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A TWO-STAGE MODEL OF ASSIGNMENT AND MARKET

AKIHIKO MATSUI AND MEGUMI MURAKAMI

Abstract. This paper studies a two-stage economy where the non-monetary assignments of indi-
visible objects are followed by market transactions. In this economy, there are finitely many players
and finitely many types of indivisible objects and one divisible good called money. Every player de-
mands at most one object besides money. The first stage is governed by a non-monetary assignment
mechanism, while the second stage is governed by the market. As a mechanism in the first stage,
this paper considers the Boston mechanism and the deferred acceptance algorithm. This paper de-
fines perfect market equilibrium (PME) where the second stage outcome is a market equilibrium
both on and off the equilibrium paths, and the first stage strategy profile is a Nash equilibrium of the
mechanism, taking the second stage outcomes as given. This paper then analyzes two situations,
the economies with and without money. We also applied our analysis to the college admission prob-
lem: some players (firms) cannot obtain objects (degrees) in the first stage, waiting for some other
players (students) obtaining them, and buy the objects (hire the students with degrees) through the
market in the second stage. This paper provides us with some necessary and sufficient conditions
under which efficiency and stability are guaranteed.

Keywords: two-stage economy, assignment mechanism, market, indivisible object, perfect market
equilibrium, scarcity, priority cycle, stability

JEL Classification Numbers: C78, D41, D47, D51

1. Introduction

This paper studies a two-stage model where the non-monetary assignments of indivisible ob-
jects are followed by market transactions. This model is related to the following couple of sit-
uations. First, consider a problem of college admission where students select a college to be
admitted. They do so strategically, taking into account their future job prospects, rather than
truthfully expressing their intrinsic preferences such as their love for campus. Next, consider the
following historical case of the United States: after Homestead Act was enacted in 1862, pioneers
of the great prairie obtained a piece of land (160 acres) in return for living there and cultivating
the land. After acquisition, the lands were freely traded in the market. Also, imagine several firms
that strategically develop new technology to obtain patents. The intellectual property rights are as-
signed to firms on the first-come-first-served basis. After the acquisition of the rights, they can sell
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their patents to other firms or keep them and commercialize the invented technology in the market.
The fourth example is a situation in which office spaces in a newly constructed building are alloted
to faculty members. In the first stage, the department assigns rooms to the members based on some
predetermined rule. Then, the members are allowed to exchange their rooms afterwards.

A common observation in the above cases is that there are two stages, an assignment stage and
a market stage, and that assignment through a formal or informal non-price mechanism of the first
stage affects and is affected by what people obtain in the subsequent market, and therefore, players
therein would choose objects to obtain in the assignment stage in a strategic manner, taking into
account their prospects in the market stage. This observation raises a number of questions: under
what conditions does equilibrium exist? when does the first stage assignment matter in terms of
efficiency? what do we miss if the assignment stage and the market stage are separately analyzed?

In order to examine these questions, we construct a two-stage model. In this model, there are
finitely many players and finitely many types of indivisible objects. In addition, one divisible
good called money may or may not be available. Every player demands at most one object besides
money. The players may face different priorities at each object type in the first stage. Each object
has a limited amount of capacity, called quota. Each player has a quasi-linear utility function.

The first stage is governed by a non-monetary assignment mechanism. A mechanism is a pair
of the set of strategy profiles and an assignment rule. Given a mechanism, players simultaneously
choose strategies to obtain one unit of some object. Then, the mechanism chooses an alloca-
tion based on the selected strategy profile and priorities. That is, if the number of the players
who choose a certain object type exceeds its quota, then the players with top priority will ob-
tain the objects up to the quota; otherwise, the objects are alloted to all the players who choose
it. Throughout this paper, we assume that the mechanism is either the Boston mechanism or the
deferred acceptance algorithm.

The second stage is governed by the market. The players are endowed with the objects assigned
in the first stage as well as money. The priority no longer matters in the second stage. The players
can trade objects as a price taker. Each player’s payoff is determined by the indivisible good and
the money held at the end of the second stage. In particular, what they obtain in the first stage
matter only to the extent that it affects the final allocation in the second stage.

We introduce an equilibrium concept called perfect market equilibrium (PME) to analyze these
situations. PME requires that a market equilibrium be realized in each market of the second stage,
and that each player selects an optimal strategy in the mechanism, taking into consideration what
will happen in the second stage. In order to capture players’ incentives in the first stage, we define
an induced game, where the payoff of each strategy profile is defined by the corresponding market
equilibrium outcome. PME is a Nash equilibrium in this induced game.

When money is available in the economy, a refined concept of PME, Permutation independent
PME (PIPME), is considered. It requires that the price profiles of the second stage should be the
same between two initial endowment profiles as long as their total endowments are the same1.
This concept captures the idea of anonymity and (partial) price-taking behavior. PIPME reflects,
in addition to perfection, the idea of anonymity in the sense that changes in object holders would
not change the price system. It also reflects the idea of price taking behavior in the sense that even
if one changes his/her strategy in the assignment stage, it would not affect the second stage price
system.

1PIPME is considered only when money is available since it restricts the price system.
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In the analysis, two criteria are used to evaluate the allocation in PME: one is Pareto optimality,
and the other is efficiency. If an allocation is Pareto optimal, then there is no allocation where all
the players weakly prefer and at least one player strictly prefers to this allocation. An efficient
allocation maximizes the social welfare, which is equal to the sum of the players’ utility values.
We also introduceω-optimality andω-efficiency given an endowmentω of the second stage, which
correspond to optimality and efficiency, respectively. Given ω, an ω-optimal (resp. ω-efficient)
allocation is not necessarily an optimal (resp. efficient) allocation, especially when there are some
unassigned objects in the first stage.

With this two-stage model and solution concepts, we analyze two types of situations. The first
type of situation, analyzed in Section 3 is the one in which players have money. This situation
corresponds to an assignment stage followed by monetary transactions.

The existence of market equilibrium in the second stage is guaranteed as shown by Quinzii
(1984). Therefore, PME always exists in this case since the first stage outcome of PME is simply a
Nash equilibrium given the second stage outcomes. We show that PME object allocation is unique
and efficient under any utility value if and only if objects are scarce. The proof of sufficiency
is an application of the first fundamental theorem of welfare economics.2 The assumption of
scarcity, however, is essential to the results. For the proof of necessity, we construct an economy
where efficiency and uniqueness do not hold due to the lack of scarcity. If the scarcity assumption
is violated, an ω− efficient allocation in the market may not coincide with the unique efficient
allocation in the two-stage economy.

An application to a college admission problem is analyzed in Section 4. It is the one in which
the buyers and the sellers of the objects in the second stage market are inherently separated: the
players who obtain indivisible objects in the first stage will turn to be the sellers of the objects in
the subsequent market. Interpretation is that students choose a college to be admitted, while firms
hire the studetns based on the colleges they graduate from. The students strategically choose a
college, taking into account their future job prospects. We show that PME always exists as market
equilibrium exists under any value profiles if and only if the objects are scarce for both students
and firms.

The second type of situation, analyzed in Section 5, is an assignment stage followed by ex-
changes where there is no money, or monetary transactions are considered inappropriate.

The existence of market equilibrium in the second stage is not guaranteed without various con-
ditions. For example, if the quota of some object exceeds one, market equilibrium may not exist.
This also implies that the existence of PME is not guaranteed unless the quota of each object type
is limited to one. On the other hand, Pareto optimality of PME does not require even scarcity
on condition that it exists. Again, the proof for optimality is an application of that of the first
fundamental theorem of welfare economics.

To examine the relationships between the perfection of players and the first stage mechanism,
we relate PME to stability. An allocation is said to be stable if every player prefers his/her as-
signment to any object that is held by another player whose priority is lower than the player in
question and to any unassigned object. We introduce another equilibrium concept, called stable
market equilibrium (SME) for the analysis without money. It imposes stability on the market equi-
librium object allocation. SME, unlike PME, considers neither the incentive to deviate in the first
stage nor off-the-equilibrium outcomes, and therefore, it is much easier to construct SME than

2See, e.g., Mas-Colell, Whinston, Green, et al. (1995).
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PME. We show that the condition that there is no priority cycle is equivalent to the conditions that
SME exists, and there exists a PME of which object allocation is the same as that of SME.

Since we analyze a two-stage model that consists of non-monetary assignments in the first stage
and market transactions in the second, our analysis is based on a variety of existing literature even
if we limit our attention to the papers that are directly related to the present one.

The present model closely follows the literature on assignment problems. The college admis-
sions problem is adopted from Gale and Shapley (1962) and Roth and Sotomayor (1989). So-
tomayor (2008) formulates a game form and define a Nash equilibrium to analyze stable matching
mechanisms.

Ergin (2002) shows that no cycle of priority, or acyclicity, is equivalent to Pareto optimality of
the outcome in the deferred acceptance mechanism. This condition of acyclicity turns out to play
a critical role in relating stable allocations to PME allocations.3

This paper is based upon some results in the existing literature on markets with indivisible
goods. Shapley and Scarf (1974) shows non-emptiness of core and existence of competitive equi-
librium when there is no money. We use their result directly in proving the existence of market
equilibrium in the case of no money. Kaneko (1982) shows non-emptiness of core under no-
transferable utility. Wako (1984) shows strong core is inside the set of competitive equilibrium
and conditions under which strong core exists. Quinzii (1984) shows the existence of competitive
equilibrium in an economy with indivisible goods and money. We use this result directly in stating
the existence result of market equilibrium in the case with money.

If we view the second stage endowment as the assignment of property rights, then the analysis
of the present paper is related to Coase’s theorem (see Coase (1960)). In the present context,
the theorem implies that irrespective of the assignment of property right, the market will lead to
an efficient allocation. Papers related to Coase’s theorem are abundant. In the present context,
it is worth mentioning Demsetz (1964), which states that under smooth markets, zero pricing
of scarce good does not lead to inefficiency, and Jehiel and Moldovanu (1999), which considers
assignment with resale and shows that the assignment of property right is irrelevant if there are
resale processes. In the present paper, if monetary transaction is possible and the scarcity condition
holds, then the situation becomes a special case of Jehiel and Moldovanu (1999). In other cases,
however, their presumption does not hold, and the result may not hold in general.

The literature on mechanisms with renegotiation is also related. Maskin and Moore (1999) con-
siders a two-stage model where a mechanism is implemented in the first stage, but the players can-
not commit to its outcome in the second stage and may renegotiate to move to a Pareto-improving
outcome. The present paper studies a more specific model to obtain more specific results than
theirs.

The rest of the paper is organized as follows. Section 2 presents a model and solution concepts
as well as some preliminary results. Section 3 studies situations with money. Section 4 studies a
situation where the population is divided into two groups, students and firms. Section 5 studies
situations without money. Some proofs and the definitions of some mechanisms are relegated to
appendices.

3See also Kojima and Manea (2010), which takes axiomatic approaches on deferred acceptance mechanisms.
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2. Model

We consider a two-stage economy. In the first stage, players play a game to obtain objects,
while in the second stage, the market opens to allocate objects and money, if any. The object
allocation in the first stage is governed by a mechanism. On the other hand, an object allocation
in the second stage is determined through a pure exchange economy based on the profile of the
initial endowments, objects and money. In this model, the initial object endowment profile in the
second stage is the outcome of the first stage.

2.1. Preliminaries. N is a finite set of players. O is a finite set of objects. Assume |N| ≥ 2 and
|O| ≥ 2. There is a null object, denoted ϕ. We may call ϕ an object and any a in O a tangible object
whenever convenient. Let Ō = O ∪ {ϕ}. The objects are indivisible, and each agent demands
at most one unit of the object. For any a ∈ O, a has a quota qa ∈ {1, 2, . . .}. Also, let qϕ be a
pseudo quota for ϕ. We assume qa < |N | for a ∈ O, while qϕ = |N |. A quota profile is denoted
by q = (qa)a∈O. Given a vector µ = (µi)i∈N ∈ ŌN and a ∈ Ō, let µa = {i ∈ N|µi = a} be the
set of the players who hold a. An object allocation is µ that satisfies |µa| ≤ qa for all a ∈ O.
A+ = {µ ∈ ŌN | ∀a ∈ Ō |µa| ≤ qa} is the set of all the object allocations.

We consider two classes of economies, one with money and the other without. If there is money,
an allocation is given by x = (µ,m) ∈ X ≡ A+ × RN with

∑
i∈N mi ≤ 0. If there is no money, an

allocation is given by (µ, 0) or simply µ.
We consider quasi-linear utility functions, i.e., for every i ∈ N, the utility function ui : Ō×R→

R of agent i is given by
ui(ai,mi) = vi(ai) + mi.

In case of no money, we interchangeably write ui(ai) = ui(ai, 0) = vi(ai). We assume that vi(a) ,
vi(b) holds for all a , b. Moreover, we assume that these values are generic unless otherwise
mentioned. In particular, we assume that for all N′,N′′ ⊂ N, and all allocations µ′, µ′′ ∈ A+ with
µ′ , µ′′,

(2.1)
∑
i∈N′

vi(µ′i) ,
∑
j∈N′′

v j(µ′′j )

holds.
We use two criteria to evaluate allocations in terms of utility. One is Pareto criterion and the

other is social welfare. Consider two allocations x and x′ in X. We say that x Pareto dominates x′

if for all i ∈ N, ui(xi) ≥ ui(x′i) holds, and for some j ∈ N, u j(x j) > u j(x′j) holds. An allocation x is
Pareto optimal if there is no allocation that Pareto dominates x.

The second criterion is social welfare. For each allocation (µ,m), a social welfare is given by
W(µ) =

∑
i∈N vi(µi). We say that (µ,m) is efficient if µ ∈ arg maxµ′∈A+ W(µ′) holds.

2.2. The first stage: Assignment. In the first stage, the players obtain objects based on priority
through a mechanism. As the first stage mechanism, we consider the Boston mechanism (Boston)
and the deferred acceptance algorithm (DA).

A mechanism is given by a pair
M = ⟨Σ, λ⟩,

where Σ = (Σi)i∈N is the set of strategy profiles with Σi being the set of i’s strategies and λ : Σ→ A
is an outcome function where A = ×i∈N Ai, and we assume the set Ai of the available objects for
i ∈ N is either Ō or {ϕ}.
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For every a ∈ O, ≻a is a strict total order at a ∈ O over the set of the players whose available
objects are Ō. It satisfies transitivity, asymmetry, and has no non-comparable pairs4. It defines the
order of players’ priority at object a, i.e., i ≻a j means that i has higher priority than j at a. Let
≻= (≻a)a∈O be the priority profile at all the objects.

The Boston mechanism works as follows.

(Boston)
Each player submits a list of objects ordered from the top to the bottom, i.e., for each i ∈ N with
Ai = Ō, player i’s list is given by

(
a1

i , . . . , a
|Ō|
i

)
, and for each i ∈ N with Ai = {ϕ}, player i’s list is

simply (ϕ).
The rest is determined by the algorithm:

Step 1: Start with the top (a1
i )i∈N of the players’ respective lists.

⋆ For each a ∈ Ō, if the number of the players choosing a does not exceed qa, i.e.,
|{i ∈ N | a1

i = a}| ≤ qa, then they are irreversibly assigned to a.
⋆ If the number of the players choosing a exceeds qa, then the top qa players in terms
of priority are irreversibly assigned to a, and the rest go to the next step with the second
objects in their respective lists.

Step t (t > 1): Repeat ⋆’s in Step 1 with remaining objects and remaining players. If the
object at

i chosen by player i has been assigned up to its quota, or if the remaining units of
this object are taken by the other players in this step, then the player goes to the next step
with the (t + 1)th object at+1

i in the list.
Terminate the process when all the players are assigned to an object in Ō.

The deferred acceptance algorithm works as follows.

(DA)
Each player submits a list of objects ordered from the top to the bottom, i.e., for each i ∈ N with
Ai = Ō, player i’s list is given by

(
a1

i , . . . , a
|Ō|
i

)
, and for each i ∈ N with Ai = {ϕ}, player i’s list is

simply (ϕ).
The rest is determined by the algorithm.

Step 1: Start with (a1
i )i∈N , the first object of the players’ respective lists.

⋆ For each a ∈ Ō, if the number of the players choosing a does not exceed qa, then they
are temporarily assigned to a.
⋆ If the number of the players choosing a exceeds qa, then the top qa players in terms
of priority are temporarily assigned to a, and the rest go to the next step with the second
objects in their respective lists.

Step t (t > 1): Those assigned to a before and those who choose a in this step compete for
a, and repeat ⋆’s in Step 1 where we replace the second objects with (t + 1)th objects.

Terminate the process when all the players are assigned to an object in Ō.

Note that in the both mechanisms, player i with Ai = {ϕ} always obtains ϕ in the first step of the
algorithm.

4A binary relation ≻a over N is said to have no non-comparable pairs if i , j implies either i ≻a j or j ≻a i.
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2.3. The second stage: Market. The players participate in the market in the second stage. To
begin with, several related concepts are defined given the initial object allocation ω, which is the
outcome of the first stage. Given ω ∈ A and a ∈ O, let |ωa| be the total endowment of object a in
the second stage. We write a total endowment profile, or simply total endowment, |ω| = (|ωa|)a∈O.
Given an initial object allocation ω ∈ A of the second stage, an allocation x = (µ,m) ∈ X is
ω-feasible if for all a ∈ O, |µa| ≤ |ωa| holds. Aω denotes the set of ω-feasible allocations. Also,
Oω = {a ∈ O||ωa| > 0} is the set of feasible objects, and Ōω = Oω ∪ {ϕ}.

Note that the quantity restriction is only on the objects in O, i.e., not on ϕ. Next, ω-Pareto
optimality and ω-efficiency are defined.

Definition 2.1. Given an initial object allocationω of the second stage, an allocation x isω-Pareto
optimal (ω-optimal) if there does not exist an ω-feasible allocation x′ that Pareto dominates x.
Also, an allocation (µ,m), or simply µ, is ω-efficient if there does not exist an ω-feasible allocation
(µ′,m′) such that W(µ′) > W(µ).

The following lemma states the relationship between ω-optimality (resp. ω-efficiency) and
Pareto optimality (resp. efficiency). It is a direct consequence of the respective definitions.

Lemma 2.1. If |ω| = q holds, then an ω-optimal (resp. ω-efficient) allocation is also Pareto
optimal (resp. efficient).

Proof.
Suppose that |ω| = q holds. Then Aω = A+ holds. Thus, the definition of ω-optimality (resp.
ω-efficiency) becomes identical to that of Pareto optimality (resp. efficiency). □

The concept we use for the second stage is market equilibrium.

Definition 2.2. Given ω ∈ A, (p, x) = (p, µ,m) ∈ RŌω
+ × Aω × RN is a market equilibrium with

money under ω if pϕ = 0 holds, and
(1) ∀i ∈ N pµi + mi = pωi ,
(2) ∀i ∈ N∀a ∈ Ō [vi(µi) + mi ≥ vi(a) + pωi − pa)],
(3) ∀a ∈ Oω [|µa| ≤ |ωa|] ∧ [|µa| < |ωa| ⇒ pa = 0].

In case of no money, we have m = 0.

Note that Definition 2.2, especially pϕ = 0 and (3), together with ω-feasibility implies that the
objects in O are free disposal.

2.4. The two-stage economy and perfect market equilbirium. We combine the two stages.
First, we introduce an induced game.

Definition 2.3. Given a mechanism M = ⟨Σ, λ⟩ and a profile (p(ω), x(ω))ω∈A, player i’s induced
payoff is given by

ũi(σ) = ui(x(λ(σ))).

Given a mechanism M = ⟨Σ, λ⟩ and a profile (p(ω), x(ω))ω∈A, an induced game Γ is a profile
⟨N,Σ, (ũi)i∈N⟩. We extend the payoff function ũi to the mixed strategy space where the expected
utility is used. We denote by ρi a mixed strategy of player i.

Now, we present an equilibrium concept that reflects the idea of perfection.

Definition 2.4. Given a mechanism M = ⟨Σ, λ⟩, (ρ, (p(ω), x(ω))ω∈A) is a perfect market equilib-
rium (PME) if
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(1) for all ω ∈ A, (p(ω), x(ω)) is a market equilibrium under ω;
(2) ρ is a Nash equilibrium of the induced game ⟨N,Σ, (ũi)i∈N⟩.

Given a PME, we sometimes call its on-path allocation a PME allocation. Analogously, we call
its on-path object allocation a PME object allocation.

We also consider a refined concept of PME. The following concept of permutation independent
PME requires that if the total endowments of the second stage are the same between the two
outcomes of the first stage, then the equilibrium price vectors are the same. This reflects the idea
of anonymity, i.e., changes in object holders would not change the price system as long as the total
endowments are unchanged.5

Definition 2.5. (ρ, (p(ω), x(ω))ω∈A) is a permutation independent perfect market equilibrium (PIPME)
if it is a PME, and for all ω, ω̂ ∈ A,

(PI): |ω| = |ω̂| ⇒ p(ω) = p(ω̂).

3. The Economy withMoney

This section studies the economy with money. We assume that the set of available object types
for player i, Ai, is equal to Ō for all i ∈ N. If money is available, then under the assumption
of no income effect, utility becomes transferable, and the definition of Pareto optimality (resp.
ω-optimality) is reduced to that of efficiency (resp. ω-efficiency).

3.1. Existence. First, we have the existence result of market equilibrium in the second stage due
to Quinzii (1984).

Claim 3.1. (Quinzii (1984)) For all ω ∈ A, there exists at least one market equilibrium under ω.

If there exists a market equilibrium under every ω, then by assigning a market equilibrium
allocation under each ω, we can construct a game for the first stage. Then PME exists in the mixed
strategy profile space since the existence of PME is reduced to the existence of Nash equilibrium.
Thus, the following result is stated without proof.

Theorem 3.2. There exists at least one PME.

The quasi-linearity of the utility functions implies that the demand correspondence is indepen-
dent of the initial allocation ω of the second stage, i.e., the object choice µi of player i is given
by

(3.1) µi ∈ arg max
a∈Ōω
{vi(a) − pa}.

For the subsequent analysis, the following lemma is useful.

Lemma 3.3. (1) Given any ω ∈ A, a market equilibrium allocation (µ,m) under ω is ω-
efficient.

5This definition also reflects the idea of price taking behavior in the sense that even if one changes his/her strategy in
the assignment stage, it would not affect the second stage price system as long as the total endowments are unchanged.
Indeed, in many mechanisms, including the Boston mechanism and the deferred acceptance algorithm, if there are a
sufficient number of players who take undominated strategies, a unilateral deviation would not affect the total amount
of objects available for the second stage market.
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(2) For any ω, ω̂ ∈ A with |ω| = |ω̂|, if (p, µ,m) is a market equilibrium under ω, then for any
market equilibrium ( p̂, µ̂, m̂) under ω̂, µ = µ̂ holds, and there exists a market equilibrium
under ω̂ of the form (p, µ, m̂), i.e., the price vector and the object allocation are the same.

Proof.
Suppose (p, µ,m) is a market equilibrium under ω. First, we show ω-efficiency. Suppose the
contrary, i.e., that there exists η ∈ Aω such that W(η) > W(µ) holds.

For every player i, (3.1) implies

(3.2) vi(µi) − pµi ≥ vi(ηi) − pηi .

From (3.2), we have

(3.3) pηi − pµi ≥ vi(ηi) − vi(µi)

for all i ∈ N.
By taking the summation of the both sides across i ∈ N, (3.3) implies

(3.4)
∑
i∈N

[
pηi − pµi

]
≥ W(η) −W(µ) > 0.

Therefore, we have

(3.5)
∑
i∈N

pηi >
∑
i∈N

pµi .

Rewriting the above inequality, we have

(3.6)
∑
a∈O
|ηa|pa >

∑
a∈O
|µa|pa.

This implies that there exists an object a ∈ O such that |ηa| > |µa| and pa > 0 hold. However,
|µa| < |ηa| ≤ |ωa| implies pa = 0 by the equilibrium condition. This is a contradiction.

Next, suppose that (p, µ,m) and (p̂, µ̂, m̂) are market equilibria under ω and ω̂, respectively,
such that |ω| = |ω̂| holds. Suppose the contrary, i.e., that µ , µ̂ holds. By the genericity of v’s, we
have W(µ) , W(µ̂). This is a contradiction to what we have proven above.

Finally, suppose that |ω| = |ω̂| holds, and that (p, µ,m) is a market equilibrium under ω. For
each i ∈ N, let

m̂i = mi − pωi + pω̂i .

Given the price p, for each player i, the optimal object under ω̂ is µi since the demand correspon-
dence does not depend on the initial endowment by Equation (3.1). Also, m̂i is determined by
player i’s budget constraint. Thus, (p, µ, m̂) is a market equilibrium under ω̂. □

Using Lemma 3.3, we can construct a PIPME from a PME where the object allocations between
the two equilibria are identical.

Corollary 3.4. Suppose that there is a PME. Then, there exists at least one PIPME whose object
allocation is identical to the PME object allocation.

Proof. To prove this corollary, let us define the following. Given ω ∈ A, let

Ωω = {ω̂ ∈ A | |ω̂| = |ω|} .
It is verified that these sets form equivalence classes. Let Ω = {Ω1, . . . ,ΩL} be a partition of A,
i.e., Ωℓ ∩Ωℓ′ = ∅ for ℓ , ℓ′ and ∪L

i=1Ω
ℓ = A.
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Suppose that (ρ, (p(ω), µ(ω),m(ω))ω∈A) is a PME. We construct a PIPME

(ρ∗, (p∗(ω), µ∗(ω),m∗(ω))ω∈A)

as follows. Consider Ω = {Ω1, . . . ,ΩL}. For each ℓ = 1, . . . , L, take an ω̂ℓ ∈ Ωℓ in an arbitrary
manner. Then for each ℓ = 1, . . . , L and each ω ∈ Ωℓ, let

p∗(ω) = p(ω̂ℓ),
µ∗(ω) = µ(ω̂ℓ),

m∗i = p∗ωi
− p∗µ∗i (ω), i ∈ N.

Due to Lemma 3.3, (p∗(ω), µ∗(ω),m∗(ω)) is a market equilibrium under ω for all ω ∈ A. This
completes the construction of the second stage equilibrium profile (p∗(ω), x∗(ω))ω∈A that satisfies
(PI). Since the first stage strategy profile ρ∗ is simply a Nash equilibrium of the induced game, the
proof is completed. □

3.2. Efficiency. Next, we turn to the efficiency of PME. If there are not a sufficient number of
players, we may not have efficiency. Let us consider the following example.

Example 3.1.

i 1 2
vi(α) 10 50
vi(β) 20 5

Table 3.1. Inefficient PME

Suppose that the values together with N and O are given by Table 3.1, that qα = qβ = 1 holds,
and that 1 ≻a 2 holds for a = α, β. Then, there is a PME where only α is consumed. We show it by
construction. On the equilibriumm path of this PME, we let

ω = (α, ϕ), p = (pα, pβ) = (20,−), µ = (ϕ, α),

and the utility gains of player 1 and 2 are 20 and 30, respectively. Off the equilibrium path when
2 deviates to obtain the leftover β in the first stage, we let

ω = (α, β), p = (pα, pβ) = (40, 10), µ = (β, α).

If this is the case, then the utility gain of player 1 is 50, while that of player 2 is 20. Therefore, 2
has no incentive to deviate. The lack of incentives to deviate in other off-paths is straightforward.

i 1 2 3
vi(α) 10 50 3
vi(β) 20 5 3

Table 3.2. Inefficient PME disappears
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If we add another player, 3, the situation changes even if this person is the lowest both in terms
of priority and values. See Table 3.2. Also, suppose that 1 ≻a 2 ≻a 3 holds for a = α, β. In
this case, an inefficient equilibrium similar to the one that existed before in the two player case
disappears. To see this, consider the corresponding allocation, i.e.,

ω = (α, ϕ, ϕ), p = (pα, pβ) = (20,−), µ = (ϕ, α, ϕ).

This time, player 3 obtains an object in neither stage. Thus, player 3’s surplus is zero even though
3 has a positive value for the objects. Thus, 3 has an incentive to take the leftover. The above
allocation cannot be an equilibrium outcome.

We generalize the argument of the above example to find a necessary and sufficient condition
for efficiency. Given θ = 1, 2, . . ., let

Vθ =
{
v ∈ RN×Ō

∣∣∣∣∣ min
a∈O
|{i ∈ N|vi(a) > 0, a ∈ Ai}| = θ

}
Objects are scarce if v ∈ Vθ with θ ≥ 2Q −mina∈O qa where Q ≡ ∑a∈O qa.

We are now in a position to state the following theorem.

Theorem 3.5. The following two statements are equivalent:
(1) for all v ∈ Vθ, a pure PME exists, and every pure PME allocation is efficient;
(2) objects are scarce, i.e., θ ≥ 2Q −mina∈O qa.

Proof. [(1)⇒ (2)]
We prove this direction by contraposition. Given q and ≻, assume θ < 2Q − mina′∈O qa′ . We

would like to show that there exist v ∈ Vθ and a pure inefficient PME. We let |N | = θ. If θ < |N |,
we simply set the values of extra players to be negative.

Write O = {a1, . . . , aL̄} in such a way that qa1 ≥ qa2 ≥ . . . ≥ qaL̄ holds. Note qaL̄ = mina′∈O qa′ .
In addition to qa1 < |N | < 2Q − qaL̄ , |N | must satisfy

(3.7)
L−1∑
ℓ=1

2qaℓ ≤ |N | <
L∑
ℓ=1

2qaℓ

for some L = 1, . . . , L̄ where the left hand side is zero if L = 1. Fix L. Let OL = {a1, . . . , aL}.
First, we identify the players who have higher priority for the objects in OL than others. Let S 1

be the set of the top qa1 players in terms of priority at a1 among N, i.e., S 1 = {i1, . . . , iqa1 } such
that i ≻a1 j holds for all i ∈ S 1 and all j ∈ N \S 1. Then sequentially define S ℓ (ℓ = 2, . . . , L−1) as
the set of the top qaℓ players in terms of priority at aℓ among N \ [∪ℓ−1

ℓ′=1S ℓ′]. As for S L, define it as
the set of top min{qaL , |N | −∑L−1

ℓ=1 2qaℓ } players in terms of priority at aL among N \ [∪L−1
ℓ′=1S ℓ′]. Let

S = ∪L
ℓ=1S ℓ. Partition N \S into B1, . . . , BL in such a way that |Bℓ| = qaℓ holds for ℓ = 1, . . . , L−1,

and BL = N \ [S ∪L−1
ℓ=1 Bℓ]. Note that S L may be empty, that |S L| < qaL implies BL = ∅, and that

|BL| < qaL .
Now, we construct v as follows:

for i ∈ S ℓ (ℓ = 1, . . . , L − 1), let vi(a) be any number in (0, 1) for all a ∈ O;
for i ∈ Bℓ (ℓ = 1, . . . , L − 1), let vi(a) be any number satisfying the following:

vi(a) ∈
(14, 15) if a = aℓ,

(0, 1) otherwise.
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In doing so, the numbers are chosen in such a way that (2.1) holds, i.e., genericity is guaranteed.
As for the players in S L and BL, we define v separately as follows. Partition S L into S ′L and S ′′L
with |S ′L| = |BL|, and
for i ∈ S ′L, let vi(a) be any number in (0, 1) for all a ∈ O,
for i ∈ S ′′L ∪ BL,

vi(a) ∈
(2, 3) if a = aL,

(0, 1) otherwise.

Note that S ′L is empty if BL is empty.
Next, in the first stage, let

ω∗i =

aℓ if i ∈ S ℓ, (ℓ = 1, . . . , L),
ϕ if i ∈ Bℓ, (ℓ = 1, . . . , L).

To attain this profile under DA, they put what they are supposed to obtain at the top of the list to
submit. To attain it under Boston, they choose their respective objects in the first round.

In the second stage, let p∗aℓ = 10 − ℓ/L for all ℓ = 1, . . . , L − 1 and p∗aL
= 1 under ω∗. This

price vector does not change if i ∈ S unilaterally deviates. Let paℓ (ℓ = 1, . . . , L) change from p∗aℓ
to p∗aℓ + 1 if i ∈ Bℓ unilaterally deviates. Assign equilibrium price and allocation vectors to other
endowment profiles, i.e., nodes that are reached only when two or more players deviate. A typical
behavior pattern and prices on the path is given in Table 3.3.

a1 · · · aL−1 aL leftovers

Buyers
B1︷   ︸︸   ︷

♠ ♠ · · · ♠ · · ·
BL−1︷    ︸︸    ︷

r r · · ·r
BL︷︸︸︷
♣ ♣

Sellers ♠ ♠ · · · ♠︸   ︷︷   ︸
S 1

· · · r r · · ·r︸    ︷︷    ︸
S L−1

♣ ♣︸︷︷︸
S ′L

♣ · · · ♣︸ ︷︷ ︸
S ′′L

□ □ · · ·

price p∗ 10 − 1
L · · · 10 − L−1

L 1

Table 3.3. A typical behavior pattern and prices on the path

We then show that the profile described above constitutes a PME. Observe first what the players
do on the path:

• player i ∈ S ℓ (ℓ = 1, . . . , L − 1) obtains object aℓ in the first stage, sells it to a player in Bℓ
at p∗aℓ in the second stage, and gains p∗aℓ = 10 − ℓ/L through the two stage activity;
• player i ∈ Bℓ (ℓ = 1, . . . , L − 1) obtains ϕ, the null object, in the first stage, buys aℓ in the

second stage, and gains vi(aℓ) − p∗aℓ ∈ (4, 6);
• player i ∈ S ′L obtains object aL in the first stage, sells it to a player in BL at p∗aL

= 1, and
gains 1;
• player i ∈ S ′′L obtains object aL in the first stage, consumes it, and gains vi(aL) ∈ (2, 3);
• player i ∈ BL obtains ϕ in the first stage, buys aL at p∗aL

= 1, and gains vi(aL) − 1 ∈ (1, 2).
Next, we check what they obtain if they make a unilateral deviation:

• player i ∈ S ℓ (ℓ = 1, . . . , L − 1) may obtain aℓ′ for some ℓ′ > ℓ to gain p∗aℓ′ , vi(a) ∈ (0, 1)
for some a ∈ Ō; all of them are less than p∗aℓ ;
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• player i ∈ Bℓ (ℓ = 1, . . . , L − 1) may obtain a leftover, say, a in the first stage and sell
it and buy aℓ at the same time in the second stage. By doing so, he/she gains at most
vi(aℓ)+ pa − (p∗aℓ + 1) due to a price increase of object aℓ. Since pa is at most one, the gain
is less than or equal to vi(aℓ) − p∗aℓ ;
• since the prices of object aL and other objects are at most one, player i ∈ S ′L gains at most

one;
• player i ∈ S ′′L gains either one or vi(aL) − 1;
• player i ∈ BL may obtain a leftover, say, a in the first stage and sell it and buy aL at the

same time in the second stage. By doing so, he/she gains at most vi(aL) + pa − (p∗aL
+ 1)

due to a price increase of object aL. Since pa is at most one, the gain is less than or equal
to vi(aL) − p∗aL

.

Note that the price of the object other than a1, . . . , aL is at most one due to the construction of v.
Hence, none of them has an incentive to make a unilateral deviation. Since there is a leftover that
would have induced a positive utility gain, the PME is not efficient.

[(1)⇐ (2)]
Assume θ ≥ 2Q −mina∈O qa.

Existence:
Let ω be an allocation with no leftover, i.e., |ω| = q. Suppose (p∗, µ∗,m∗) is an ME under ω

(such an ME exists). We may assume p∗a > 0 for a ∈ O since there is a sufficient amount of
demand for each a ∈ O. For any ω′ with no leftover, i.e., |ω′| = q, let p(ω′) = p∗. Adjusting m′

appropriately, we obtain an ME (p∗, µ∗,m′) under ω′ due to Lemma 3.3.
Align the objects O = {a1, a2, . . . , aL} in such a way that pa1 ≥ pa2 ≥ . . . ,≥ paL holds. Then,

as in the proof of the other direction, let S 1 be the set of the top qa1 players in terms of priority
at a1 among N, i.e., S 1 = {i1, . . . , iqa1 } such that i ≻a1 j holds for all i ∈ S 1 and all j ∈ N \ S 1.
Then sequentially define S ℓ (ℓ = 2, . . . , L) as the set of the top qaℓ players in terms of priority at
aℓ among N \ [∪ℓ−1

ℓ′=1S ℓ′]. Let S = ∪L
ℓ=1S ℓ.

Next, in the first stage, let

ω∗i =

aℓ if i ∈ S ℓ, (ℓ = 1, . . . , L),
ϕ if i ∈ N \ S .

To attain this profile under DA, the players in S put what they are supposed to obtain at the top of
the list to submit. The players in N \S submit the truth telling strategies. To attain it under Boston,
the players in S choose their respective objects in the first round, and the players in N \ S choose
some objects in O instead of ϕ.

Along the path, each player i ∈ N obtains ω∗i in the first stage. Moreover, even if one, say,
player i, makes a unilateral deviation, there would be no leftover since there are players in N \ S
waiting for any leftover.

This strategy profile constitutes a pure PME along with ME’s mentioned above (and appropri-
ately chosen ME’s for other ω’s).

Efficiency:
Take either DA or Boston as the first stage mechanism. The following proof is the same for

both. Note that we have assumed θ ≥ 2Q −mina∈O qa. Take any v ∈ Vθ. Suppose a ∈ O has some
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leftover, i.e., |ωa| < qa. Observe that at least qa players who cannot obtain b ∈ O \ {a} in neither
stage and have a positive value for a. Let W be the set of such agents. Note |W | ≥ qa > |ωa|. Then
pa ≥ mini∈W vi(a) > 0 holds; for if not, there would be excess demand for a. Then there exists
ℓ ∈ W who obtains nothing in the first stage, i.e., ωℓ = ϕ. This agent ℓ has an incentive to obtain
the leftover to gain vℓ(a) instead of max{vℓ(a) − pa, 0}. Thus, there is no leftover. Once this is
established, we resort to the efficiency property of the second stage market equilibrium to assure
efficiency.

□

4. College Admission and LaborMarket

We consider a decentralized labor market after college admission. There are two sets of players.
Ns is the set of students. N f is the set of firms. We have N = Ns ∪ N f and Ns ∩ N f = ∅. College
degrees are objects. A firm can demand a degree only if it is owned by some student.6 Every
student selects a college (including not going to college, corresponding to ϕ), taking into account
the future job prospect. For all i ∈ Ns, the set of available object types for player i in the first stage
is Ai = Ō. On the other hand, for all i ∈ N f , the set of available object types for player i in the first
stage is Ai = {ϕ}.

We assume the following.

Condition 4.1.

(Zero) for Ns: vi(a) = 0 holds for all i ∈ Ns and all a ∈ Ō,

In the presence of (Zero) for Ns, we assume genericity only for N f . Assumption (Zero) for Ns
implies that the firms, not the students, intrinsically demand the college degrees.

Given N0 ⊂ N, let AN0 = {ω ∈ A|i ∈ N \N0 → ωi = ϕ}. The following existence result is similar
to that in the previous section.

Lemma 4.1. Assume (Zero) for Ns. Given ω ∈ A, there exists at least one market equilibrium
under ω.

Then PME exists in the mixed strategy since the existence of PME is reduced to the existence
of Nash equilibrium. The following result is stated below without proof.

Theorem 4.2. Assume (Zero) for Ns. Then there exists at least one PME.

We have the following corollary that corresponds to Corollary 3.4.

Corollary 4.3. Assume (Zero) for Ns. Suppose that there is a PME. Then there exists at least one
PIPME whose object allocation is identical to the PME object allocation.

The proof of this corollary is essentially the same as that of Corollary 3.4.

4.1. Efficiency. In order to state the subsequent result, we need to modify the definition of
scarcity from what we have in the previous section. Given θ = 1, 2, . . ., let

V f
θ =

{
v ∈ RN×Ō

∣∣∣∣∣ min
a∈O
|{i ∈ N f |vi(a) > 0}| = θ

}
6We do not consider signaling effects here.
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Objects are scarce’ if
|Ns| ≥ Q and v ∈ V f

θ with θ > Q.

The next theorem corresponds to Theorem 3.5.

Theorem 4.4. Assume (Zero) for Ns. Then the following two statements are equivalent:

(1) for all v ∈ Vθ, a pure PME exists, and every pure PME allocation is efficient;
(2) objects are scarce’, i.e., |Ns| ≥ Q and v ∈ V f

θ with θ > Q.

In the following proof of the above theorem, we skip some details when they are similar to what
we have stated in the proof of Theorem 3.5.

Proof. (⇒) Suppose that objects are not scarce’, i.e., either |Ns| < Q or v ∈ V f
θ with θ ≤ Q (or

both). If |Ns| < θ holds, then efficiency is trivially violated as there are not sufficiently many
students who deliver all the objects to the firms that need them.

Therefore, assume θ ≤ |Ns|. We construct v as follows. Align the objects in an arbitrary manner,
O = {a1, . . . , aL̄}. There exists a unique L = 1, . . . , L̄ such that qa1 + · · ·+qaL−1 < θ ≤ qa1 + · · ·+qaL

holds. Fix L. Let N̂ f ⊂ N f satisfy |N̂ f | = θ and ∀i < N̂ f∀a ∈ O[vi(a) < 0]. Then assign a number
to each vi(a) (i ∈ N̂ f , a ∈ O) in such a way that for each ℓ = 1, . . . , L̄ − 1, and for all i, j ∈ N̂ f ,
vi(aℓ) > v j(aℓ+1) > 0 holds.

Let µ∗ be the efficient object allocation given v. It must be the case that |µ∗a| = qa for a =
a1, . . . , aL−1 and that 0 < |µ∗aL | ≤ qaL . Consider ω with |ω| = |µ∗|. Then (p, µ∗,m) becomes an ME
under ω for some p and m. It is verified, due to the way we construct v, that pa1 ≥ pa2 ≥ . . . ≥ paL .
Then there is another ME, denoted (p∗, µ∗,m∗), such that p∗aℓ = paℓ − paL holds for all ℓ = 1, . . . , L.
Note that p∗aL

= 0 holds.
Assign the objects to the players in Ns in the first stage from a1 to aL−1 to fill their respective

quotas, using ≻, i.e., those who have higher priority at a1 obtain a1, and so on. As for aL, assign
the objects to the remaining students so that the total number of the students assigned to some
tangible objects becomes θ. Assign the other students to ϕ. Denote this assignment profile ω∗. Let
(p∗, µ∗,m′) be the ME under any ω′ with |ω′| = |ω∗|. The existence of such an ME is proven in the
same manner as in the proof of Corollary 4.3.

Remove one player, say, i from ω∗aL to obtain ω∗∗. We would like to have this ω∗∗ as the PME
allocation of the first stage. Let us check if there is no incentive to deviate. Under ω∗∗, there is
one firm that cannot buy a tangible object in the second stage, and there is at least one student who
does not obtain a leftover in the first stage. If such a student obtains the object, then the first stage
object allocation becomes ω∗ (or some ω′ with |ω′| = |ω∗| to be precise), and therefore, the price
of the object this student obtains is zero. Thus, the student has no incentive to deviate in the first
stage. An inefficient outcome arises as a PME allocation.

(⇐) Suppose that objects are scarce, i.e., |Ns| ≥ Q and v ∈ V f
θ with θ > Q. Take v as given along

with other parameters, ≻ and q.
We show existence first. Take some ω with |ω| = q. Let (p∗, µ∗,m) be an ME under ω. Align

O = {a1, . . . , aL} in such a way that p∗a1
≥ p∗a2

≥ . . . ≥ p∗aL
holds. Since θ > Q holds, there exists

j ∈ N f such that µ∗j = ϕ and v j(aL) > 0 hold. Therefore, p∗aL
≥ v j(aL) > 0. Assign objects to

the players in Ns in the first stage from a1 to aL−1 to fill their respective quotas, using ≻. We can
do it as |Ns| ≥ Q. Assign the other students to ϕ. Denote this assignment profile ω∗. Under ω∗,
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(p∗, µ∗,m∗) becomes an ME for some m∗. Let ω∗ be the outcome of the first stage. Then together
with appropriate off-path ME’s, we have a PME as nobody has an incentive to deviate.

We next prove efficiency. Suppose that (σ, (p(ω), µ(ω),m(ω))) is a PME. Let ω∗ = λ(σ). Take
any ω. Since θ > Q holds, for all a ∈ O, there exists j ∈ N f such that µ j(ω) = ϕ and v j(a) > 0
hold. Therefore, pa(ω) ≥ v j(a) > 0 for all a ∈ O; otherwise, j would buy a in ME. Suppose that
a ∈ O has some leftover, i.e., |ω∗a| < qa. Since |Ns| ≥ Q, there exists at least one student who does
not obtain any tangible object. This player has an incentive to obtain the leftover a since under
any ω, pa(ω) > 0 as we have shown.

□

5. The economy withoutMoney

This section considers the economy without money. Also, we assume that all goods are valuable
for all the players, i.e., for all i in N, for all a ∈ O vi(a) > 0 holds. In this section, we assume that
the quota of each object in O is one.

For convenience, we summarize some of the assumptions in the following.

Condition 5.1.

(+Value): for all i in N and for all a ∈ O, vi(a) > 0,
(Quota1): for all a ∈ O, |qa| = 1.

Under (+Value), all tangible objects have positive intrinsic values for all. The set of positive
value profile is:

V+ = {v ∈ RŌ×N |∀i ∈ N∀a ∈ O vi(a) > 0}.

5.1. Existence and optimality. The condition for the existence of market equilibrium in the sec-
ond stage is non-trivial in the case of no money. Shapley and Scarf (1974) essentially shows that
for any initial endowment, a market equilibrium exists if all the tangible objects have a positive
value for everyone, and if the quota of each object is one.

Lemma 5.1. Assume (+Value), and (Quota1). For all ω ∈ A, market equilibrium exists under ω.

Proof.
Assume (+Value), and (Quota1). Shapley and Scarf (1974) shows that there is a sequence of top
trading cycles S 1, . . . , S L where S 1 , ∅ is a top trading cycle in N, S ℓ+1 , ∅ is a top trading cycle
in N \ ∪ℓ

ℓ′=1S ℓ′ (ℓ = 1, . . . , L − 1), and ∪L
ℓ=1S ℓ = N (see Appendix A.2 for the definition of top

trading cycles). Next, Shapley and Scarf (1974) attaches, in the present notation, a price pℓ to each
good held by a player in S ℓ (ℓ = 1, . . . , L − 1) in such a way that we have

p1 > · · · > pL > 0.

Then, the price system defined above constitutes a competitive price system.
We let p1, the highest price, not exceed mini∈N mina,b∈Ō, a,b[vi(a)− vi(b)], which is positive due

to genericity. Then, no player has an incentive to deviate in the second stage under ω. □

Using this claim and the existence result of subgame perfect equilibrium for a finite game, we
have the existence result for PME, which is stated without proof7.

7Note that PIPME may not exist in the case of no money.
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Theorem 5.2. Assume (+Value), and (Quota1). Then, there exists at least one PME.

Next, we show that a market equilibrium allocation is “optimal” given the initial endowment.

Lemma 5.3. Assume (+Value), and (Quota1). Suppose that given ω, µ is a market equilibrium
object allocation. Then, µ is ω-optimal.

Since the proof of this lemma is an application of the standard proof of the first fundamental
theorem of welfare economics, we relegate it to the appendix.

Proof. See Appendix B.1. □

Theorem 5.4. Assume (+Value), and (Quota1). The following two statements are equivalent.
(1) |{i ∈ N |Ai = Ō}| ≥ Q or for all i ∈ N Ai = Ō.
(2) Any pure PME object allocation is Pareto optimal.

Proof.

[(1)⇒ (2)]
Suppose |{i ∈ N |Ai = Ō}| ≥ Q. Suppose ω is the PME outcome of the first stage. Then, |ω| = q

holds. Suppose the contrary, i.e., there exists a leftover a. Then, there exists i s.t. ωi = ϕ, Ai = Ō
and vi(a) > 0. Then, this i cannot obtain any object in O in the second stage because the prices of
all the objects in O are strictly positive. For if not, the object i can obtain has a zero price, which
implies excess demand. Thus, this player i has an incentive to obtain a in the first stage. This is a
contradiction.

Next, suppose for all i ∈ N Ai = Ō.
Let µ ∈ A+ be a PME allocation, and let p be the price profile in this PME. Suppose the contrary,

i.e., that there exists η ∈ A+ that Pareto dominates µ. Partition N into Ne and Nd where we have

vi(ηi) = vi(µi) if i ∈ Ne,

vi(ηi) > vi(µi) if i ∈ Nd.

Note Nd , ∅. Since there is no indifferent object other than itself, ηi = µi holds for all i ∈ Ne.
Take any i0 ∈ Nd. Player i0 would have obtained ηi0 if it were available in either stage. In the first
stage, therefore, it must be the case that another player in Nd who obtained ηi0 under µ; otherwise,
player i0 could have obtained it directly in the first stage. Also, player i0 could have obtained it in
the second stage if pηi0

≤ pµi0
. But, repeating the same proof as the one in Lemma 5.3, we prove

this would lead to a contradiction.
[(2)⇒ (1)] This is a proof by the contraposition. Suppose that |{i ∈ N |Ai = Ō}| < Q holds, and

that there exists i ∈ N with Ai = {ϕ}. Then, there exists a leftover that could have been consumed
by some player with a positive value. Thus, the PME allocation is not Pareto optimal.

□

Proposition 5.5. Assume (+Value) and (Quota1). PME exists, and in any PME allocation, there
is no player with Ai = {ϕ} who obtains an object in O.

Proof. Suppose the contrary, i.e., in some PME allocation, there is a player with Ai = {ϕ} who can
obtain an object in O in the second stage. Then, as we see in the proof of the theorem 5.4, that
object has a zero price. Due to the assumption (+Value), this leads to an excess demand. This is a
contradiction. □
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5.2. Quotas and values.
Existence is not guaranteed if the quota exceeds one for some object type as the next example
shows.

Example 5.1.

1 2 3
α 10 20 20
β 20 10 10

Table 5.1. Value

Let the values of this economy be given in Table 5.1. Suppose

ω = (α, β, β).

Then we have no market equilibrium in the second stage under ω. To begin with, we have pα ≤ 20
and pβ ≤ 10. For if not, there would be excess supply with a positive price. Consider two cases.
First, suppose pα ≤ pβ ≤ 10. Then both 2 and 3 can afford α, and therefore, the demand for α is
at least two, which leads to excess demand as there is only one unit of object α. Second, suppose
pα > pβ. Then no player demands α, which leads to excess supply for α with a positive price.
Thus, no market equilibrium exists.

Also, existence is not guaranteed if (+Value) in Assumption 5.1 is violated.

Example 5.2.

1 2 3
α 20 −10 20
β 10 −20 10

Table 5.2. Value

Let the values of this economy be given in Table 5.2. Suppose

ω = (ϕ, α, β).

Then we have no market equilibrium in the second stage under ω. Suppose the contrary, i.e., that p
is a market equilibrium price. First, we have pϕ = 0. Next, we would like to show pα = 0. Suppose
not, i.e., pα > 0. Then there must be a positive demand for α, which occurs only if pβ ≥ pα > 0
since 3 must demand α. This implies that there is no demand for β since 1 has neither money nor
object with a positive price. This is a contradiction. Thus, pα = 0 holds. But, this would induce
the excess demand for α. Hence, no market equilibrium exists.
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5.3. Stability and Market Equilibrium. We define the concept of stable market equilibrium
(SME), which is a market equilibrium of which object allocation is stable. This subsection studies
the relationship between SME and PME. SME requires that the object allocation of a market
equilibrium should be stable. It considers neither the incentive in the first stage nor off-the-path
market equilibria of the second stage. Therefore, while it is easy to verify some allocation is an
SME allocation, it is not clear if the players really follow this equilibrium. On the other hand,
PME takes into account all the incentives, both on and off-the equilibrium path, and in general, it
is hard to characterize.

The stability of object allocations is also defined in the standard manner.

Definition 5.1. An object allocation µ ∈ A is stable if

• ∀i ∈ N, ∀ j ∈ N [µ j ∈ O ∧ i ≻µ j j⇒ vi(µi) ≥ vi(µ j)],
• ∀a ∈ Ō ∀i ∈ N [|µa| < qa ⇒ vi(µi) ≥ vi(a)].

Definition 5.2. Given v ∈ V+ and ≻, (p, µ) ∈ RŌ
+ × A is a stable market equilibrium (SME) if

• (p, µ) is a market equilibrium under µ itself;
• µ is stable.

In order to further study the solution concepts, we introduce the concept of priority cycle as
stated in Ergin (2002)8.

Definition 5.3. Let ≻ be a priority structure and q be a quota profile. A priority cycle is constituted
of distinct a, b ∈ O and i, j, k ∈ N such that the following is satisfied:
(C) Cycle condition: i ≻a j ≻a k ≻b i.

Definition 5.4. Let ≻ be a priority structure and q be a vector of quotas. A generalized cycle of
priority is constituted of distinct a1, a2, . . . , an ∈ O and i, k1, . . . , kn ∈ N such that the following
are satisfied:
(C′) Cycle condition: k1 ≻a1 i ≻a1 kn ≻an kn−1 ≻an−1 kn−2 . . . k2 ≻a2 k1.

If ≻ has a generalized cycle, then it also has a cycle. However, this assertion can be shown in
the same way as in Ergin (2002). If the priority structure is not cyclical, it is called acyclical. The
following proposition states the existence of SME.

Lemma 5.6. Assume (+Value), and (Quota1). SME exists if the priority structure is acyclical.

Proof. See Appendix B.2.
□

Theorem 5.7. Assume |O| ≥ 3, (Quota1).
Then the following two are equivalent:
• For any A = (Ai)i∈N and for all v ∈ V+, an SME (p, µ) exists, and µ is a PME allocation
• ≻ is acyclical

Proof. See Appendix B.3. □

8The definition of the cycle and acyclicity are different from that of Ergin (2002) in that Ergin (2002) includes the
condition on scarcity in the definition as well
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Appendix A. Mechanisms and Trading Cycles

A.1. Properties of the truth-telling strategies of (DA).

Definition A.1. Assume (DA). Then, ζ∗ is a truth-telling strategy if for all i ∈ N with Ai = Ō and
a, a′ ∈ Ō, vi(a) > vi(a′) implies that a is ranked higher than a′ in the list of objects.

Lemma A.1. Assume (+Value), (Quota1) and (DA). Let η ∈ A be the allocation by the truth-telling
strategy. Suppose also that µ ∈ A with µ , η is stable. Then, µ is Pareto dominated by η.

Proof.
Assume (+Value) and (Quota1). Suppose not, i.e., that a stable object allocation µ , η is not
Pareto dominated by η. Then under genericity, there exists k1 ∈ N such that vk1(µk1) > vk1(ηk1)
holds. Take such a player k1. Let a = µk1 . In DA algorithm with ζ∗, in some step t1, k1 is rejected
at a. Therefore, there exists k2 ∈ N s.t. k2 ≻a k1 and k2 comes to a at t1. Note that k2 is not in a
under µ, i.e., µk2 , a . Then, the stability of µ implies that vk2(µk2) > vk2(a) holds.

Again, ζ∗ implies that k2 must be rejected at µk2 before t1.
In this way, we can construct a sequence of players {kn}∞n=1 such that for each n = 3, 4, . . ., there

exists a step tn such that tn < tn−1 and kn is rejected at µkn . This is a contradiction since there are
finitely many steps in DA algorithm. □

The following proposition is a direct consequence of the above lemmata, which is stated without
a proof.

Proposition A.2. Assume (+Value) and (Quota1). Suppose for all i ∈ N, Ai = Ō. Suppose µ ∈ A
is stable and Pareto optimal. Also, suppose η ∈ A is the allocation by the truth-telling strategy of
(DA). Then, µ = η.

A.2. Top trading cycles. We define the top trading cycles due to Shapley and Scarf (1974) in this
appendix.9

Definition A.2. Assume (+Value), and (Quota1). Consider an object allocation µ ∈ A+.
The following is the top trading cycles with an initial object µ.
Given N′ ⊂ N and µ ∈ A+, we define a trading cycle among N′ under µ as a nonempty subset S

of N′, whose K − 1 members can be indexed in a cyclic order: S = {i1, i2, . . . , iK−1} with iK = i1,
in such a way that each trader ik (k = 1, . . . ,K − 1) weakly prefers µik+1 to µ j for all j ∈ N′.

We then define the following algorithm.
Step0: Assign µ ∈ A+ to the players in N. Let N1 = N. Let p0 be any positive number.
Step t(t ≥ 1): There is at least one trading cycle among Nt under µ. Take one of them and denote
it S t, which may be a singleton. Let Nt+1 = Nt \ S t. Let the price of all the objects held by the
players in S t be pt satisfying pt < pt−1.
Stop when Nt+1. Otherwise, go to Step t + 1.

Note that the above algorithm is terminated in a finite number of steps since at least one player
is removed from the mechanism in each step. Since for all i in N, for all a in O, vi(a) > 0 holds, ϕ
is never chosen by any player until all the objects in O are removed.

9See also Kesten (2006) and Piccione and Rubinstein (2007).
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Appendix B. Proofs

B.1. Proof of Lemma 5.3.

Proof.
Since µ is a market equilibrium object allocation, there exists p ∈ RO

+ with (p, µ) being a market
equilibrium under ω. Suppose the contrary that there exists η ∈ Aω such that η Pareto dominates
µ. Partition N into Ne and Nd where we have

vi(ηi) = vi(µi) if i ∈ Ne,

vi(ηi) > vi(µi) if i ∈ Nd.

Note Nd , ∅. Since there is no indifferent object other than itself, ηi = µi holds for all i ∈ Ne. Take
any i0 ∈ Nd. Player i0 could have obtained ηi0 in the second stage if pηi0

≤ pµi0
. Therefore, we

must have

pηi0
> pµi0

.

There exists i1 ∈ Nd who obtained ηi0 under µ, i.e., µi1 = ηi0 . Thus, we have

pµi1
> pµi0

.

We repeat the same procedure to construct a sequence (i0, i1, i2, . . .) with

(B.1) pµik+1
> pµik

, k = 0, 1, 2, . . . ,

until the same player reappear along the sequence, i.e., iK = iL for some K < L. Adding (B.1)
from k = K to k = L − 1, we obtain

(B.2)
L−1∑
k=K

pµik+1
>

L−1∑
k=K

pµik
.

The both sides are the same since iL = iK holds. This is a contradiction.
□

B.2. Proof of Lemma 5.6. Before proving Lemma 5.6, we state and prove the following lemma.

Lemma B.1. Assume (+Value), and (Quota1) . If µ ∈ A+ is Pareto optimal, all the players in the
trading cycle mechanism with an initial object µ are in a trading cycle as a singleton.

Proof.
Assume (+Value), and (Quota1). Suppose not, i.e., there is a trading cycle (i1, . . . , iK) with K > 1.
Then, vik (µik+1) > vik (µik ) and viK (µi1) > viK (µiK ) hold. This implies that we can construct η ∈ A+

such that for all j ∈ N \ {i1, . . . , iK}, η j = µ j, for all k = 1, . . . ,K − 1, ηik = µik+1 and ηiK = µi1 .
Then, η Pareto dominates µ. This is a contradiction to the assumption. □

Now, the proof of Lemma 5.6 is provided. Assume (+Value), and (Quota1). Remove j′ ∈ N
with A j′ = {ϕ}. Thus, suppose N means those players j with A j = Ō. Also, suppose that the
priority structure is acyclical. Then, Ergin (2002) shows that the truth-telling DA object allocation
µ becomes a stable and Pareto optimal allocation.
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First, we assign a price to each object a using the trading cycle mechanism with an initial object
µ (see Appendix A.2 for the definition of the trading cycle mechanism). Let (pa)a∈O be such a
constructed price where p1, the highest price, not exceed

min
i∈N

min
a,b∈Ō, a,b

[vi(a) − vi(b)],

which is positive due to genericity. Then, for all i ∈ N, for all a ∈ O if pµi ≥ pa holds with a , µi,
then vi(µi) > vi(a) holds. Also, no player has an incentive to deviate in the second stage under
µ. Since Lemma B.1 implies that every player forms a trading cycle as a singleton, the object
allocation after the trading cycle mechanism with an initial object µ is µ. Therefore, (p, µ) is a
market equilibrium under µ itself.

□

B.3. Proof of theorem 5.7.

B.3.1. (DA).

Lemma B.2. Assume (DA). Assume (p, µ) is a SME. Then, µ is a PME object allocation of truth-
telling strategy ⇐⇒ µ is a PME object allocation.

Proof. Necessity is trivial.
Proof of sufficiency.

Suppose µ is a PME object allocation. Since a SME (p, µ) exists, then, Proposition A.2 implies
that µ is a PME object allocation of truth-telling strategy. □

By the lemma B.2, the following proof of sufficiency considers a PME object allocation of truth-
telling strategy.

Proof.
Proof of sufficiency:

Assume (Quota1), and (DA). Assume there is no cycle in the priority. Suppose the contrary,
i.e., there exists A and v ∈ V+ s.t. SME object allocation µ is not PME object allocation.

We want to show there exists a priority cycle.
First, remove j′ with A j′ = {ϕ} from the economy. Hereafter, N means those players j with

A j = Ō. ≻ and v are reduced to N as well.
Let (p(ω), µ(ω))ω∈A be a profile of market equilibrium that satisfies (p(µ), µ(µ)) = (p, µ). Also,

let ζ∗ = (ζ∗j ) j∈N be the profile of truth-telling strategy.
We consider ρ̂ that puts probability one on this ζ∗. Then, the outcome of the first stage is µ with

probability one under ρ̂.
We want to show that (ρ̂, ( p̂(ω), µ̂(ω))ω∈A) is PME. Suppose not, i.e., that there exists i ∈ N with

ρ′i , ρ̂i satisfying

(B.1) E
[
ui(·)|(ρ′i , ρ̂−i)

]
> E
[
ui(·)|ρ̂

]
.



A TWO-STAGE MODEL OF ASSIGNMENT AND MARKET 23

Fix this player i throughout the proof.
Note that if one has an incentive to deviate by using a mixed strategy, the player has an incentive

to do so by using some pure strategy as well. Assume, therefore, ρ′i puts probability one on ζi , ζ∗i
in the first round. Let ω∗ = λ(ζ∗) and ω̂ = λ(ζi, ζ∗−i). ω

∗ , ω̂ holds otherwise i cannot better off.
(DA) and strategy profaneness of ζ∗ imply vi(ω∗i ) ≥ vi(ω̂i) and i will trade through a trading cycle
to better off:
Let (k0, k1, . . . , kn̄) denote this trading cycle. Then, this cycle satisfies the following.

k0 = kn̄ = i(B.2)
vkn(ω̂kn+1) > vkn(ω̂kn)(B.3)

kn+1 ≻ω̂kn+1
kn(B.4)

Also, note that k1, . . . , kn̄ are all distinct players otherwise these players does not constitute a
trading cycle. In addition, let Oe = {ω̂k1 , ω̂k2 , . . . , ω̂kn̄} be the set of object types exchanged by the
players in this trade cycle.

Now, we consider an auxiliary situation by running DA without i at first and then adding i
later. Note that DA object allocation is not affected by the order of moves as discussed in Dubins
and Freedman (1981)10. First, we run DA algorithm without i. After this algorithm is tentatively
terminated, we put in player i in the algorithm and continue it until it stops. Let t∗ be the step right
after the algorithm is tentatively terminated, i.e., at step t∗, i is put in the algorithm. Also, let η be
a profile of players’ object holdings except i when the algorithm is tentatively terminated. Note
that η is stable if we restrict attention to players except for i.

Lemma B.3. After t∗, suppose i obtains ωi in step t̄ by submitting some ζi. Then, i is never
accepted at a1 , ωi before step t̄. Moreover, i will never rejected at ωi after t̄.

Proof of Lemma B.3
Suppose not, i.e., ∃t1∃a1 , ωi, i obtains a1 in t∗ < t1 < t̄. In t1, if a1 is a leftover, this is a
contradiction because i cannot obtain ωi. Then, there exists j1 who is rejected at a1 by i in t1.
Since i obtains ωi in step t̄, there exists a step t s.t. i is rejected at a. Let (a′, i′, t′) be a rejection
triple that describes a situation in which i′ ∈ N is at a′ ∈ O and rejected at a′ in step t′. Then, we
have a rejection chain to push out i from a1.

(a, j′, t) = (a1, j1, t1), (a2, j2, t2), . . . , (aκ̄, jκ̄, tκ̄) = (a, i, t′),

where jκ is rejected at aκ as jκ−1 chooses aκ in step tκ (κ = 2, . . . , κ̄−1). Suppose that all the objects
except for a in the rejection chain are distinct. Then, this chain of rejection triples constitute a cycle
of priority,

jκ̄−1 ≻a i ≻a j1 ≻a2 j2 ≻a3 · · · ≻aκ̄−1 jκ̄−1.

This is a contradiction.
Next, suppose that all the objects except for a in the rejection chain are not distinct. Then, we

can also find a shorter cycle of priority than before by the same argument.
The same argument applies to the case after t̄. If i is rejected at ωi, we can find a priority cycle.

This completes the proof of Lemma B.3. □

10DA algorithm discussed in this auxiliary situation is essentially the same as the one defined in Dubins and Freed-
man (1981).
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Figure B.1. A Trading Cycle and a Rejection Chain with Intersection

Let us continue the proof of the theorem. By Lemma B.3, i is accepted at ω̂i for the first time
under ζ̂i.

When i comes to ω̂i at the step t̄, there must be a player, say ℓ1, in ω̂i otherwise nobody wants to
obtain ω̂i. And, ℓ1 is rejected when i comes to ω̂i at step t̄. Let t̄ = τ1. A rejection triple (ω̂i, ℓ1, τ1)
denotes the situation in which ℓ1 is at ω̂i in step τ1 − 1 and rejected at ω̂i in step τ1.

Note that after step t∗, DA ends at step τr+1 when player ℓr, goes to ϕ or a remaining object after
rejected from an object ω̂ℓr−1 ∈ O. Also, after ℓ1 is rejected from ω̂i at step τ1, only one player
goes to a new object at every step till τr+1 under the assumptions.

Then, there is a chain of rejection triples (ω̂ℓ0 , ℓ1, τ1), . . . , (ω̂ℓr−1 , ℓr, τr), where ℓ0 = i and for
each r′ = 1, . . . , r, ℓr′ is rejected at ω̂r′−1 at τr′ . Note that ω̂r′ is the object in O that is obtained
by ℓr′ in the first stage under (σ′i , σ̂−i). Note also that all the objects in this chain are distinct;
otherwise, there is a cycle of priority. This can be shown by the same procedure as in the proof of
Lemma B.3.

There exists an object in Oe that appears in the rejection chain since at least ω̂i is in Oe. There-
fore, at least one player, either player i or the one who is rejected after step τ1, goes to an object in
Oe. Let r∗ = 1, . . . , r be the greatest number among r′s such that ω̂ℓr′−1 is in Oe, and (ω̂ℓr′−1 , ℓr′ , τr′)
is in the rejection chain. Note that the last player ℓr in the chain goes to ϕ or a leftover, which
is not in Oe. Therefore, ℓr∗ must go to some object not in Oe. This implies that ℓr∗ is not in the
trading cycle. Let n∗ be a number such that kn∗ = ℓr∗−1.

Note that ηℓr∗ = ω̂kn∗ . Now, consider a player kn∗−1 who is in the trading-cycle and will ob-
tain ω̂kn∗ after the exchange. For the player kn∗−1, vkn∗−1(ω̂kn∗−1) < vkn∗−1(ω̂kn∗ ) = ηℓ∗r holds: the
inequality is implied by the equation B.3. Also, kn∗−1 has been rejected at ω̂kn∗ by step t∗ under
the truth-telling strategy, otherwise we can find a cycle of priority. Thus, when we consider η,
vi(ηℓr∗ ) > vi(ηkn∗−1) holds.
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Then, the stability of η implies that ℓr∗ ≻ω̂kn∗
kn∗−1. Also, the rejection chain implies that

kn∗ ≻ω̂kn∗
ℓr∗ holds.

Therefore, we can find a cycle of priority consisting of players in the trading cycle and ℓr∗
rejected from ω̂kn∗ (note here that kn∗ is identical with ℓr∗−1; see Figure B.1),

kn∗ ≻ω̂kn∗
ℓr∗ ≻ω̂kn∗

kn∗−1 · · · ≻ω̂k1
i ≻ω̂i kn̄−1 . . . kn∗+1 ≻ω̂kn∗+1

kn∗ .

Hence, this is a contradiction.

Proof of necessity.

This is a proof by the contraposition. Suppose that the priority has a cycle, i.e., for distinct
objects a, b ∈ O and distinct players i, j, k ∈ N, i ≻a j ≻a k ≻b i holds.

Now, consider A such that for all ℓ ∈ N \ {i, j, k}, Aℓ = {ϕ} and Ai = A j = Ak = Ō.
Also, consider the following v ∈ V+11.

i j k
a 10 30 30
b 30 10 20
c 20 20 10

Values

Given these A and v, SME object allocation is (c, a, b). However, i has an incentive to deviate
from the truth-telling strategy and obtain a in the first stage. By deviation, i can always trade a
with b in the second stage. There is no PME where i does not obtain b after the market exchange.
Thus, this SME object allocation cannot be achieved as a PME object allocation.

□

B.3.2. (Boston).

Proof. Proof of sufficiency:

Assume (Quota1), and (Boston). Suppose there exists A, v ∈ V+, SME object allocation µ is not a
PME object allocation.

We want to show that there exists a cycle of priority.
Let ω∗ = µ. Then, there exists a strategy ζ∗ such that the players obtain their final objects ω∗

and for all ℓ ∈ N, ωℓ ∈ O implies that ωℓ is at the top of the submitted list.
Since SME object allocation µ is not a PME object allocation, there exists i who gains by

deviation from ζ∗. Fix this player i. Let ζi be the deviating strategy, and let ω̂ = λ(ζi, ζ∗−i). By
the construction of ζ∗ and stability of ω∗, there exists a player j who is rejected from ω̂i by i’s
deviation. Otherwise, i must have taken a leftover or ϕ. Then, i cannot trade ω̂i with an object that
is better than ω∗i . Note that stability of ω∗ implies that i cannot acquire an object that is preferable
to ω∗i in the first stage by any deviation.

11Although genericity is violated in this v, the argument does not depend upon non-genericity.
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Thus, i has an incentive to deviate only when there is a trading cycle in the second stage due to
i’s deviation. Let (k0, k1, . . . , kn̄) denote this trading cycle. Then, this cycle satisfies the following.

k0 = kn̄ = i(B.5)
vkn(ω̂kn+1) > vkn(ω̂kn)(B.6)

kn+1 ≻ω̂kn+1
kn(B.7)

Also, trading cycle must be consisted of distinct players.
Next, we show the following claim.

Claim: j is not in the trading cycle, i.e., j , k0, . . . , kn̄.
After rejected from ω̂i, an object j may obtain in the first stage is ω∗i or another remaining object
or ϕ. If j obtains a a remaining object or ϕ, j is not in a trading cycle as nobody is interested in the
leftover under SME.

Then, this claim implies that there exists a following generalized cycle of priority.
i ≻ω̂i j ≻ω̂i kn̄−1 ≻ω̂kn̄−1

. . . ≻ω̂k2
k1 ≻ω̂k1

i.
This is a contradiction.
Note that although we have considered a specific strategy ζ∗, this proof does not loose the

generality. Whenever a SME object allocation is a PME object allocation, we can construct a
strategy as described in ζ∗ and find a generalized priority cycle.

Therefore, this ends the proof of sufficiency. Proof of necessity is same in the case of (DA).
□
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