergence to the competitive equilibrium (Theorem 3.14) follows, among others,
from these intermediate results.

3.2. Preliminaries. Note that for each k and l, if νkl is a uniform distribution, then
πkl is proportional to the size of the area of Πkl. For a general distribution satisfying
Assumption 2.1, we have the following lemma.

Lemma 3.1. Given k and l, there exist Ab, Ab, As, As > 0 and α > 0 such that

βAb

∑L
l=1 μl

s(πkl)1+α

1 − βδ
≤ W k

b ≤ βAb

∑L
l=1 μl

s(πkl)1+α

1 − βδ
,(3.16)

βAs

∑K
k=1 μk

b (πkl)1+α

1 − βδ
≤ W l

s ≤ βAs
∑K

k=1 μk
b (πkl)1+α

1 − βδ
.(3.17)

In particular, if ν is the uniform distribution over D, then α = 1/2.

Proof. See Appendix B. �
14This is a different objective from what we consider in the mechanism design approach, where we use

the probability reaching agreement in the entire game rather than per period.
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Lemma 3.1 suppresses the transfer payment from the analysis, in the same way as
the mechanism design approaches does under the assumption of the quasi linear utility
function. The substance of the lemma is that the expected gain from reaching a long term
agreement is approximated by a monotonic function of the probability of reach agreement.
We do not need the quasi linear utility function, but need only continuity of the utility
function and continuity of the density function of the probability distribution of (p, q). For
the rest of the paper, we focus on the asymptotic properties of πkl, which hold the clue of
the asymptotic properties of the value functions.

The only property we need is that the value function converges to zero as Δ goes to
zero at a faster rate than πkl’s: ∃α > 0 such that the value function vanishes at the rate
of π1+α

kl . Existence of such α > 0 is guaranteed by νkl, which has a continuous density,
uniformly bounded away from 0 over its support.

Recall that

ubk(pk) = W k
b(3.18)

is the threshold price of bk buyer, and

usl(ql) = W l
s(3.19)

is the threshold price of sl seller. We can show that the equilibrium thresholds are mono-
tonic with respect to the marginal valuation or cost.

Lemma 3.2. For all k and l, we have

pk ≥ pk+1 and ql ≤ ql+1.

Proof. See Appendix C. �
Since the threshold is an increasing function of the types, we have a natural monotonic

relationship among the probabilities of reaching agreement between the two agents.

Lemma 3.3.

∀k∀l [(πkl = 0) → (πk+1,l = 0) and (πk,l+1 = 0)](3.20)

Proof. See Appendix D. �
In most existing models, a positive mass of entrants ensures that the matching pool

maintains a positive mass of agents who can obtain positive gain from trading, even in the
limit as Δ → 0 (e.g., Rubinstein and Wolinsky (1985)). In contrast, agents are entering
the matching pool only when the existing long term relation dissolves. As Δ → 0, the
mass of entrants into the pool vanishes, and so does the mass of agents in the pool who
can gain positive surplus from the long term relationship.

The stationary distribution of types of the agents in the pool is skewed so that the pool
is inundated by the buyers with low reservation values and the sellers with high production
costs. As a result, a seller with low production cost, for example, may have to go through
many rounds of matching in the pool before making a profitable long term relationship.
As Δ → 0, a seller in the pool has increasingly many opportunities to be matched to a
buyer. We need to examine whether it takes a positive amount of real time before forming
a profitable long term relationship in an undominated stationary equilibrium. The core of
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the proof is essentially to show that the real time necessary to find a profitable long term
relationship in the pool also vanishes as Δ → 0.

We first explore the properties of endogenous variables which affect the buyer’s equi-
librium behavior, and then examine the other variables affecting the seller’s equilibrium
behavior. The main result obtains by combining these results, which also provide a useful
insight into the structure of an equilibrium.

3.3. Buyers. We focus on the case in which the competitive equilibrium price is equal
to sl∗ , and the equilibrium quantity is Xk∗−1. We first establish a weaker version of
this statement in the context of the matching model, saying that bk∗ buyer cannot reach
agreement with any seller, or sl∗ seller cannot trade with any buyer.

Lemma 3.4. ∃Δ > 0 such that ∀Δ < Δ, [∀l(πk∗l = 0)] or [∀k(πkl∗ = 0)].

Proof. See Appendix E. �
Using the fact that

Yl∗−1 < Xk∗−1,

we strengthen Lemma 3.4. That is, bk∗ buyer does not trade with any seller, and there
exists some type bk of the buyer who will trade with sl∗ seller with a positive probability.

Lemma 3.5. ∃Δ > 0, ∀Δ < Δ, ∀l(πk∗l = 0) and ∃k(πkl∗ > 0).

Proof. See Appendix F. �
Lemma 3.4 is weaker than what we need, as it only says that there exists k such that

πkl∗ > 0. We need to show that πk∗−1,l∗ > 0, which implies that ∀k < k∗, πkl∗ > 0 ∀Δ > 0.
To this end, we need to investigate the properties of a seller’s equilibrium strategy.

3.4. Sellers. If a sequence of undominated stationary equilibria of a matching model
converges to the competitive equilibrium, then sl seller with sl < sl∗ should be matched
away almost immediately, in order to ensure the efficiency of the allocation. This is a
crucial property for obtaining the ex post efficiency of the equilibrium allocation.

However, proving this property for a matching model is not as straightforward as the
competitive equilibrium model suggests, because the matching between the two parties is
not conditioned on the reservation value of either party. Moreover, even if sl ≥ sl∗, sl seller
may trade with a higher valuation buyer than bk∗−1. The substance of the next lemma is
to show that the low reservation value seller must be matched away almost immediately
in the steady state, in order to exhaust possible gains from trading.

Lemma 3.6. ∀l < l∗ limΔ→0 zl
s = 0.

Proof. See Appendix G. �
Note that Lemma 3.6 does not imply

∀l < l∗ lim
Δ→0

μl
s = 0,

unless we prove that the size of the pool is bounded away from 0. Combining Lemma 3.6
with Lemma 3.5, the next lemma shows that the matching pool does not shrink away even
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in the limit, as friction vanishes. In particular, a positive portion of sl∗ seller must be in
the matching pool.

Lemma 3.7. lim infΔ→0 zl∗
s > 0 and limΔ→0 μl

s = 0 for all l < l∗.

Proof. See Appendix H. �
In a competitive equilibrium model, if sl > sl∗, then sl seller cannot trade profitably

and her surplus is 0, and if sl < sl∗ , sl seller receives positive surplus from trading. The
same model asserts that if

Yl∗−1 < Xk∗−1,

then sl∗ seller receives 0 surplus.
This seemingly obvious observation in a competitive equilibrium is no longer obvious

in a matching model. If sl∗ seller trades with buyers with a positive probability according
to Lemma 3.5, then her long run average payoff is not 0. The next lemma reconciles this
discrepancy, by showing that as friction vanishes, the surplus of sl∗ seller remains positive,
but converges to 0.

Lemma 3.8. ∀Δ > 0, W l∗
s > 0 and

lim
Δ→0

W l∗
s = 0.

Proof. See Appendix I. �
3.5. Buyers and sellers. In a competitive equilibrium, whenever bk(≥ bk∗−1) buyer
trades with a seller sl∗ , then the trading between the two players must be efficient in
the sense that it exhausts all possible gains from trade. The next lemma shows that the
bilateral trading between bk(≥ bk∗−1) buyer and sl∗ seller must be asymptotically efficient.

Lemma 3.9. ∀k < k∗ limΔ→0 πkl∗ = 0.

Proof. See Appendix J. �
Lemma 3.9 is weaker than what we need, as it admits the possibility that πkl∗ = 0 along

the sequence as Δ → 0. We need to exclude this possibility, because πkl∗ = 0 implies that
bk buyer does not trade with sl∗ seller even if a positive gain from trading exists.

In order to strengthen Lemma 3.9, we prove a series of intermediate results. Using
Lemma 3.9, we show that if sl > sl∗ , then sl seller cannot trade with any buyer with a
positive probability.

Lemma 3.10. ∃Δ̄∀Δ ∈ (0, Δ̄) [∀l > l∗ ∀k πkl = 0].

Proof. See Appendix K. �
We prove that if bk > bk∗ , then bk buyer’s equilibrium payoff must be positive even in

the limit as Δ → 0.

Lemma 3.11. ∀k < k∗ limΔ→0 W k
b > 0.

Proof. See Appendix L. �
As in Lemma 3.6, if bk > bk∗ , then the proportion of bk buyer vanishes from the matching

pool, as friction disappears.



22 IN-KOO CHO AND AKIHIKO MATSUI

Lemma 3.12. ∀k < k∗ limΔ→0 zk
s = 0.

Proof. See Appendix M �
We now prove a stronger version of Lemma 3.9.

Lemma 3.13. ∀k < k∗, ∀{Δ} converging to 0, πkl∗ > 0 except for at most finitely many
number of Δ’s, and limΔ→0 πkl∗ = 0.

Proof. See Appendix N �
The main result says that all transactions will be made around the competitive equilib-

rium price p∗, and that rationing occurs properly in the sense that those who are supposed
to trade in the competitive equilibrium actually leave the pool almost always in the limit.
We state the proof to show how the intermediate results are used to prove the main result.
Let pk be the equilibrium threshold price of bk buyer and ql be the equilibrium threshold
price of sl seller.

Theorem 3.14. ∀k < k∗ ∀l ≤ l∗ limΔ→0 pk = limΔ→0 ql = sl∗ = p∗ which is the market
clearing price. Moreover, ∀k < k∗ ∀l < l∗ limΔ→0 zk

b = limΔ→0 zl
s = 0.

Proof. By Lemma 3.13, πkl∗ > 0 ∀Δ > 0. Thus,

pk ≥ pk∗−1 ≥ ql∗ ∀Δ > 0.

By Lemma 3.13, limΔ→0 πkl∗ = 0 ∀k < k∗. Hence,

lim
Δ→0

pk − ql∗ = 0.

Since limΔ→0 W l∗
s = 0 by Lemma 3.8,

lim
Δ→0

pk = sl∗.

Next, we show

lim
Δ→0

ql = sl∗ ∀l ≤ l∗.

Suppose the contrary: ∃l ≤ l∗ such that

lim sup
Δ→0

ql > sl∗ .

Then, ∃Δ such that ∀Δ ∈ (0,Δ), W l
s = 0.

By Lemma 3.8, W l∗
s > 0 ∀Δ > 0, even though limΔ→0 W l∗

s = 0. Since sl < sl∗,
W l

s ≥ W l∗
s > 0. Thus, W l

s = 0 for some Δ > 0 is impossible.
Suppose lim infΔ→0 ql < sl∗ . Then one can find k such that πkl > 0 for a sufficiently

small Δ > 0. Then we can repeat the same exercise to draw a contradiction. Thus, we
have

lim
Δ→0

ql = sl∗,

as desired.
The second statement of the theorem is the direct consequence of Lemma 3.7 and

Lemma 3.13. �
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4. Bilateral Trading Mechanisms

We formulate the trading protocol as a random search process for a pair of prices (p, q)
which is drawn according to probability distribution νlk. As the trading occurs possibly
under incomplete information, one might wonder whether our formulation is sufficiently
general to incorporate a large class of incentive compatible trading mechanisms. Indeed,
the randomly drawn pair of prices for bk seller and sl seller can be viewed as a randomly
drawn pair of equilibrium payoff vectors associated with an incentive compatible trading
mechanism.

To see this, let us assume a trading model endowed with quasi linear utility function, as
most existing papers in the literature assume. Imagine that when a buyer and a seller are
matched in the pool, the two players randomly search for an incentive compatible trading
mechanism, based upon the information available at the time of matching. Since we focus
on a stationary equilibrium, let us drop time subscripts from the variables in order to
simplify notation.

Let g(b, s) be the probability distribution of the types of the buyers and the sellers
in the pool in an undominated stationary equilibrium. Define gb(s|bk) and gs(b|sl) as
the distributions over the seller’s type and the buyer’s type conditioned on bk and sl,
respectively. Let (y(bk, sl), x(bk, sl)) be the pair of the delivery price and the probability
of delivery conditioned on the reported types (bk, sl) of a buyer and a seller.

We say that (y, x) is short run incentive compatible, if

Uk
b (bk) =

∫
s
(x(bk, s)bk − y(bk, s)) gb(s|bk)ds

≥
∫

(x(bk′ , s)b − y(bk′ , s)) fb(s|bk)ds = Uk
b (bk′) ∀k, k′

U l
s(sl) =

∫
b
(y(b, sl) − x(b, sl)sl) gs(b|sl)db

≥
∫

(y(b, sl′) − x(b, sl′)sl) fs(b|sl)db = U l
s(sl′) ∀l, l′,

where Ub(bk) and Us(sl) are the interim expected utility per period of bk buyer and sl

seller during the long term relationship.
Let M(g) be the set of all short run incentive compatible mechanisms for a given

distribution g. We know that M(g) is not empty, because any mechanism with a constant
delivery price is incentive compatible. Since the incentive constraint is a linear constraint
on the set of feasible mechanisms, M(g) is convex and compact. At this moment, we do
not consider individual rationality, and some element in M(g) may generate a negative
expected one shot payoff to some type of a player.

The objective function of each agent is the long run average discounted payoff. Thus,
we need to spell out the incentive compatibility condition in terms of the long run average
discounted payoff rather than short run payoff functions, Uk

b or U l
s.

Abusing notation, let us write Wk
b (bk, sl) and W l

s(bk, sl) as the continuation value of
bk buyer and sl seller, conditioned on the two players agreeing on (y, x), and reporting
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truthfully their types. A simple calculation shows that

Wk
b (bk, sl) =

(1 − β)(y(bk, sl)bk − x(bk, sl)) + β(1 − δ)Wk
b

1 − βδ

W l
s(bk, sl) =

(1 − β)(x(bk, sl) − y(bk, sl)sl)) + β(1 − δ)Wk
b

1 − βδ

We say that (y, x) is (long run) incentive compatible, if

Wk
b (bk) =

∫
s
Wk

b (bk, s)gb(s|bk)ds ≥
∫

s
Wk

b (bk′ , s)gb(s|bk)ds ∀k, k′

W l
s(sl) =

∫
b
W l

s(b, sl)gs(b|sl)db ≥
∫

b
W l

s(b, sl′)gs(b|sl)db ∀l, l′.

Let Wk
b (bk′) be the interim expected long run discounted average payoff of bk buyer if

he reports his type as bk′ instead. Note that Wk
b (bk) is a linear function of Uk

b (bk). Given
(W 1

b , . . . ,W K
b ;W 1

s , . . . ,W L
s ),

Wk
b (bk) ≥ Wk

b (bk′)

if and only if

Uk
b (bk) ≥ Uk

b (bk′)

where the inequality is implied by the incentive compatibility of (y, x). Thus, the short run
incentive compatibility implies the incentive compatibility, which implies that ∀(y, x) ∈
M(g), each agent has incentive to report his type truthfully, for given distribution g.

In any equilibrium, the optimal decision of bk buyer is therefore to accept (y, x) if

Uk
b (bk) > W k

b

and reject

Uk
b (bk) < W k

b .

The optimal decision of sl seller can be written in the same manner.
Note that in any undominated equilibrium, a buyer makes a decision whether to accept

or reject (y, x), conditioned on the event that (y, x) is accepted by a seller. Thus, gb(sl|bk)
must be consistent with the optimal decision of a seller. Similarly, gs(bk|sl) must be
consistent with the optimal decision of a buyer.

Let g̃(bk, sl) be the density of (bk, sl) in the pool, and ĝ(bk, sl) be the probability that
(bk, sl) form a long term relationship. Then,

g(bk, sl) =
g̃(bk, sl)ĝ(bk, sl)∑

k′,l′ g̃(bk′ , sl′)ĝ(bk′ , sl′)

must hold in an equilibrium.
Since

Ub(bk) + Us(sl) ≤ bk − sl,

∃pbk
, qsl

≥ 0 such that

Ub(bk) = bk − pbk
and Us(sl) = qsl

− sl.
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Given M(g), let U(M(g)) be the set of the interim expected payoff vectors induced by
an incentive compatible mechanism in M(g). Let ν̃ be a probability distribution over the
set of all incentive compatible trading mechanisms U(M(g)). Let ν be the probability
distribution over D, induced by ν̃. We can regard νkl as the marginal distribution of ν
over the space of (p, q) pair drawn for bk buyer and sl seller.

5. Concluding Remarks

5.1. Exogenous exit probability. One of the assumptions often made in the existing
models (e.g., Satterthwaite and Shneyerov (2008)) is to limit the total number of searches
by an agent by forcing the agent to exit the market after a certain number of failed attempts
to form a long term relationship. Those who cannot trade can leave the market without
changing our limit result at all. This is due to our matching technology according to which
the presence of those who never trade may only decrease the probability of matching with
those who trade with a positive probability. Thus, this effect is washed away if we make
the matching more frequent by letting Δ become small.

5.2. Rate of convergence. Even though the equilibrium outcome of the economy con-
verges to the competitive outcome as friction vanishes, it is important to see how fast the
convergence is. It is beyond the scope of this paper to characterize the rate of the conver-
gence to the competitive equilibrium. Yet, a numerical example indicates the convergence
rate appears to be very slow.

The numbers in Table 1 are generated under the assumption that

b1 = 10, b2 = 5; x1 = 0.4, x2 = 0.6; s1 = 2, s2 = 8; y1 = 0.6, y2 = 0.4

where ubk(p) = bk −p and usl(q) = q−sl. Recall that β = e−Δb and δ = e−Δd. We assume
that b = 1 and d = 10. In this case, the competitive equilibrium price is 5, and 60% of
each party trade. Thus, W 1

b → 5 and W 1
s → 3, while W 2

b ,W 2
s → 0. At the same time,

zb = z1
b + s2

b and zs = z1
s + z2

s converge to 0.4. Note that since x2 = 0.6, 1/3 of b2 buyers
trade at a price close to b2 = 5, while the remaining 2/3 of b2 buyers cannot trade.
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Δ 0.1 0.15 0.19

z1
b 0.2414 0.0176 0.0007

z2
b 0.4531 0.4033 0.4002

z1
s 0.3423 0.0210 0.0011

z2
s 0.3522 0.4000 0.4000

W 1
b 0.9733 3.4312 4.6344

W 2
b 0.1778 0.0057 0.0050

W 1
s 0.8881 2.9005 2.9915

W 2
s 0.0336 0.0049 0.0050

π11 0.5888 0.0435 0.0022

π12 0.2465 0 0

π21 0.4156 0.0010 7.0041 × 10−6

π22 0 0 0

Table 1. Since b2 < s2, π22 = 0 ∀Δ > 0. As Δ → 0, π12, π21 → 0,
even though b1 > s2 and b2 > s1. The rate of convergence of W 1

b to 5 is
particularly slow. Because of the rounding error, z1

b + z2
b �= z1

s + z2
s may

occur by a small amount. We treat a positive number as zero, if it is smaller
than 0.1 × 10−16.

Appendix

Throughout the appendix, we write the equilibrium thresholds of bk buyer and ql seller as pk and ql, defined
as (3.18) and (3.19) respectively.

Appendix A. Proof of Theorem 2.4

Define a mixed reporting strategy of bk buyer as

ϕk
b ∈ ΔK

as a probability distribution over K types. Similarly, we define a reporting strategy of sl seller as ϕl
s ∈ ΔL.

Let ϕb = (ϕk
b )k and ϕs = (ϕl

s). By k and l (without prime), we mean the true types of bk buyer and sl

seller. By k′ and l′, we mean the reported types of bk buyer and sl seller.
Given a profile of reporting strategies, and the profile of expected utility (Wb, Ws), each player uses the

“equilibrium” threshold to decided whether or not accept the proposal. That is, bk buyer accepts p if

ubk(p) ≥ W k
b

and similarly, sl seller accepts q if

usl(q) ≥ W l
s

so that we can focus on the existence of an equilibrium reporting strategy, when νk′l′ is determined by a
pair of reported types rather than a pair of true types.
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Define (z̃b, z̃s) as the profile of the inverses of the components of (zb, zs):

z̃k
b =

1

zk
b

and z̃l
s =

1

zl
s

.

Fix (Wb, Ws; z̃b, z̃s; ϕb, ϕs) which is an element in a compact convex subset of �K2+K+L2+L. We can recover
(zb, zs) from (z̃b, z̃s), and then, compute (μb, μs) from (zb, zs) through a continuous function. Define

Πkk′ll′ = {(p, q)| ubk(p) ≥ W k
b , usl(q) ≥ W l

s, p ≥ q},
and

π(k, k′; l, l′) = νk′l′(Πkk′ll′)

as the probability of reach agreement when bk buyer reports bk′ and sl seller reports sl′ , and then both
players use the true thresholds.

Given ϕs, the expected payoff of bk buyer if he reports bk′ is

W b(k, k′, ϕs) =
β
�

l′
�

l π(k, k′; l, l′)ϕs(l
′|l)μl

sE(ubk(p) | Πkl)

1 − βδ + β
�

l′
�

l π(k, k′; l, l′)ϕs(l′|l)μl
s

.

Then, we can define

W
k
b = max

k′ W b(k, k′, ϕs)

and Φb(·|k) as the set of probability distributions over

arg max
k′ W b(k, k′, ϕs)

and ϕb(·|k) as a generic element of Φb(·|k) which is convex and compact. Similarly, we can define W
l
s, Φ

l
s

and ϕl
s. Also, we can compute zb and zs using W s, W b, ϕb, ϕs in conjunction with the balance equation,

which should be modified to incorporate a randomized reporting strategy. Define

πkl̃ =
�

l′
π(k, k′; l̃, l′)ϕs(l

′|l̃)ϕb(k
′|k)

as the probability of reaching agreement if sl̃ seller reports according to ϕs(·|l̃) and bk buyer reports
according to ϕb(·|k). Then, we can define

1

z̃
k
b

= zk
b =

xk(1 − δ)

1 − δ +
�

l̃ μl̃
sπkl̃

for given μs. Similarly, we define z̃
l
s and zl

s for given μb.
Note that (z̃b, z̃s) is a linear function of (ϕs, ϕb), whose domain (Φb, Φs) is compact and convex. Thus,

the set Z̃ of (z̃b, z̃s)’s is a compact convex subset of �K+L
+ .15

Consider a mapping

(Wb, Ws; z̃b, z̃s; ϕb, ϕs) �→ (W b, W s; Z̃; Φb, Φs)

which is a compact convex valued correspondence with a close graph in a compact convex subset of an
Euclidean space. Thus, by Kakutani’s fixed point theorem, it has a fixed point, from which the existence
of an undominated stationary equilibrium follows.

15We update μb and μs after we compute zb and zs from Y .
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Appendix B. Proof of Lemma 3.1

We show the first line only. The second line follows the same logic. Observe first

πklE[ubk(p) − W k
b |Πkl] =

� �
Πkl

(ubk(p) − W k
b )νkl(p, q)dpdq.

We have

inf
p,q,z

νz
kl(p, q)

� �
Πkl

(ubk(p) − W k
b )dpdq ≤

� �
Πkl

(ubk(p) − W k
b )νz

kl(p, q)dpdq

≤ sup
p,q,z

νz
kl(p, q)

� �
Πkl

(ubk(p) − W k
b )dpdq.

Letting Ab sufficiently small and Ab sufficiently large, and substituting these expressions into (2.14), we
obtain the inequality as desired.

Appendix C. Proof of Lemma 3.2

We show the monotonicity of the threshold prices of buyers. Consider

ρbk(p) = ubk(p) − W k
b = ubk(p) − (1 − δ)

∞�
t=1

δt−1
K�

j=1

πkjE(ubk(p′) | Πkj).

With (2.2), (2.3) and (2.4),

dρbk(p)

dp
< 0

and

ρb,k+1(p) < ρbk(p) ∀p ≥ 0.

The conclusion follows from the observation that the equilibrium threshold pk is defined implicitly as

ρbk(pk) = 0.

Appendix D. Proof of Lemma 3.3

Recall

Πkl = {(p, q)|pk ≥ p, q ≥ ql}
and πkl = νkl(Πkl), where pk is the equilibrium threshold price of bk buyer and ql is the equilibrium
threshold price of sl seller. By the monotonicity,

Πkl ⊃ Πk+1,l

holds. Since every νkl is bounded away from zero on D, νkl(Πkl) = 0 implies νkl(Πk+1,l) = 0. The same
logic applies to Πk,l+1.

Appendix E. Proof of Lemma 3.4

Suppose otherwise. Then, we can find a sequence of (Δn) converging to zero such that for each Δn,
there exists an equilibrium where

πk∗l > 0 and πkl∗ > 0(E.21)

hold for some k and l, and all (finitely many) relevant variables are convergent. Take such k and l. This
implies that type k∗ buyers and type l sellers trade, and so do type l∗ sellers and type k buyers. Then we
must have

bk > sl∗ > bk∗ > sl.

Since type k∗ buyers and type l sellers trade with a positive probability, we have

pk∗ > ql
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for each Δn. Similarly,

pk > ql∗

holds for each Δn. By individual rationality, bk ≥ pk, bk∗ ≥ pk∗ , ql∗ ≥ sl∗ , and ql ≥ sl hold. Since the
equilibrium threshold price is monotonic with respect to the type of the agent,

pk ≥ pk∗ and ql∗ ≥ ql.

Combining these inequalities, we obtain

pk ≥ sl∗ > bk∗ ≥ ql

for each Δn. Noticing that sl∗ and bk∗ are exogenous parameters, we take the limit and obtain

lim
Δn→0

pk − ql ≥ lim
Δn→0

sl∗ − bk∗ > 0,

which implies

lim
Δn→0

πkl > 0.

Then, since

lim
Δn→0

W l
s ≤ lim

Δn→0

βAs

1 − βδ

�
k′

μk′
b (πk′l)

1+α < ∞

holds, we have

lim
Δn→0

μk
b

1 − βδ
< ∞.(E.22)

Note

μk
b =

zk
b�

k′ zk′
b

and

lim
Δn→0

μk
b

1 − βδ
=

zk
b

1−βδ�
k′ zk′

b

< ∞.

Since �
k′

zk′
b ≤ XK ,

we have

lim
Δn→0

zk
b

1 − βδ
< ∞.(E.23)

One can write (2.11) as

zk
b =

1 − δ�
l μl

sπkl + 1 − δ
xk

b .

From (E.23), we know

lim
Δn→0

zk
b

1 − δ
= lim

Δn→0

xk
b�

l μl
sπkl + 1 − δ

< ∞.(E.24)

Since xk
b > 0 is a constant parameter, ∃l′ such that

lim
Δn→0

μl′
s πkl′ > 0.

Otherwise, the left hand side of (E.24) diverges to infinity. Take such an l′. The boundedness of μl′
s and

πkl′ implies

lim
Δn→0

μl′
s > 0, and lim

Δn→0
πkl′ > 0
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Then, (3.16) together with the non-negativeness of each term therein implies that

W k
b ≥ βAb

1 − βδ
μl′

s (πkl′)
1+α → ∞

as Δn goes to zero. This is impossible because W k
b must be uniformly bounded.

Appendix F. Proof of Lemma 3.5

Suppose otherwise. Then, Lemma 3.4 implies that there exists a sequence (Δn) converging to zero such
that for each Δn, there exists an equilibrium in which

∀k(πkl∗ = 0).

holds, and all (finitely many) relevant variables are convergent. This implies that W l∗
s = 0 holds. Moreover,

πkl∗ = 0 implies

0 < pk − ql∗ → 0

as Δ → 0. Recall that usl∗(sl∗) = 0 and W l∗
s = 0. By the definition,

u−1
bk (W k

b ) − u−1
sl∗(W l∗

s ) → 0 = u−1
bk (W k

b ) − u−1
sl∗ (0) = u−1

bk (W k
b ) − sl∗ ,

where u−1
bk and u−1

sl∗ are the inverse functions of ubk and usl∗ , respectively. Note that ubk(p) is strictly
decreasing function of p, and that ∀k = 1, . . . , k∗ − 1, bk > sl∗ . Thus,

0 = ubk(bk) < ubk(sl∗) = W k
b ∀k = 1, . . . , k∗ − 1.

Hence,

W k
b > 0(F.25)

holds for all k = 1, . . . , k∗ − 1 independently of Δn > 0.
By Lemma 3.3, ∀l ≥ l∗, ∀k, πkl = 0. Thus, ∀l ≥ l∗, zl

s = yl. Since Yl∗−1 < Xk∗−1,

L�
l′=1

zl′
s ≥

L�
l=l∗

yl′ = 1 − Yl∗−1 > 1 − Xk∗−1.

Note that the strict inequality is independent of Δn > 0. Since the equal mass of unmatched buyers and
unmatched sellers must exist, ∃k < k∗ such that

lim
Δn→0

zk
b > 0.

Take such a k. From (2.10), we have

zk
b =

1 − δ�l∗−1
l=1 μl

sπkl + 1 − δ
xk

b ,

since πkl = 0 holds for all l ≥ l∗. In order for zk
b to be uniformly bounded away from 0,

lim
Δn→0

μl
sπkl

1 − δ
< ∞ ∀l.

Since zk
b > 0 holds uniformly of Δn > 0, μk

b > 0 holds uniformly of Δn > 0. Then, (3.17) implies that

lim
Δn→0

π1+α
kl

1 − βδ
< ∞

which implies that

lim
Δn→0

πkl = 0.

Thus,

lim
Δn→0

μl
sπ

1+α
kl

1 − δ
= 0



FOUNDATION OF COMPETITIVE EQUILIBRIUM 31

holds for all l. Then, we have

W k
b ≤ βAb

1 − βδ

l∗−1�
l=1

μl
s(πkl)

1+α → 0

as Δn → 0. This contradicts to (F.25).

Appendix G. Proof of Lemma 3.6

Suppose the contrary, i.e., that there exist l < l∗ and a sequence (Δn) converging to zero such that

lim
Δn→0

zl
s > 0

holds, and therefore,

lim
Δn→0

μl
s > 0,

and all other (finitely many) variables are convergent. Take such an l. Then from (3.16), we have

lim
Δn→0

(πkl)
1+α

1 − βδ
< ∞(G.26)

for all k.
We claim that

lim
Δn→0

W l
s > 0.(G.27)

Suppose the contrary, i.e., that

lim
Δn→0

W l
s = 0.

By Lemma 3.5, πkl∗ > 0 for some k along the sequence (if not, find a subsequence with this property and
continue the rest of the proof). Take such a k. Then, we have

pk > ql∗ .

Since the threshold prices are monotonic with respect to the type of the seller,

ql∗ ≥ ql = u−1
sl (W l

s) → u−1
sl (0) = sl

under the hypothesis of the proof. In an equilibrium, ql∗ ≥ sl∗ by the individual rationality. Thus,

pk > ql∗ ≥ sl∗ > sl = lim
Δn→0

ql.

Note that sl∗ − sl is independent of Δn. Thus,

lim
Δn→0

pk − ql > 0

which implies

lim
Δn→0

πkl > 0.

Then,

W k
b ≥ βAb

�
l′ μl′

s (πkl′)
1+α

1 − βδ
≥ βAbμ

l
s(πkl)

1+α

1 − βδ
→ ∞,

which is impossible since W k
b is uniformly bounded over Δ > 0. This contradiction proves (G.27).

Since πkl = 0 holds for all k ≥ k∗ by Lemma 3.5, (G.27) implies

0 < lim
Δn→0

W l
s ≤ lim

Δn→0

βAs

�k∗−1
k′=1 μk′

b (πk′l)
1+α

1 − βδ
< ∞.(G.28)

The last inequality implies that for all k′ = 1, . . . , k∗ − 1, there exists Bk ≥ 0 such that

μk′
b (πk′l)

1+α = Bk′Δ + o(Δ)(G.29)
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where

lim
Δ→0

o(Δ)

Δ
= 0.

Since limn→∞ zl
s > 0, (2.11) implies

0 < lim
Δn→0

�
k′ μk′

b πk′l

1 − δ
< ∞.(G.30)

The right inequality implies that ∀k′ ∈ {1, . . . , k∗ − 1}, ∃B′
k′ ≥ 0

μk′
b πk′l = B′

k′Δ + o(Δ)(G.31)

The left inequality of (G.30) implies that ∃k̃ ∈ {1, . . . , k∗ − 1} such that B′
k̃

> 0.
We claim that Bk̃ > 0. A simple calculation shows that

μk̃
b π1+α

k̃l

Δ
=

�
B′

k̃

�
μk̃

b

Δ

�α

+ o(Δ)

�
μk̃

b

Δ

�α�1+α

.

Since

lim
Δ→0

μk′
b

Δ
> 0,

the right hand side is bounded away from 0 as Δ → 0. Thus, Bk̃ > 0.
Note

μk̃
b π1+α

k̃l

μk̃
b πk̃l

= πα
k̃l =

Bk̃Δ + o(Δ)

B′
k̃
Δ + o(Δ)

=
Bk̃

B′
k̃

+ o(Δ).

Then,

lim
Δn→0

π1+α

k̃l

1 − δ
= ∞(G.32)

which contradicts to (G.26).

Appendix H. Proof of Lemma 3.7

Note that Lemma 3.5 implies zk
b = xk

b > 0 for all k ≥ k∗. Lemma 3.6 implies that zl
s → 0. Recall

Xk∗−1 < Yl∗ . In order to maintain the same mass of buyers and sellers in the pool,

lim inf
Δ→0

zl
s > 0

for l ≥ l∗. Therefore,

lim
Δ→0

μl
s = 0

holds for all l < l∗.

Appendix I. Proof of Lemma 3.8

By Lemma 3.5, ∃k < k∗ πkl∗ > 0. We know ∀Δ > 0, μk
b > 0. Thus,

W l∗
s =

βAs

�
k′ μk′

b πk′l∗

1 − βδ
≥ βAsμ

k
b πkl∗

1 − βδ
> 0.

To prove

lim
Δ→0

W l∗
s = 0

by way of contradiction, suppose the contrary: there exists a sequence (Δn) converging to zero such that

lim
Δn→0

W l∗
s > 0
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holds, and all other (finitely many) variables are convergent. From (3.16), this implies that

lim
Δn→0

μk
b π1+α

kl∗

1 − βδ
> 0(I.33)

holds for some k. Take such a k. Lemmata 3.3, 3.5, and 3.6 together with the one-to-one matching rule

give us limΔn→0 zl∗
s > 0. Then, from (2.11) and Lemma 3.7, we have

0 < lim
Δn→0

�
k′ μk′

b πk′l∗

1 − δ
= lim

Δn→0

yl∗ − zl∗
s

zl∗
s

< ∞.

Lemma 3.6 implies limΔn→0 μl∗
s > 0. Therefore, (2.10) implies

lim
Δn→0

μl∗
s πkl∗

1 − δ
< ∞

for all k. Due to limΔn→0 μl∗
s > 0, the above expression implies

lim
Δn→0

πkl∗

1 − δ
< ∞,

which implies

lim
Δn→0

π1+α
kl∗

1 − δ
= 0,

a fortiori,

lim
Δn→0

μk
b π1+α

kl∗

1 − βδ
= 0

for all k, which is a contradiction to (I.33).

Appendix J. Proof of Lemma 3.9

From (3.16), we have

βAb

μl∗
s π1+α

kl∗

1 − βδ
≤ W k

b < ∞.

Since limΔ→0 μl∗
s > 0 holds due to Lemma 3.7, we have

lim
Δ→0

π1+α
kl∗

1 − βδ
< ∞.

Thus, limΔ→0 πkl∗ = 0 must hold.

Appendix K. Proof of Lemma 3.10

Due to Lemma 3.5, it suffices to show the statement for k < k∗. Lemma 3.9 implies that ∀k < k∗,

lim sup
Δ→0

pk − ql∗ ≤ 0.

By Lemma 3.8,

lim
Δ→0

W l∗
s = 0

which implies that

ql∗ → sl∗ .

Since ql ≥ sl > sl∗ , and sl − sl∗ is independent of Δ,

lim inf
Δ→0

ql − ql∗ > 0.

Since ∀l > l∗,

0 ≤ W l
s ≤ W l∗

s → 0,

lim
Δ→0

ql − sl = 0.
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Thus, ∃Δ > 0 such that ∀Δ ∈ (0, Δ),

pk − ql < 0 ∀k < k∗,∀l > l∗

from which the conclusion follows.

Appendix L. Proof of Lemma 3.11

Since μl∗
s > 0 due to Lemma 3.7 and limΔ→0 W l∗

s = 0 due to Lemma 3.8, type k < k∗ buyer can obtain
a positive payoff bounded away from zero with a positive conditional probability π′

kl∗ > 0 by setting its

threshold at, say,
bk∗−1+sl∗

2
. Therefore, 2.12 together with μl∗

s > 0 due to Lemma 3.7 implies

W k
b ≥

βμl∗
s π′

kl∗E
�
bk − bk∗−1+sl∗

2
|Π′

kl∗
	

1 − βδ +
�L

l′ �=l∗ μl′
s πkl′ + μl∗

s π′
kl∗

> 0.

Appendix M. Proof of Lemma 3.12

Suppose the contrary, i.e., that there exists a sequence (Δn) converging to zero such that

lim
Δn→0

zk
b > 0

holds for some k < k∗, and all other (finitely many) variables are convergent, so that we have

lim
Δn→0

μk
b > 0

as a direct implication. Take such an k. From Lemma 3.7, we have zl∗
s > 0. From (2.11) and μk

b > 0, it is
necessary that

lim
Δn→0

πkl∗

1 − δ
< ∞.

Then we have

lim
Δn→0

π1+α
kl∗

1 − βδ
= 0.(M.34)

On the other hand,

lim
Δn→0

βAsμ
k
b π1+α

kl

1 − βδ
≤ lim

Δn→0
W l

s < ∞

implies that

lim
Δn→0

π1+α
kl

1 − βδ
< ∞(M.35)

holds for l < l∗ since we have limΔn→0 μk
b > 0 under the hypothesis of the proof. Note that (3.16) together

with Lemma 3.10 implies

W k
b ≤

βAb


�l∗−1
l′=1 μl′

s π1+α
kl′ + μl∗

s π1+α
kl∗

�
1 − βδ

for a sufficiently small Δ > 0. By Lemma 3.7 limΔn→0 μl
s = 0, which, together with (M.35) implies the

first term in the bracket must vanish, and (M.34) implies that the second term must vanish, as Δn → 0.

Thus, limΔn→0 W k
b = 0, which is a contradiction to Lemma 3.11.
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Appendix N. Proof of Lemma 3.13

Suppose the contrary: ∃k < k∗ and Δ > 0 such that πkl∗ = 0 ∀Δ ∈ (0,Δ), or equivalently

pk ≤ ql∗ ∀Δ < Δ.

By Lemma 3.2, pk is an increasing function of bk,

pk∗ ≤ ql∗

We have already established

lim
Δ→0

W k∗−1
b > 0.

Thus, ∃l < l∗, ∀Δ ∈ (0,Δ)

pk∗−1 − ql > 0(N.36)

or equivalently,

πk∗−1,l > 0.

On the other hand, Lemma 3.4 implies that ∃k < k∗ − 1 such that

lim
Δ→0

pk − ql∗ = 0.(N.37)

Thus, (N.36) and (N.37) imply ∃k, l such that

lim
Δ→0

pk − ql > 0

or equivalently,

lim
Δ→0

πkl > 0.

Recall that ∃α > 0 such that

W l
s ≤ βAs

�
μk′

b π1+α
k′l

1 − βδ
< ∞

holds uniformly over Δ > 0. Thus, for k and l identified by the claim,

lim
Δ→0

μk
b π1+α

kl

1 − βδ
< ∞.

Since limΔ→0 πkl > 0,

lim
Δ→0

μk
b

1 − βδ
< ∞.

Since
�K

k′=1 zk′ ≤ XK ,

lim
Δ→0

zk
b

1 − βδ
< ∞.

By (2.10),

zk
b

1 − δ
=

xk
b�L

l′=1 μl′
s πkl′ + 1 − δ

.

Since xk
b > 0 is a constant,

lim
Δ→0

L�
l′=1

μl′
s πkl′ > 0.

Since μl′
s is uniformly bounded,

lim
Δ→0

L�
l′=1

μl′
s π1+α

kl′ > 0,
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Hence,

W k
b ≥ βAb

�L
l′=1 μl′

s π1+α
kl′

1 − βδ
→ ∞

as Δ → 0, which is impossible, because W k
b is uniformly bounded over Δ > 0.
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