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1 Introduction

Economists have long recognized that innovation is not only determined by science and luck, but
is also affected by profit-seeking firms. They direct their inventive activity towards developing
new products that meet currently latent consumer demand (Hicks, 1932). Sometimes referred to
as demand-pull innovation (Schmookler, 1966; Scherer, 1982), this factor is also the source of an
externality (Jovanovic and MacDonald, 1994; Waldfogel, 2003; Finkelstein, 2004). The external-
ity arises because the benefits an individual indirectly confers upon all (other) future individuals
through his effect on innovative activity are not reflected in the competitive equilibrium price he
pays in the current period.

This paper develops a multi-attribute-product competitive equilibrium model of human capital
accumulation affected by product quality where the supply innovation process is affected by the
size and composition of demand. We identify the model using panel data that track the path of
innovations along with a cohort of individuals. We apply the model to drugs invented to combat the
HIV (human immunodeficiency virus) epidemic, during which frequent, incremental innovations
in medication were punctuated by sporadic breakthroughs. In this application products differ by
their efficacy and their propensity to cause side effects. Our biennial data on four American cities
track a replenished panel of individuals for over twenty years, from when drugs were not only
ineffective but also caused debilitating side effects, to when the market matured. We use our
estimates to quantify the magnitude of the technological externality in the market for HIV drugs.

Our results reveal that individuals’ preferences tilt the path of innovation towards treatments
with fewer side effects, away from the invention of more effective treatments. Moreover, individu-
als have a strong distaste for experimentation thus slowing the diffusion of new, superior products
as well as the development of future treatments in clinical trials. As a measure of the externality, we
compute the marginal increase in aggregate welfare generated by a planner who sends the marginal
person to clinical trials at the competitive equilibrium. Since the marginal person does not want
to join a trial, he loses a little more than $600 when he is forced to participate. However, because
trial participation spurs innovation by pushing up the expected quality and the expected number of
new products, the net social gain is about $2,000 per individual. We find that the Pigouvian sub-
sidy needed to attain the planner’s trial share is about $16,000 per individual. Our results indicate
that providing monetary incentives for trial participation can improve welfare by accelerating the
progress of innovation.

This study contributes to a literature on dynamic demand under uncertainty. Following Petrin
(2002), each product in our model is a bundle of characteristics — in our case, efficacy and side
effects.1 Moreover, similar to Gowrisankaran and Rysman (2012), we allow product characteris-

1Studies pioneering the ‘characteristics approach’ include Stigler (1945), Lancaster (1966) and Rosen (1974).
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tics to have dynamic impacts on consumers. In our model, rational individuals face the uncertainty
associated with changing their current market treatment for two reasons. First, medical or com-
mercial intermediaries may assign them a better market treatment. Second, participating in clinical
trials might give them access to products that are not yet commercialized. Although experimental
products may be worse than the state of the art, clinical trials may provide early access to lifesav-
ing technologies. Modeling trial participation as a rational choice relates our work to Chan and
Hamilton (2006), who model the decision to remain in a clinical trial to maintain access to good
HIV medicine.

A key departure from the literature on dynamic demand with experimentation is that we ex-
plicitly model how these decisions drive innovation and thus future products, which individuals
forecast when making their current decisions. Several papers have demonstrated that market size
affects the speed of innovation. For example, Finkelstein (2004) shows that policies promoting vac-
cine use accelerate the development of vaccines and Acemoglu and Linn (2004) relate market size
(potential aggregate demand) to pharmaceutical innovation. Also in the medical context, Dranove,
Garthwaite, and Hermosilla (2014) identify a “social value” of pharmaceutical innovation, showing
that Medicare Part D spurred the development of some drugs. A common theme in this literature is
that if consumer behavior drives innovation, it follows that a demand externality arises. Waldfogel
(2003) uses the term “preference externalities” to describe the mechanism through which market
shares can influence products, thus benefitting individuals with similar tastes.2 Bolton and Harris
(1999) argue that a free-riding problem emerges if experimentation accelerates innovation. In our
context, if clinical trials provide social benefits by spurring innovation, rational individuals may
choose to participate less than is socially optimal.

We complement previous work by Goettler and Gordon (2011) and Igami (2017) who estimate
structural econometric models to analyze the relationship between competition and innovation.
Goettler and Gordon (2011) develop a model in which market structure (monopoly versus duopoly)
affect innovation in the market for microprocessors.3 In both models the state of the art in each
period becomes the starting point for future innovations. Igami (2017) studies the market for hard
disk drives as it transitions from one product generation to the next (5.25- to 3.5-inch). Firms in
Igami’s model have perfect foresight over exogenously evolving demand, and play a dynamic game
in which innovation amounts to introducing the single new product generation. We simplify the
supply side process and as a result are able to account for richer consumer characteristics and richer
innovation paths. On the consumer side we allow for substantial heterogeneity on observables

2Demand externalities have been discussed in a variety of scenarios, including sorting into neighborhoods (Bayer
and McMillan, 2012) and the emergence of food deserts (Allcott, Diamond, and Dubé, 2017). In the context of obesity,
Bhattacharya and Packalen (2012) provide evidence that individual efforts to prevent obesity can shrink the market
size for obesity treatments, which slows technological progress.

3They find that the presence of a second firm can slow innovation because no firm expects to capture all profits.
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(health status, race, age, education, previous consumption and labor participation). On the supply
side, our simplified process supports multidimensional products, multiple product entry, variable
changes in technology (both incremental innovations and breakthroughs) and new products that are
not necessarily technological improvements.4 All of these factors play a critical role in determining
demand by heterogeneous consumers.

We also contribute to research on structural estimation by providing a simulation-based econo-
metric method to estimate models of endogenous innovation. Methodologically, our empirical
strategy builds on Hotz and Miller (1993), Hotz et al. (1994) and Altuğ and Miller (1998) in using
conditional choice probabilities (henceforth, CCPs) and forward simulation techniques to incorpo-
rate how individuals form expectations about future innovations. In our context, the choice set that
individuals face evolves stochastically as a function of the innovation process which contains two
components: a systematic component endogenous to aggregate choices and unexpected innova-
tion shocks. The systematic component, which emerges endogenously from consumer demand, is
captured by a non-stationary reference point describing the current state of technology. The tech-
nology paths simulated for this innovation process are based on the CCPs, which reflect rational
consumer beliefs about the future.

The remainder of this paper is organized as follows. Section 2 provides a brief historical back-
ground, describes our data set, and motivates the model structure with patterns in the data. Section
3 specifies the model. Section 4 provides the parametric specification, analyzes identification and
describes the estimation strategy. Section 5 presents parameter estimates and model predictions
about the likelihood of technological progress. Section 6 studies the evolution of technology as
well as consumer welfare under alternative regimes. Section 7 concludes.

2 Data

Our empirical application focuses on the market for HIV treatments which came into existence
around 1984 with the beginning of the HIV pandemic, causing over 613,000 deaths in the U.S. by
2008.5 HIV infection reduces the ability of the immune system to fight off routine infections, a
condition known as AIDS (acquired immunodeficiency syndrome). In developed countries, where
access to medication is widespread and often subsidized, technological advancement had trans-
formed HIV infection into a manageable condition with treatments whose side effects are fairly

4This is a feature in our data and an equilibrium that emerges naturally in models where individuals are not fully
informed about new product characteristics (Miller, 1988).

5For comparison, over the same period in the U.S., there were 508,000 homicides and U.S. deaths in World War
II were just under 420,000. Currently, there are roughly 50,000 new infections and 13,000 deaths per year in the U.S.
that are attributed to HIV/AIDS. Globally, the number of deaths due to HIV/AIDS stands at roughly 35,000,000.
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mild. This was not always the case. In the early years of the epidemic, available treatments were
not only largely ineffective, but also had uncomfortable, painful and even deadly side effects. Over
time many innovations appeared, most of them small, and some worse than existing technology —
being more toxic without being more effective. In the mid-nineties, a new set of treatments col-
lectively known as HAART (highly active anti-retroviral treatment) was introduced, transforming
HIV from a virtual death sentence into a chronic condition.6 Within two years, mortality rates fell
by over 80% among HIV infected (HIV+) men (Bhaskaran et al., 2008). However, HAART also
involved drugs that were highly toxic, driving some people to refrain from using them to avoid
often intolerable side effects. Innovations occurring after the mid-nineties had fewer side effects,
but were generally no more effective than earlier versions of HAART.

2.1 The MACS Data Set

We use public data from the Multi-center AIDS Cohort Study (MACS). The MACS is an ongoing
longitudinal investigation (beginning in 1984) of HIV infection in men who have sex with men
(MSM) conducted at four sites: Baltimore, Chicago, Pittsburgh and Los Angeles. At each semi-
annual visit, survey data are collected on HIV+ men’s treatment decisions, out-of-pocket treatment
expenditures, and physical ailments (which can reflect drug side effects), along with sociodemo-
graphic information, such as labor supply, income, race, and education. In addition, blood tests
are administered at each visit to objectively measure health status. Our main objective measure of
immune system health is the CD4 count, defined as the number of white blood cells per cubic mil-
limeter of blood. Absent HIV infection, a normal count ranges between 500 and 1500. For HIV+
individuals, a count below 500 indicates that the immune system has begun to deteriorate. How-
ever, such individuals may remain asymptomatic. When the CD4 count drops below about 300,
a patient is said to suffer from AIDS and his immune system becomes unable to fight off routine
infections, which compromises his survival probability.7 Few data sets have a continuous, precise
measure of underlying health, additional data on physical health outcomes, and detailed treatment
data along with information on economic outcomes, meaning the MACS data set is uniquely well-
suited for an analysis of demand-pull innovation in the market for medical treatments.

The full MACS data set we start with contains information on 6,972 subjects at 49 semi-annual
visits for a total of 111,271 observations in the form of subject-visit dyads. We limit our attention
to HIV+ individuals, leaving us with 47,753 observations. Due to lack of data on gross income and

6There is no vaccine or cure for HIV or AIDS, but HAART is the current standard treatment. In general, 1996 is
marked as the year when two crucial clinical guidelines that comprise HAART came to be commonly acknowledged.
First, protease inhibitors (made widely available towards the end of 1995) would be an effective HIV treatment.
Second, several anti-retroviral drugs taken simultaneously could indefinitely delay the onset of AIDS.

7The CD4 cutoff below which AIDS occurs varies between 200 and 350.
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out-of-pocket expenditures at earlier visits, we use two samples, a larger sample (20,142 observa-
tions) covering visits 6 to 49 which only includes health status and product usage, and a smaller
sample (16,851 observations) that starts at visit 14 (roughly, late 1990) containing all variables.
The construction of both samples is described in Appendices A and B. The smaller sample com-
prises 1,719 males, 68 percent white, 22 percent black and the rest Hispanic8; 86 percent received
some secondary education or more, and 23 percent attended graduate school. Underscoring the
gravity of HIV infection, about 40 percent of the HIV+ subjects we observe at least once die prior
to the end of the sample period.

Table 1 shows that the share of observations with positive physical ailments is 0.43 and the
average CD4 count is 475, in the smaller sample. The share of observations with positive labor
supply is 0.63. There is substantial variation in labor supply; 74 percent (68 percent) of unique
individuals are observed working (not working) at least once.9 The share of observations with
positive market product consumption and trial product consumption are 0.65 and 0.07, respectively.
There is also variation in treatment consumption; 83 percent of unique individuals are observed
using a market product at least once and 24 percent opt for early access by participating in a
clinical trial at least once during the sample period, suggesting a willingness to experiment with
products of uncertain quality.

TABLE 1: Summary Statistics: Subjects-Visits. Visits 14-47 (1990-2007)

Sample Pre Haart Post Haart
Obs 16851 6972 9879
Ailments 0.43 0.45 0.41
Market Product 0.65 0.49 0.76
Trial Product 0.07 0.09 0.05
Work 0.63 0.70 0.58
Age 44.48 40.89 47.01

(8.03) (6.99) (7.75)
CD4 475 407 524

(297) (298) (287)
Gross Income 17567 19036 16531

(8787) (8733) (8677)
Out-of-pocket Expenditures 266 179 327

(706) (598) (767)
Notes: Standard deviation in parentheses. Gross income and out-of-pocket expenditures are semestral and measured in real dollars of 2000. Pre

HAART era corresponds to visit <= 24 or roughly before 1996.

8Race is an important demographic in this market because participation in clinical trials for new treatments has
been shown to be lower among African-Americans, which may reflect different costs associated with treatments or
differences in expected health outcomes (Harris et al., 1996).

9This is consistent with results in Papageorge (2016) who studies labor supply and medication usage with the
MACS data.
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2.2 Key Empirical Patterns

Individuals respond to technological change. A distinguishing feature of the market for HIV
treatments is that innovations in product quality have life-saving effects. Figure 1(a) shows that
prior to the introduction of HAART, death rates were much higher despite a multitude of new
treatments becoming available. After HAART, death rates plunge, and continue to fall until 2007,
as smaller innovations occurred that made drugs incrementally more effective and less toxic. Table
1 above shows that improvements in survival coincide with improvements in immune system health
as measured by the CD4 count. Improvements in health and survival occur as our sample ages and
becomes less likely to participate in the labor market (12 percent points less after 1995), which is
reflected in the reduction of unconditional average semestral gross income from about $19,036 in
the pre-HAART era to $16,531 after 1995.
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FIGURE 1: Survival and Consumer Demand over Time
Notes: Left panel shows the probability of dying between periods t and t +1 conditional on surviving until t. More than 1500 surveyed individuals

died for AIDS-related causes during our analysis period. The middle and right panels show consumption by health status.

Table 1 above also shows that improvements in product quality, as measured by the introduction
of HAART treatments, induce individuals to consume more HIV treatments. The share of individ-
uals consuming a market product went from 0.49 in the pre-HAART era to 0.76 after HAART was
introduced, and individuals out-of-pocket expenditures went from $179 to $327 per semester. Fig-
ure 1(b) shows that consumption of commercialized HIV treatment increased and converged across
health levels in response to the introduction of more efficacious products. Beyond commercialized
treatment, individuals in this market often have the option to consume experimental products in
clinical trials. The most dramatic feature of Figure 1(c) is the spike in trial treatment around the
time HAART was introduced. Early trial participation is driven largely by individuals with low
CD4 counts, suggesting that less healthy individuals may be more willing to experiment with new
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products of uncertain qualities.10 Once efficacious treatments are available, trial participation is no
longer driven by sick people willing to face uncertainty in exchange for early access to a product
of potentially higher quality.

Product characteristics are multidimensional. Some individuals at risk did not get treated even
after life-saving innovations were discovered. Figure 1(b) showed that treatment consumption
only climbs to 80% after the introduction of HAART. In part, this happens because products are
costly, but also because individuals consider their quality of life, trading product efficacy and side
effects. Figure 2(a) shows that individuals who consume a market product suffer more ailments
and Figure 2(b) shows that this result holds after controlling for underlying immune system health.
Regardless of whether they are healthy or not individuals who consume a market treatment suffer
more ailments. Moreover, as products become less toxic over time the gap in ailments between
those who are treated and those who are not decreases.
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FIGURE 2: Physical Ailments by Treatment Usage and CD4
Notes: Figure contains mean of ailments indicator over time. “Mkt Takers” refers to individuals consuming a market treatment. “High h” refers to

individuals with CD4 counts of 250 and above.

The number of new products fluctuates over time. We define a product (or treatment) as a
combination of single-product components (see Appendix A). This means that both AZT and the
combination of AZT+3TC+Saquinavir are examples of products in our framework. This definition
results from noting that the interactions between components matter, and hence the sum of effects

10In the years just prior to HAART introduction, the drugs that comprise HAART, including protease inhibitors,
marked a substantial improvement over drugs available on the market. In those years, trial participation gave individ-
uals early access to much better products. This relates to the idea of beta testing in markets where some consumers
are willing to experiment with new products with high potential quality.

7



of consuming each drug individually does not equal the effect of a treatment formed by the sum
of the drugs. Additionally, this definition corresponds to the nature of the market where large
treatment innovations such as HAART are themselves combinations of product components. By
this definition 86 products were introduced to the market over the sample period with substantial
variation in the number of new treatments introduced each period.11 Figure 3 shows that the
unconditional probability of observing more than one product being introduced in a given period
is more than 30%, suggesting that product introduction has an intensive margin.

0 2 4 6 8 10
number of new products

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
r

data

FIGURE 3: Empirical Distribution of Number of New Products.

The characteristics of new products reflect current technology and demand. Figure 4 plots
treatment characteristics (effectiveness and lack of side effects) for different periods in our sample,
indicating new, old, and withdrawn products as well as the lagged centroid, defined as the share-
weighted average of product characteristics. New products are introduced around the centroid
suggesting that future technologies are based on prevalent technologies today. Over time, the path
of technology advances first on the efficacy dimension and then on the side effects dimension.
This seem consistent with consumer demand. As we showed in Table 1, after the mid-1990’s
average CD4 count rises and survival becomes less of a concern. This opens an opportunity for
profit-seeking firms to diversify on the side-effects dimension of treatments.

Heterogeneity in product quality increases over time. Substantial variation in the number of
new products (Figure 3) and in the size and direction of innovations relative to prevalent technolo-
gies (Figure 4) lead to increasing heterogeneity in product quality as the market matures. Figure
5 shows innovation and diffusion of new products over time using a heat map—dark colors corre-
sponds to low (or zero) market share and warmer colors indicate higher market shares. Early on

11Table S1 in Appendix A presents our market products including the individual drugs they are composed of as well
as their entry and exit time.
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FIGURE 4: Treatment Evolution
Notes: Figure shows snapshots of the evolution of the state of the product market at the different stages. Products are two-dimensional. On the

x-axis is a measure of a treatments ability to not cause side effects. On the y-axis is a measure of its contribution to underlying health. Dimensions
are measured in different scales. Incumbent products are shown in black. New products are shown in red. Withdrawn products are shown as x. The

green square is a measure of the prevalent technology in the previous period.

there are a few products with high shares. As time passes new products strip market share from
incumbents and less popular products exit. Low market shares are common in the years following
HAART introduction around 1995, when many new treatments were introduced, most of which
were effective, but with strong side effects. As the market matured, efficacious treatments with
fewer side effects entered the market, increasing market concentration once again.
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3 A Model of Demand-Pull Innovation

The dynamic framework of equilibrium product choice that we develop to explain innovation in-
corporates essential elements of the empirical patterns in Section 2 gleaned from our data on the
HIV epidemic. Individuals in the targeted market can either forego medical treatment or consume
a unit of a particular product, potentially experimental, offered by suppliers. Products have mul-
tiple characteristics, providing current utility (relief) and also human capital (health). Individuals
purchasing a new product select a cluster of products with similar characteristics and are allocated
a specific product by an intermediary. They can repeat their most recent purchase, but rely on inter-
mediaries when changing treatment. They face the most uncertainty when consuming experimental
products in clinical trials, and form rational expectations over upcoming innovations (future choice
sets), aligning their actions accordingly. For example, consumers may choose to avoid switching
costs associated with using new treatments if they expect better ones to emerge soon. The supply
of innovations depends on the size and composition of aggregate product demand (drugs that lose
market share being withdrawn from the market), as well as on the choices of consumers trying out
experimental products or products that have just been introduced to the market. The market was
created with the discovery of latent demand following the HIV outbreak, and matured when con-
sumer choice sets stabilized (the set of distinct prescriptions to treat HIV and their characteristics
approaching invariance). Our model reflects these features.

3.1 Supply

In this section we describe the pieces that constitute the supply side of our model. We define prod-
ucts, product characteristics, entry and exit. Then we explain how intermediaries shape consumer
choice sets.

Product entry and exit. The market develops over a discrete number of periods t ∈ {0, . . . ,T},
where T ≤ ∞. Each period new products are introduced to the market, and some older ones are
withdrawn. Let k ∈ N denote a distinct market product, and denote by tk and tk the dates in which
the product is introduced to and withdrawn from the market, respectively.12 Let the set of market
products at t be Pt ≡ {k : tk ≤ t < tk}. Each product k has an immutable set of characteristics
θk ∈Θ⊂ RK , where K denotes the number of characteristics describing a product — for instance,
efficacy and side effects. In addition to the market products in Pt , an experimental product (such
as a clinical trial) is made available for consumption every period. The experimental product is
denoted by the letter e and its characteristics are denoted θet .

12A given k can be thought of as a UPC (Universal Product Code) or a specific prescription.
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Over time, the market presence of a product reflects its level of adoption. Let skt be the share
of product k in period t and set be the share of the experimental product available at t. Future
innovations reflect the characteristics of the most popular products today. We begin formalizing
this idea by defining a summary statistic of the state of technology called the centroid for innovation
at t, denoted by ωt , and given by:

ωt ≡ ∑
k∈Pt−1

s̃kt−1θk, where s̃kt−1 ≡
skt−1

∑k′∈Pt−1 sk′t−1
(1)

The centroid is a share-weighted average of the characteristics of the products available last period—
computed only over buyers—and it is the baseline around which new products emerge in the model.
Both the characteristics of the experimental product available at t and the characteristics of new
market products available at t are stochastic functions of the centroid and the level of previous
aggregate experimentation measured by set−1. Concretely, these characteristics are drawn from the
distribution gθ (θ |·,set−1), where the first conditioning variable is ωt for the experimental treatment
and ωt−1 for new market products.13 The reason why the conditioning centroid in gθ (θ |·,set−1)

differs for market and experimental products follows from the fact that, whereas new products ap-
pearing at t were developed in laboratories at t−1 and therefore depend on ωt−1, the experimental
product at t is available at laboratories at t who are experimenting around ωt .

The number of products entering the market in period t, denoted Nt , is distributed according to
gN (Nt |κt−1,set−1 ), where κt−1 is the magnitude of previous innovations defined as:

κt−1 ≡
K

∑
r=1

δr · max
{k: tk=t−1}

{
θ

r
k −ω

r
t−2
}

(2)

given a vector of scaling weights {δr}K
r=1. κt−1 measures the distance (in characteristics space)

between products at time t− 1 and the centroid around which they were drawn. The distribution
of the number of new products captures two ideas. First, more experimentation by product makers
can be conducted if larger proportions of consumers try experimental products in clinical trials.
Second, large breakthroughs tend to be followed by a relatively large number of new products; this
may occur if breakthroughs spur innovative activity as firms attempt to capture market share.

The market share of product k can be decomposed by new skt and repeat skt consumers (where

13In our model, the characteristics of the experimental treatment at t−1 do not affect the distribution of new product
characteristics at t. Although such specifications may seem intuitive if, for instance, better trial products lead to better
new market products, in our empirical application the relation between past experimental product characteristics and
the characteristics of current market products is statistically insignificant.
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skt + skt = skt) and define the conditional share for new consumers as:

s̃kt−1 ≡
skt−1

∑k′∈Pt−1 sk′t−1
(3)

Exit follows a rule described by the dyad {s,s}. When s̃kt−1 falls below the critical number s the
product is no longer available for new consumers, and so only repeat consumers can purchase it.
Additionally, when s̃kt−1, defined in (1), falls below the critical number s the product is withdrawn
altogether.

Intermediation. Consumer choices are constrained and guided by intermediaries (such as doc-
tors and retailers) who limit consumer choice sets and make selections on their behalf. More
specifically, intermediaries perform two roles in our model: grouping individual products into
clusters that form consumer choice sets and, once an individual chooses a cluster, selecting indi-
vidual products from clusters for their consumption. Lacking data on intermediaries, we model
both roles as part of the supply function.

In any given period market products with similar characteristics are clustered into J groups of
products. Let P jt denote the products assigned to cluster j in period t. We assume a protocol or
rule, denoted by C

(
{θk}k∈Pt

)
, which is common knowledge and uniquely assigns every product

on the market at t to a particular cluster. As a consequence of entry and exit, under rule C (·)
two products that belong to the same cluster in one period might belong to different clusters in
the next. A consumer opting for a new product does not choose a specific product, but a cluster.
Also well known is a second rule that determines how products are selected by intermediaries
from the particular cluster a consumer chooses. We denote by qk jt

(
k
∣∣P jt

)
the probability that the

intermediary selects product k ∈ P jt when a consumer chooses cluster j ∈ {1, . . . ,J} at t, and we
denote by f j

(
θ
∣∣P jt

)
the distribution of characteristics induced onto the jth cluster:

f j
(
θ
∣∣P jt

)
= ∑

k∈P jt

qk jt
(
k
∣∣P jt

)
I {θk = θ} (4)

3.2 Demand

The individual chooses medical treatment to maximize expected discounted lifetime utility. In
making decisions, he observes his current state which includes individual-specific variables, such
as health, along with market-level variables. He uses market-level variables to form expectations
over the future path of innovation. In specifying his problem, we discuss the choice set, flow utility
and stochastic processes governing outcomes and state transitions. Then, we define the individual’s
value function and highlight the technological externality.
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Choice sets. Each period individuals choose one of J clusters by selecting j ∈ {1, . . . ,J}, an
experimental product available in trial by setting j = J +1, the specific market product they con-
sumed in the previous period if it still remains on the market by setting j = J + 2, or they refrain
from making a purchase altogether by setting j = 0. Let the choice indicator d jit be equal to one
if individual i makes choice j at t, and zero otherwise, with ∑

J+2
j=0 d jit = 1, and let the assignment

indicator d̃kit be equal to one if individual i consumed product k ∈ Pt at t, and zero otherwise. In
addition, define rit as an indicator function that takes the value of one if the individual consumed
a market product in the last period and that product has not been withdrawn from the market.
Formally,

rit = ∑
k∈Pt−1

d̃kit−1I{s̃kt−1 ≥ s} (5)

Hence the individual’s choice j belongs to the set {0,1, . . . ,J +1+ rit}. In other words, if rit = 0
his choice does not include the option to purchase the same product he consumed in the previous
period. For notational convenience, in what follows we drop the individual indicator i.

We denote product characteristics at t by θ jt ∈ Θ, where θ0t ≡ 0 and θJ+1,t ≡ θet . They affect
current utility, survival and health, and are measured relative to the value of non consumption.
Thus, if rt = 1, the product characteristics that a consumer faces when he makes a repeat purchase
are:

θJ+2,t = dJ+2,t−1θJ+2,t−1 +
J

∑
j=1

d jt−1θ jt−1 (6)

If the consumer selects one of the clusters j ∈ {1, . . . ,J} then θ jt is drawn from f j
(
θ
∣∣P jt

)
; that is,

θk is selected by the intermediary with probability qk jt . If the consumer selects the experimental
product, its characteristics θet are distributed gθ (θ |ωt ,set−1).

Human Capital, Outcomes, Preferences and Survival. Product choices affect consumer well-
being in three ways: through the accumulation of health, current utility and survival. Let ht ∈
H denote the individual’s health, which evolves as a controlled Markov process with transition
function fh (ht+1 |ht ,θ ). Thus the probability density function for his health is:

fh

(
ht+1

∣∣∣∣∣ht ,
J+1+rt

∑
j=0

d jtθ jt

)
(7)

Let y1t ∈ {0,1} denote lack of physical ailments, y2t ∈ {0,1} labor supply, y3t ∈R≥0 gross income,
and y4t ∈ R≥0 out-of-pocket expenditures. Health and product characteristics affect the vector of

13



outcomes yt ≡ (y1t , . . . ,y4t) ∈ Y through the conditional distribution:

fy

(
yt

∣∣∣∣∣ht ,
J+1+rt

∑
j=0

d jtθ jt

)
(8)

Individuals draw current utility directly from their health and outcomes as well as from their
choices. In addition, at every period they receive idiosyncratic, alternative-specific preference
shocks ε jt . Current utility u j (ht ,yt) is a real-valued mapping from H×Y denoting the system-
atic part of current utility, and εt ≡ (ε0t , . . . ,εJ+1+rt ,t) is an independent and identically distributed
random variable with probability density function fε (εt). Individuals are forward looking and
discount future utility by β ∈ (0,1). Let bt be an indicator for being alive at period t, and let
fb(ht) be the probability of living at t, which depends on the individual’s health.14 The consumer’s
discounted lifetime utility stream is:

∞

∑
t=0

J+1+rt

∑
j=0

β
tbtd jt

[
u j (ht ,yt)+ ε jt

]
(9)

3.3 Optimization and equilibrium

At the beginning of period t the density gN (Nt |κt−1,set−1 ) determines the number of new market
products, independent draws from gθ (θ |ωt−1,set−1) determine their characteristics, and market
products are withdrawn following the {s,s} rule. Then intermediaries cluster the products accord-
ing to C

(
{θk}k∈Pt

)
and apply a market sharing rule within clusters using qk jt (k |Pkt ). The charac-

teristics of the trial product are drawn from gθ (θ |ωt ,set−1). Individuals do not know ex-ante which
product within a cluster they will be allocated, they only know the distribution of characteristics for
each cluster. They observe their independently distributed idiosyncratic disturbances εt and choose
j ∈ {0,1, . . . ,J+ rt}. In this way the market share of each product skt is determined in period t.

We assume that each individual has zero measure in the population, and divide the state vari-
ables into those pertaining to the aggregate economy and those specific to the individual. The
aggregate state variables for the model, contained in zt , are the products remaining on the market
at t, {θk}k∈Pt

, the centroid for innovation ωt , the magnitude of innovations first available at the
current period κt , the previous share of experimentation set−1, and the demographics of the con-
sumer population, including θJ+2,t−1, described by the joint distribution Ft . The state variables for
individual i include his health hit , recent usage θJ+2,it−1, other demographics ait , and idiosyncratic
preference-shocks εit , as well as the aggregate state zt .

14Thus, fb(ht) = Pr(bt = 1|ht), and the probability at t of surviving up to period t ′ given a sequence {hr}t ′
r=t+1 is

∏
t ′
r=t+1 fb(hr).
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Our analysis is based on individual behavior within a rational expectations equilibrium. Define
zit ≡ (hit ,θJ+2,it−1,ait ,zt), let de

t ≡
(

de
0t , . . . ,d

e
J+1+rt ,t

)
be the optimal choice vector solving the

consumer’s maximization problem in equilibrium, where de
jit ≡ d jt (zit ,εit), and let:

V (zit)≡ E

{
∞

∑
τ=t

J+1+rt

∑
j=0

β
τ−tde

jiτbiτ
[
u j (hτ ,yτ)+ ε jiτ

]∣∣∣∣∣zit

}
(10)

denote the ex-ante current value function as of period t. Bellman’s principle implies the decentral-
ized equilibrium choices solve:

max
j∈{0,1,...,J+1+rt}

E
{

u j (hit ,yit)+ ε jit +βV (zit+1)
∣∣zit ,d jit = 1

}
(11)

The value function is standard but embedded in (10) is the expectation over the aggregate
process of innovation which determines future choice sets. The process of innovation generates an
externality because the aggregate demand partly determine the course of innovation and product
development, which in turn affects the supply side and hence demand in future periods. In a
decentralized equilibrium individuals do not take into account the consequences of their actions
(such as their experimentation or their adoption of products with certain characteristics) on the
future payoffs of other individuals.

4 Empirical Implementation

Leaving aside the role of technological progress, the identification of our model is standard. The
model is estimated with a simulated methods of moments CCP estimator, adapted to account for ag-
gregate shocks arising from product development, and pre-estimation of the state transitions. This
section analyzes identification, explains the equations at the heart of the estimation, presents the
parameterization we adopt as model primitives—and to conduct counterfactuals—and describes
each estimation step in sequence.

4.1 Identification

On the supply side, the primitives of the model include the product characteristics themselves θk =(
θ 1

k ,θ
2
k

)
, the transition functions determining the number of market products entering the market

gN (Nt |κt−1,set−1 ) and the characteristics of new and experimental products gθ (θ |ω,set−1), the
distributional characteristics of each market cluster j ∈ {1, . . . ,J}, f j

(
θ
∣∣P jt

)
, and the exit rule

{s,s}. On the demand side, the primitives include the flow utility function u j (ht ,yt), the probability
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density function of the idiosyncratic preference shocks fε (ε), the subjective discount factor β , the
transition function for human capital fh (ht+1 |ht ,θ ), the outcomes mapping fy (yt |ht ,θ), and the
survival probability fb(ht).

Our data essentially span the epoch between the time at which pharmaceutical companies began
supplying treatments that had some chance of being effective until the time at which that product
market matured; that is, t ∈ {0, . . . ,T}. Over this entire time phase we track a (replenished) panel
of individuals i∈ {1, . . . , I} including their consumption sequence dit = (d0it , . . . ,dJ+1+rit ,it), health
hit , death bit , outcomes yit and demographic background ait .We also observe the history of each
market product k—and therefore the history of clusters under rule C

(
{θk}k∈Pt

)
—including the

date at which it was introduced to the market tk, when it was withdrawn tk, and its product share
in the target or potential market skt , decomposed by new skt and repeat skt consumers.

The transition function for human capital fh (ht+1 |ht ,θ ), the outcomes mapping fy (yt |ht ,θ),
and product characteristics θk, are identified using the cross sectional features of the consumer
panel. In particular, we assume that future underlying health ht+1 and physical ailments y1t are
a function of current health, product characteristics, and idiosyncratic shocks. We assume that
product characteristics enter linearly in both processes, which delivers product characteristics—
relative to the no product alternative—as the coefficients of indicator variables of product usage.
We rule out individual-specific treatment effects because our sample is not large enough to back
out product-specific distributions of treatment effects for the 80 plus products we observe. The
survival probability fb(ht) is also identified off the cross sectional features of the consumer panel.

Both the distribution of characteristics of new and experimental products as well as the distri-
bution of the number of new products are identified using the product panel. We observe the menu
of products introduced from the discovery of latent demand when the pandemic starts (around
1985) to when the market has matured (around 2007). This provides us with 43 observations from
the equilibrium distribution of the number of new products gN (Nt+1 |κt ,set ) and 94 observations
from the equilibrium distribution of product characteristics gθ (θ |ω,set). The characteristics distri-
butions f j

(
θ
∣∣P jt

)
of all clusters are identified directly by the proportions of each product within

its cluster. The exit rule is identified by the aggregate data on new skt and repeat skt consumers for
each product. Recalling the definition of s̃kt and s̃kt in (1):

s = min
k,t
{s̃kt} and s = min

k,t
{s̃kt} (12)

Finally, following much of the literature in discrete choice, we assume the discount factor β

and the choice disturbance density fε (ε), and parameterize the latter as Type 1 Extreme value.15

15We estimated the model for values of β ∈ {0.8,0.9,0.95} and found that 0.95 delivered the lowest value of the
criterion function.
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We also assume that individuals know the aggregate processes generating products, product char-
acteristics, and within-cluster distributions. Hence, identification of u j (ht ,yt) follows from the
general arguments of Magnac and Thesmar (2002), more specifically covered in the framework of
Arcidiacono and Miller (2017).

4.2 Specification

Time t evolves in half-year periods, corresponding to the frequency of MACS data collection. On
the supply side, products have K = 2 characteristics, efficacy denoted θ 1 and propensity not to
generate further physical ailments (or side effects) denoted θ 2. The distribution of characteris-
tics of experimental products and new products appearing at t, gθ (θ |·,set−1), is derived from the
following process:

θk−ωtI{k = et}−ωt−1I{k ∈ N, tk = t}= φ
ν
0 +φ

ν
1 · set−1 +νk (13)

where I{k = et} indicates whether product k is the experimental product at t and I{k ∈ N, tk = t}
indicates whether product k is a newly introduced market product. Equation (13) specifies new
market products and trial products as displaced innovations around the centroid.16 The magni-
tude and direction of the innovation depend on the previous share of experimentation in clinical
trials and an independent and identically distributed innovation shock νk drawn from fν(ν) with
E[νk|set−1,ωt ,ωt−1] = 0, which is estimated non parametrically. (See Section 4.3).

We assume that the distribution of the number of new products which enter the market at t,
gN (Nt |κt−1,set−1 ), is a negative binomial that permits dispersion in the mean. That is:

Nt ∼ Poisson
(
µ
∗
t−1
)

; µ
∗
t−1 ∼ Gamma

(
1/α

N
t−1,α

N
t−1µt−1

)
µt−1 = exp(φ N

1 κt−1 +φ
N
2 set−1); α

N
t−1 = exp(φ N

3 +φ
N
4 κt−1) (14)

where κt−1 is defined in (2) and the scaling weights are given by the maximum innovations ob-
served in the data:17

δ
−1
r ≡ max

k: tk=τ−1,∀τ>0

{
θ

r
k −ω

r
τ−2
}
, for r ∈ {1,2} (15)

We relax the exit rule {s,s} defined in Section 3.1 as follows: the condition for rule s to apply
(i.e. exit for new consumers) must be satisfied during three consecutive periods and the condition

16We tested the hypothesis that new products are displaced innovations around the centroid, i.e. that the centroid’s
coefficient is 1, and we could not reject the null hypothesis.

17The scaling weights account for the fact that different characteristics may be measured in different scales.
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for rule s to apply (i.e. exit for all consumers) must be satisfied during two consecutive periods.
The number of consecutive periods for each exit rule are chosen so that a single period of low
demand does not lead to a premature exit, which is what we observe in the data. This relaxation
adds two state variables to the aggregate state of the problem, E 1

t−1 and E 2
t−1, which are indicators

of to what extent the conditions for exit are binding:

E 1
kt = I

{
s̃kt−1 < s

}(
E 1

kt−1 + I
{

s̃kt−1 < s
})

; E 2
kt = I{s̃kt−1 < s}

(
E 2

kt−1 + I{s̃kt−1 < s}
)

(16)

where s̃kt−1 and s̃kt−1 are defined in (3) and (1), respectively, and E 1
ktk

= E 2
ktk
≡ 0. Exit for new

consumers binds when E 1
kt = 3 and exit for all consumers binds when E 2

kt = 2.

Intermediation is characterized by the clustering rule C
(
{θk}k∈Pt

)
and the distribution of char-

acteristics for a given cluster f j
(
θ
∣∣P jt

)
. We specify the clustering rule as the solution to a k-means

clustering algorithm so that at every period t the clusters j = 1, . . . ,J are chosen to minimize:18

C
(
{θk}k∈Pt

)
=

J

∑
j=1

∑
k∈Pt

I{k ∈ j}
∥∥θk−θ

c
j
∥∥2

, θ
c
j ≡

∑k∈Pt I{k ∈ j}θk

∑k∈Pt I{k ∈ j}
(17)

where ∑
J
j=1 I{k ∈ j} = 1 for all k ∈ Pt . The distribution of characteristics for a given cluster

follows from (4) and qk jt
(
k
∣∣P jt

)
, which is given by:

qk jt
(
k
∣∣P jt

)
=

exp
(
xw

ktγ
w)

∑k∈ j exp
(
xw

ktγ
w
) (18)

where xw
kt includes a constant term, the ranking (within its cluster) of the characteristics of the

product, the number of members in the cluster, whether the product is new, and several interactions.
The vector of parameters γw is obtained from a nonlinear regression of within cluster shares skt| j

such that:
E
[
skt| j|xw

kt
]
= exp(xw

ktγ
w) , skt| j ≡

skt

∑k′∈ j sk′t
(19)

On the demand side, and again omitting the individual subindex i to reduce notation, individual
demographics at contain age (in half year increments), race/ethnicity (black, Hispanic, white),
and education level (high school, some college, college or more than college). Individual health
ht ∈H⊂R≥0 is measured by the CD4 count.19 The production function for health that determines
fh (ht+1 |ht ,θ ) captures non linearities in the effects of current health (e.g. as the CD4 count

18See Duda and Hart (1973) and Andrew W. Moore’s K-means and Hierarchical Clustering tutorial at
http://www.cs.cmu.edu/∼awm/tutorials.html. (See Appendix B for more details.)

19CD4 ranges from 0 to 2915 in our analytic sample with a median of 448. Healthy CD4 counts are those above
500 units per mm3 and typically range between 500 and 1,500.
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reaches AIDS levels), and is given by the following polynomial:

ht+1 =
5

∑
s=0

γ
h
s hs

t +
J+1+rt

∑
j=0

d jtθ
1
jt + ε

h
t (20)

where E[εh
t |ht ,θ ] = 0 and εh

t is drawn from the nonparametric distribution fεh(εh). We augment
the conditional distribution for outcomes fy (yt |ht ,θ ,at ) to include individual demographics at and
non linearities in the effects of current health with the equation system:

Pr [y1t = 0|ht ,θ ] =

(
1+ exp

(
5

∑
s=0

γ
x
s hs

t +
J+1+rr

∑
j=0

d jtθ
2
jt

))−1

(21)

Pr[y2t = 1|xl
t ] =

(
1+ exp

(
xl

tγ
l
))−1

(22)

y3t = xm
t γ

m +η+ ε
m
t (23)

y4t = xo
t γ

o + ε
o
t (24)

The probability of suffering physical ailments y1t in (21) depends on previous health and the side-
effects characteristics of the product consumed. Since labor supply is not the main purpose of
this paper, we do not model y2t as a choice to avoid further complications. However, labor supply
may be affected by treatment choices, e.g., through health status. Moreover, labor supply affects
income and therefore utility. We treat labor supply as a state variable that individuals know at
the beginning of the period before making their treatment decision. The transition probability of
labor market participation is given by (22) where xl

t = [1,ht , . . . ,h4
t ,at ,y2t−1]. Gross income y3t is

governed by the process in (23) where xm
t = [1,ht , . . . ,h7

t ,at ,y1t ,y2t ], η is an exogenous individual-
specific productivity and εm

t are iid income shocks that the individual observes before making
their treatment choice.20 The individual state zit also contains η . Out-of-pocket expenditures for
health y4t are determined by (24) where xo

t = [1,ht , . . . ,h6
t ,at ,y1t ,y2t ,{d jt}J+1+rt

j=0 ] and εm
t are iid

Normal(0,σ2
o ). Expenditures increase from purchasing a treatment but may also increase due to

underlying health and physical ailments. Out-of-pocket expenditures are censored at zero, which
is why we model them separately from gross income. Since we do not directly observe prices,
and in order to simplify the problem, (24) assumes a constant cost of consuming an experimental
product as well as a constant cost of consuming a market product.21

The probability of being alive during the current period fb(ht), is augmented to include physical

20We do not need to make parametric assumptions on these shocks because they enter linearly in the payoffs from
choosing all alternatives and therefore do not affect choices.

21End-users customarily pay a standardized deductible that is a fraction of the brochure price of the drug paid by
the insurance company. Median out-of-pocket drug costs are about $300 every six months for a regime of drugs that
would cost the insurance company between $5,000 and $15,000.
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ailments and demographics, and is determined by xd
t = [1,ht , . . . ,h5

t ,at ,y1t−1], through the density

fb(ht) =
(

1+ exp
(

xd
t γ

d
))−1

(25)

The systematic part of current utility is a mapping from health, outcomes, choices and demo-
graphics given by:

u j (ht ,yt) = αm(y3t− y4t)+αxpy1td0t +α jhht +α
′
jaat (26)

The first term on the right-hand-side of (26) is net income y3t − y4t , so that αm captures consump-
tion utility. The second term captures the utility cost of physical ailments. y1t = 1 indicates that the
individual does not suffer from physical ailments, and the interaction with d0t captures how distaste
for ailments can vary depending on whether or not a treatment is being consumed. We normalize
the utility cost of ailments while using a treatment to zero. Hence, αxp represents the differential
distaste for ailments for individuals who are not taking a treatment. The last two terms of (26)
capture choice-specific utility associated with health, and demographics—age and race. Since the
only relevant differences among clusters—both within a period and over time—are given by the
distribution induced by the members of each cluster, f j

(
θ
∣∣P jt

)
, we assume that parameters α jh

and α ′ja do not vary across clusters. Nevertheless, individuals do derive different choice-specific
systematic utility from consuming a trial product or from choosing the same market product they
consume in the last period. This captures how experimentation in treatment choices can imply ad-
ditional costs or benefits. In the case of clinical trials, utility parameters capture, for example, the
fear of trying an experimental drug or preferences for altruism since trial participation may help
future patients. In the case of continuing to use the same product, utility parameters may capture
a preference for certainty, which could help to explain consumer reluctance to switch even when
better products enter the market.

Health affects lifetime utility through its impact on future health and survival as well as through
the probability of suffering physical ailments, and physical ailments affect utility directly and
through earnings. In addition, health affets flow utility directly with an effect measured by α jh.
This captures differences in the time and psychic costs of finding a trial slot by health if, for ex-
ample, doctors are more willing to encourage experimentation or if trial slots are more readily
available for sicker patients. It also captures how individuals may be more willing (or encouraged
by intermediaries) to choose from a cluster when in poor health.22 Finally, the preference shocks
ε jt are iid Type I Extreme Value across individuals and alternatives and over time.

22We normalize α0h and α ′0a to zero. Therefore, α jh captures the additional effect—relative to those who do not use a
product—that health and demographics have on the utility of continuing with with the same product, or experimenting
with a new treatment, either through cluster use or trial participation.
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4.3 Estimation

This section summarizes our estimation procedure. First, we obtain estimates of product charac-
teristics, transition functions and outcome equations. Then we estimate CCPs and simulate paths
of future choices, states and technology that we use to form moments and deliver estimates of the
utility parameters with a closed-form solution GMM estimator. Our simulation accounts for the
endogenous evolution of the aggregate state as well as aggregate innovation shocks. We obtain
standard errors using subsampling with 100 subsamples. Detailed explanations of some of the
steps below are found in Appendix B. Our estimation procedure follows the steps below:

1. Products. We define one single trial product per period as the one used by those individuals
joining a clinical trial. Given these definitions, we estimate product characteristics together
with the health and no-ailment processes ((20) and (21)).

2. Clusters. Based on product characteristics from step 1, we cluster products at every period
using a k-means algorithm determined by the clustering rule in (17). Then, using the char-
acteristics of the products in each cluster and product shares, we obtain the distribution of
characteristics induced onto the jth cluster using (18) and (19). We use the first two moments
to describe each distribution.

3. Innovation. We back out centroids for innovation for each period. (See (1)) using product
characteristics from step 1.) Then we estimate the innovation equation (13) and use the
residuals to non-parametrically estimate the distribution of innovation shocks fν(ν). Finally,
we use the number of new products per period to estimate the distribution of the number of
new products using (2) and (14).

4. Outcomes and survival. We estimate processes for labor supply, income, out-of-pocket ex-
penditures, and survival using (22), (23), (24), and (25).

5. Utility function. We estimate the utility parameters in (26) using a GMM estimator and mo-
ment conditions that equate the log odds ratio of current conditional choice probabilities with
an expression involving utility parameters and simulated future CCPs, states and choices
(Hotz et al., 1994; Altuğ and Miller, 1998). In order to obtain these moments we estimate
flexible parametric CCPs that control for the aggregate state zt as well as individual-specific
state variables. (See Appendix B.) We then forward-simulate paths of future technology as
well as individual choices and states that serve as inputs to the simulated continuation value.
We break dependency between observations by simulating aggregate technology paths for
every observation {i, t}: we first simulate a collection of aggregate paths describing product
evolution (this requires simulating all individuals’ behavior for each aggregate path); then
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for every observation {i, t} we simulate individual choices and transitions taking as given a
group of randomly selected aggregate paths.

5 Parameter Estimates

Figure 6 plots observed treatment choices over time along with those generated by the model given
the state at every point in time. The estimated model captures the key trends, including the rise
in repeated usage as treatments improve over time and the decline in the share of individuals not
consuming a product. It also captures relatively well the share of individuals experimenting—
either by buying from a cluster or by consuming a trial product. The rest of this section presents
the estimates of the supply (Section 5.1) and demand side processes (Section 5.2) as well as model
predictions about the likelihood of technological progress (Section 5.3).
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FIGURE 6: Goodness of Fit
Notes: Simulated and empirical choice shares over time.

5.1 Supply

Innovation. The process of innovation in (13) specifies the characteristics of new products as dis-
placed innovations around the centroid. Table 2 reports the estimated coefficients of the systematic
part of innovations. Our estimates suggest that new drugs would be worse on average (relative to
the centroid) if no individuals participated in trials. With increase consumption of trial products,
on average the quality of products introduced in the future improves in both dimensions of quality.
Since average trial participation in our sample is 7 percent (Table 1), the estimates in Table 2 imply
that new products were on average more efficacious than the prevalent technology—as measured
by the centroid—but did not offer fewer side effects.23

23Expected health innovations are positive for lagged trial shares above 5.6 percent, and expected innovations on
the ailments dimension are positive for lagged trial shares above 7.7 percent.
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TABLE 2: Innovation Components

Health Innovation Ailments Innovation
coef. est. se coef. est. se

set−1 φ ν
11 433.11 (19.95) φ ν

12 1.93 (0.34)
Constant φ ν

01 -24.14 (1.47) φ ν
02 -0.15 (0.03)

Notes: Estimates from (13). In parentheses, standard errors computed using subsampling with 100 subsamples.

The stochastic part of every innovation in (13) is an aggregate innovation shock drawn from
the non-parametric distribution fν(ν) showed in Figure 7. The distribution, centered on (0,0), is
unimodal. Conditional on trial participation, most innovations are small improvements. Because
products are multidimensional, it is possible for innovation shocks to generate products that are
more efficacious, but also more toxic, causing worse ailments via side effects. However, fν(ν) in
Figure 7 exhibits a positive correlation of 0.24 between the two quality dimensions of an innovation
shock; unexpected improvements in efficacy tend to be accompanied by fewer side effects.
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FIGURE 7: The Distribution of Innovation Shocks, fν(ν).
Notes: fν (ν) is estimated non-parametrically off the residuals from (13).

Estimates of the distribution of the number of new products are shown in Table 3. Large positive
innovations in previous periods lead to a higher number of new products in expectation. The
magnitude of previous innovations also reduces the dispersion around the number of new products
that enter. Both patterns are consistent with firms vying for market share following breakthroughs
by producing similar products. The share of individuals opting to participate in a clinical trial in the
prior period also increases the likelihood of more products entering the market. Our interpretation
is that as more consumers select trial products, firms increase their experimental activity. This
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leads to an increase in the quantity of viable new treatments that can be introduced into the market.
The estimated distribution fits the data well. (See Figure S2 in Appendix C.)

TABLE 3: Distribution of Number of New Products, FN

ln µ lnα

variable coef. est. se variable coef. est. se
κt−1 φ N

1 0.432 (0.246) Constant φ N
3 -0.206 (0.451)

set−1 φ N
2 6.177 (2.462) κt−1 φ N

4 -1.019 (0.626)
Notes: Model is specified in (14). κt−1 measures the magnitude of previous innovations. E[Nt ] = µt−1 and Var[Nt ] = µt−1(1+αN

t−1µt−1). In
parentheses, standard errors computed using subsampling with 100 subsamples.

Intermediation. Whenever individuals decide to switch to a different market product they se-
lect one of J clusters of products and are assigned a product from the chosen cluster according to
the assignment probabilities specified in (18) and (19). The point estimates of the intermediation
process are laid out in Table S2 in Appendix C. Summarizing, products with better side effects
relative to other products in the cluster have higher within-cluster shares. Also, the shares of prod-
ucts ranking lower in both efficacy and side effects disproportionately decrease with the number of
products within the cluster.

5.2 Demand

Transitions and outcomes. Processes for health and ailments are estimated jointly with product
characteristics. (See Appendix B.) We relegate estimated treatment characteristics as well as point-
estimates of the health and ailments processes to Tables S3 and S4 in Appendix C. Instead, in the
left panels of Figure 8 we present the impact profile of health at the beginning of the period (ht)
on future health (ht+1) and ailments (y1t). While the production function for health displays low
concavity, the production function for ailments is very non-linear. The panels suggest that in the
region where CD4 counts are below 250, changes in health generate much larger shifts in the log
odds ratio of suffering ailments. The reason is that HIV infection has a gradual negative impact
on immune system health, as measured by CD4 count. However, the impact of CD4 count on
ailments is not gradual. It is virtually non-existent until CD4 count has dropped below about 250
and AIDS-related symptoms emerge.

We relegate the point estimates for all other outcomes processes (gross income, out-of-pocket
expenditures, labor supply) and survival to Tables S5 to S8 in Appendix C. Instead, we plot the
relationships between health, outcomes and survival in the remaining panels of Figure 8. Although
health displays relationships with other outcomes in the expected direction, these relationships are
non-linear. As explained above, this is due to large changes in physical health once the AIDS

24



0 500
CD4 count

0

500

1000

C
on

tr
ib

ut
io

n 
to

 t+
1 

C
D

4 Health

0 500
CD4 count

0

1

2

C
on

tr
ib

ut
io

n 
to

 L
O

R Lack of Ailments

0 500
CD4 count

0

1

2

3

C
on

tr
ib

ut
io

n 
in

 1
00

0$ Income

0 500
CD4 count

-0.3

-0.2

-0.1

0

C
on

tr
ib

ut
io

n 
in

 1
00

0$ OOP Expenditures

0 500
CD4 count

0

1

2

C
on

tr
ib

ut
io

n 
to

 L
O

R Labor Participation

0 500
CD4 count

-6

-4

-2

0

C
on

tr
ib

ut
io

n 
to

 L
O

R Death

FIGURE 8: Effect of Current Health on Future Health and Outcomes
Notes: CD4 Count measured in hundreds of cells per microliter. LOR stands for log odds ratio. OOP stands for out-of-pocket. Semestral income

and expenditures measured in thousands of dollars of 2000.

threshold is reached. These relationships underscore the importance of modeling the relationship
between health and outcomes in a non-linear fashion for HIV+ individuals.

Beyond the relationships between outcomes yt and health ht discussed in the previous para-
graphs, several key patterns emerge. (See point estimates in Tables S5 to S8 in Appendix C.)
Individuals who do not suffer ailments have higher gross income, since their productivity is likely
to be higher. Income is concave in age and increases with employment and education, though racial
minorities earn less on average. Out-of-pocket expenditures increase with age, minorities spend
less, and more educated males spend more. Similarly, individuals that suffer ailments face higher
expenditures over and above treatment costs, perhaps because they are managing other health con-
ditions. Employment increases expected expenditures, which may reflect different pricing schemes
for public versus private insurance. The log odds ratio of working versus not working increases
with age until about age 40, after which point it decreases. The log odds ratio of labor force partici-
pation increases with education. Moreover, there is strong persistence in employment, reflected by
a large increase in employment odds for individuals who worked in the previous period. Estimates
also imply that the log odds ratio of death decreases with age until about age 35 and then increases.
The likelihood of death is lower for black males and for males who are not suffering ailments.

Utility. Estimates of the utility function are reported in Table 4. Individuals gain positive utility
from income net of out-of-pocket expenditures (including treatment costs), which captures con-
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sumption utility. Moreover, a lack of physical ailments enters positively into the flow utility.24

Prior literature has shown that even in the context of a deadly infection (HIV) individual treatment
choices reflect a distaste for side effects (Chan and Hamilton, 2006; Papageorge, 2016). The posi-
tive estimate of αxp implies that the cost of ailments is larger when individuals are not consuming a
treatment. This finding is consistent with the idea that the utility cost of ailments from side effects
of medical treatment may be less than the cost of ailments due to illness.

TABLE 4: Utility Parameters, ut

coef. variable est. se
αm NetIncomet (y3t− y4t) 0.057 (0.057)
αxp NoAilmentst ·NoProductt (y1td0t) 1.019 (1.767)

Cluster Trial Repeat
j = 1, . . . ,J j = J+1 j = J+2

coef. variable est. se est. se est. se
α ja1 White -3.546 (0.744) -1.468 (0.280) 0.502 (0.567)
α ja2 Black -4.190 (0.762) -2.553 (0.334) 0.276 (0.613)
α ja3 Hispanic -3.967 (0.958) -1.585 (0.356) 0.707 (0.454)
α ja4 Aget 0.043 (0.011) 0.032 (0.005) 0.009 (0.007)
α jh ht/103 -2.021 (0.423) -2.461 (0.203)

Notes: Estimation of (26). Discount factor β = .95. J = 3. NoProductit indicates whether he did not consume a product. ht is defined as the
number of white blood cells per cubic millimeter of blood. In parentheses, standard errors computed using subsampling with 100 subsamples.

Utility parameters for treatment choices are interacted with race and age. We find that us-
ing treatments is costly for all individuals, with higher costs accruing to African Americans and
Hispanics.25 African Americans face a particularly high penalty for consuming a trial product, a
finding that is consistent with a broad literature investigating historical reasons why African Amer-
icans are reluctant to participate in clinical trials (Harris et al., 1996; Alsan and Wanamaker, 2018).
However, age helps to mitigate the utility costs of treatment: older agents have more contact with
the medical community, or become accustomed to taking medications. We also find that better
health leads to larger utility costs of experimentation. This is consistent with more frequent con-
tact with doctors among less healthy patients, who may thus face lower costs of switching to new
or experimental treatments. In the case of trials, there may be more slots available for sicker pa-
tients if a goal is to test drugs on patients who most need them. Finally, the utility of remaining on
a treatment is positive, although insignificant; if the individual is suffering ailments repeated con-
sumption is preferred over taking no treatment at all and over choosing a cluster or trial treatment.
This result underscores the idea that individuals are reluctant to experiment with new drugs.

24Table S9 in Appendix C shows that if the estimated ancillary parameters of the CCPs were the true parameters,
both net income and physical ailments would be highly significant. However, both net income and physical ailments
parameters become insignificant once the standard errors are corrected for the two stage procedure. Our final specifi-
cation in (26) was determined by the statistical significance of results before the computationally intensive correction
of standard errors in the last stage of estimation.

25Recall that the non pecuniary benefits from no treatment are normalized to zero.
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5.3 The Likelihood of Technological Progress

According to our model the observed path of innovation is a draw from a stochastic process that re-
lates the supply of new treatments to consumer behavior. We assess the likelihood of the observed
innovation path using the estimated innovation process (Section 5.1). Starting at two different
initial states, the first semester of 1991 and the second semester of 1996, we simulate 100 inno-
vation paths spanning until the end of our sample in 2008, and compare them against the realized
path of innovation. While the state at 1991 captures the market prior to the introduction of break-
throughs when health was declining among HIV+ men, the state at 1996 captures the market after
the introduction of HAART, which reversed the trend in average health for HIV+ men. We com-
pare realized and simulated average consumer health, ailments and survival probabilities.26 This
exercise reveals what rational individuals expected as the market for HIV drugs matured.
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FIGURE 9: Distribution of Technology Paths: Individuals
Notes: 100 simulated paths conditional on the state of the world at 1991 and 1996.

The top-left panel of Figure 9 displays the evolution of average CD4 count using 1991 as the
starting point. Although most of the mass of simulated paths is below the realized path of average
health, the gap between the realized path and its simulated counterparts is small before 1996.
Once the breakthrough in technology is introduced around 1996 the realized path diverges from
most of the simulated paths. If we instead use 1996 as the starting point (bottom-left) the realized

26We also compare the simulated and realized paths of prevalent technology—the centroid—and the share of market
product consumers in Figure S3 in Appendix C.
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path underperforms; innovations did not substantially raise average health after 2000 even though
steady improvements in average health were likely. The simulated probability, evaluated at 1991
and 1996, of a path with higher average health than the realized path by the end of the sample
period (2008) is 9 percent and 97 percent, respectively.27

In the middle and right panels of Figure 9 we repeat the exercise with the share of individu-
als with no physical ailments and the average probability of survival, respectively. Although the
realized path of no physical ailments seems to be above the majority of paths starting at 1991,
it is located rather in the middle of the mass of simulated paths regardless of initial state. This
is because there were no significant breakthroughs in the ailments dimension. Hence, rational
individuals expected the no-ailments share to evolve approximately as it did. The simulated prob-
ability, evaluated at 1991 and 1996, of a path with higher no-ailments share than the realized path
by 2008 is 45 percent and 40 percent, respectively. The top-right panel suggests that the future
discovery of a breakthrough that would increase survival the way HAART did was given a very
low probability at 1991. At 1996, even though survival had improved, individuals continued to
expect lower survival rates than the realized path. The simulated probability, evaluated at 1991 and
1996, of a path with higher survival rate than the realized path by 2008 is 2 percent and 34 percent,
respectively.

6 Technology and Welfare under Alternative Regimes

The evolution of technology, and ultimately consumer welfare, is affected by demand externalities
arising from the innovation process. To quantify the importance of these externalities we inves-
tigate several alternative regimes in which the supply process is left unchanged. We conduct two
types of experiments and compare them against the benchmark. In Section 6.1 we analyze how
technology would evolve if consumers had less influence over the process of innovation, restricting
the role of demand pull as a factor determining the equilibrium. In Section 6.2 we explore how
social welfare would improve if demand externalities were internalized in a limited way.

6.1 Demand Pull: How Consumer Choices Affect Technology

We investigate two ways in which the process of innovation is detached from demand. The first
experiment assumes a scientific body determines exit exclusively on the basis of product quality,
and at the entry margin innovation is based on average product characteristics. The second ex-
periment eliminates the effect of repeat purchase on innovation. For each experiment we present

27Although we choose the end of the sample period to define the probabilistic event, similar exercises can be
undertaken by counting the amount of paths that are above the realized path at any given period after the initial period.
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results averaging over 500 simulated paths starting at the first semester of 1991.

Exogenous scientific intervention. In the first alternative regime innovation is independent of
consumer demand. We redefine the centroid to be a simple average of products in the market — as
opposed to a share-weighted average — and take as given our estimates of the supply process in
Section 5.1.28 Thus, new product characteristics are no longer dependent on product demand. We
also separate product exit from demand by adopting two alternative exogenous exit rules designed
to resemble the actions of scientific authorities tasked with keeping only the best products on the
market. The first rule, denoted frontier, removes from the market all products that are not on the
technological frontier. This rule provides an upper bound for how fast innovation can move. The
second rule, denoted inverse frontier, captures expert intervention in a less draconian way. Under
this regime, the product exit rate equals the average product exit rate computed over the baseline
simulations in Section 5.3. The exit rate pins down the number of products to be withdrawn and
the worst products are dropped from the market independent of demand.29
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FIGURE 10: Alternative Regimes: Exogenous Scientific Intervention
Notes: Evolution of the average quality of products in the market under alternative regimes (500 simulations per regime) conditional on the state of

the world at the first semester of 1991. The baseline is the estimated model of demand-pull innovation. In both the frontier and inverse frontier
regimes the centroid is not driven by demand as it is a simple average of products on the market. In the frontier regime all products inside the
quality frontier are exogenously withdrawn. In the inverse frontier regime the exit rate of products equals the average exit rate in the baseline

simulations and the worst products are withdrawn.

Figure 10 shows that under the first regime (frontier) innovation is more rapid, leading to much
better products on both dimensions of quality. In contrast, the path of product quality is not as
different from the baseline under the second regime (inverse frontier). In the rational expecta-
tions equilibrium individuals avoid using the very worst products. Consequently, removing these
products has little impact on the centroid, and hence on subsequent innovations. Nevertheless,

28For simulation, we need a path of trial participation {set ,set+1, . . . ,seT} to feed into the distribution of the number
of new products in (14) and the innovation process in (13). We use the average path of trial participation over 500
simulations using the baseline model. (See Section 5.3.)

29Selection of worst products in the inverse frontier regime is explained in Appendix C.
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our estimates imply that the inverse frontier regime does lead to somewhat higher average health
quality.

Eliminating the effect of repeat purchase. Since consumers dislike changing treatment, they
face a tradeoff between old and new technologies, and are more likely to repeat purchase if
prior treatment offers higher qualities than current clusters—where multiple qualities are balanced
through individual preferences. Our second counterfactual regime assigns individuals to alterna-
tives in the choice set in the same proportions as the benchmark (including trial products and no
treatment), but makes repeat consumption of old technologies random. Thus the preferences and
characteristics of repeat consumers do not guide the direction of innovation. Figure 11 shows that
eliminating the effects of repeat custom improves health and survival, but leads to more physical
ailments. The reason is that individuals prefer medical treatments with fewer side effects despite
the detrimental impact on their survival. The new rule tilts the path of innovation towards more
efficacious treatments with greater side effects.
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FIGURE 11: Alternative Regimes: Eliminating the Effect of Repeat Purchase.
Notes: Average paths computed over 500 simulations that are conditional on the state of the world at 1991. The baseline is the estimated model of

demand-pull innovation. The baseline solid lines in Figure 11 are the averages of the grey lines in Figure 9 and Figure S3 in Appendix C.
Individuals in the alternative regime are assigned alternatives using the unconditional shares from the baseline model as assignment probabilities.

6.2 Targeting Demand Externalities in Innovation

Together with our results in Section 5, our simulations in Section 6.1 underscore three reasons why
scientific intervention may not increase welfare: individuals care about quality of life and face high
costs of changing treatments or experimenting with trial products. The optimal planner policy in-
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corporating the externality is a mapping from consumer characteristics into treatment alternatives,
but solving for this mapping is intractable given the size of the state space. In this section we study
a temporary policy change lasting only one period before reverting to the competitive equilibrium.
This allows us to compute continuation values using the CCPs estimated in Section 4.3. Never-
theless, the policy has a long term impact because it affects the state variables of the competitive
equilibrium resuming next period.

Mandated treatment. Our first policy experiment assigns individuals to alternatives based on
health and previous treatment. The population is split into four groups with high or low health and
who are or are not potential repeat customers (those who bought a market product in the previous
period). For each of the groups the planner either assigns one of the alternatives in the choice set to
all members of the group, or he assigns the competitive equilibrium individual-specific allocation.
We solve the problem in the first semester of 1991 by computing average simulated lifetime utility
under all possible allocation rules (1,764 total).30

TABLE 5: Mandated Treatment

Groups, Group Shares and Assignment
% Gain/Loss High H High H Low H Low H

over CE No Repeat Repeat No Repeat Repeat
Average Welfare ($1000) High H Low H 0.50 0.26 0.05 0.19

Top Rules

351.61 2.3 -2.8 0 6 6 0
351.28 2.3 -3.2 0 6 0 0
350.84 2.1 -3.1 0 5 0 0
350.82 2.1 -2.9 0 5 6 0
350.63 1.0 1.2 0 6 0 6

...
Competitive Equilibrium 346.11 - - 6 6 6 6

...

Bottom Rules

167.97 -54.2 -40.9 1 4 6 4
167.96 -53.3 -44.6 1 4 1 4
167.33 -53.5 -44.9 1 4 3 4
167.24 -53.5 -45.1 3 4 2 4
165.90 -54.4 -43.1 1 4 4 4

Notes: Planner’s problem solved at 1991. High H (Low H) individuals have CD4 > (≤)250. Repeat (No Repeat) costumers can (cannot) repeat
their prior period market product. Population shares shown on top of each group label. Numbers 1 to 3 correspond to clusters and numbers 0, 4, 5,

and 6 stand for no treatment, trial product, repeat consumption, and the competitive equilibrium allocation, respectively.

Table 5 presents the top and bottom five assignment rules. In the worst rules the planner
imposes experimentation on healthy patients who dislike it most, and discards information con-
tained in the competitive equilibrium allocation, often assigning individuals to low quality clusters,
thereby incurring switching costs. In the best rules the planner improves technology by relying on
healthy potential repeat customers because their previous choices incorporate product quality in-
formation, and treats hardly anyone else because average product quality is low in 1991. The top
rule increases average welfare by 1.6% but decreases equity. Relative to the competitive equilib-

30We simulate aggregate lifetime utility 200 times for each each of the 72 ∗62 = 1,764 possible assignment rules.
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rium allocation, healthy individuals (CD4 > 250) gain 2.3% in average lifetime utility while the
unhealthy lose 2.8%. However, the fifth top rule increases average welfare by almost as much as
the top rule and both health groups gain.

Optimal experimentation with trial products. Our results in Section 5.1 show that the share
of trial product consumption increases the expected number of new products as well as their qual-
ity. Our second policy experiment focuses on the externality arising from individually rational
agents who do not internalize the effects of their experimentation with trial products on the wel-
fare of other individuals through their impact on the evolution of technology. The planner assigns
alternatives based on all components of the individual state, but he can only assign one of two
alternatives: the trial product or the competitive equilibrium allocation (excluding trial products).
Facing a tradeoff between innovation and individual experimentation costs, the planner chooses a
cutoff for experimentation s∗et such that the gain in average welfare from allocating the next indi-
vidual to the trial product is no longer positive. We solve the problem at the first semester of 1991
and again at the second semester of 1996.31

TABLE 6: Optimal Experimentation with Trial Products

Planner trial share s∗et 0.100 0.185
Competitive equilibrium trial share set 0.102 0.092
Average lifetime utility at planner solution 346 360
Average lifetime utility at competitive equilibrium 346 354
Increment in trial share for marginal person sent to trials at set 0.001 0.002
Individual loss for marginal person sent to trials at set -0.178 -0.628
Social gain from sending marginal person to trials at set -1133 1051
Flat subsidy per trials participant to attain s∗et - 16.0

Notes: Planner’s problem solved at the first semester of 1991 and the second semester of 1996. Monetary values in $1,000s.

Results are presented in Table 6. In 1991, the planner’s experimentation share is approximately
the same as the competitive equilibrium share (set). The costs of increased experimentation out-
weigh the benefits of new drugs in a time when individuals are very sick, no good treatments
have been invented and previous innovations have been small. By 1996, large innovations had
occurred, further innovations were therefore more probable, and consumers’ health was improving
fast. At this period the planner’s experimentation share doubles the competitive equilibrium share
and yields an average welfare of $360,000, about 2% higher than average welfare at the competitive
equilibrium. Figure 12 illustrates the planner’s problem at 1996, it shows that trial participation
shares up to 9 percent points above set generate welfare gains that outweigh individual losses due
to experimentation.32 Average welfare drops precipitously for trial shares beyond s∗et because the

31We discretize the trial share from 0 to 1 in increments of 0.005 units and simulate aggregate lifetime utility 1000
times for each value.

32The solid line in Figure 12 yields from applying a fifth degree local smoothing polynomial over the original less
smooth Figure S4 in Appendix C. We use this smoothed version to evaluate marginal gains.
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new individuals being assigned to trials face larger losses relative to their optimal choice, and the
innovation benefits to additional experimentation are not large enough.
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FIGURE 12: Optimal Assignment to Clinical Trials with a Flat Subsidy
Notes: On the x-axis are increments in trial share over the competitive equilibrium (CE) share set . The solid line represents average gains in

welfare over the CE allocation. The dashed line indicates the subsidy per participant necessary to decentralize a given increment. The dotted line
indicates the planner’s optimal increment over set . Year is 1996.

To measure the magnitude of the externality we obtain the derivative of average welfare with
respect to the trials share, evaluated at the competitive equilibrium share set . We achieve this by
assigning the marginal consumer to a trial and computing the net social benefit.33 Focusing on
year 1996, we find that the marginal consumer loses roughly $600 (Table 6). However, because
trial participation spurs innovation by raising the expected quality and the expected number of new
products, the net social gain is over $2,000 per person. In our sample of 445 individuals in 1996,
this means that a $600 loss from raising trial participation by 1 person (about 0.22 percentage
points) leads to a welfare gain of roughly $1,000,000.

Although these results suggest a substantial externality associated with trial product experi-
mentation, governments with the authority to assign individuals to clinical experimentation may
target groups that do not belong to their coalition.34 Figure 12 shows the flat Pigouvian subsidy
necessary to decentralize a given trials share. The subsidy that attains the planner’s optimal trial
share s∗et is about $16,000 per participant. This subsidy represents a large reallocation of utility
because all trial product consumers are paid, including those who would consume the trial product
without the subsidy. Besides, the subsidy must be large enough to induce the marginal, highest-cost
person into a trial. However, decentralizing s∗et with a subsidy not only increases efficiency but also
equity. As opposed to most top mandated treatment policies (Table 5), the subsidy decreases the
gap in lifetime utility between the sickest individuals (ht < 200) and everyone else by ten percent.

33The marginal consumer would otherwise choose something else, but he faces the smallest lifetime utility loss
from assignment to a trial.

34The infamous Tuskegee experiment is an example of this (Harris et al., 1996; Alsan and Wanamaker, 2018).
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Additionally, equity does not increase at the expense of the healthy as the lump sum transfer (about
$3,000) to pay for the subsidy is below their welfare gains under s∗et . Equity increases because the
sickest individuals benefit the most from faster innovation and because they are more likely to
consume trial products. In other words, the subsidy reduces technological free-riding undertaken
by healthy individuals.

7 Conclusion

We provide a framework to assess how consumer choices affect technological progress. In our
case, aggregate consumer demand affects not only the speed of innovation, which has been studied
in a number of contexts, but can also tilt the path of innovation in cases where product quality is
multi-dimensional. We apply our framework to study consumer behavior and innovation in the
market for HIV drugs. In this context, we capture several mechanisms through which consumer
demand affects innovation, including experimentation with new drugs by participating in clinical
trials, thereby accelerating innovation. By joining a trial, individuals gain access to experimental
products that may be high-quality breakthroughs, but may also be less efficacious or painfully
toxic. Additionally, consumer decisions can bend the technological path if firms avoid innovating
around unpopular products. We show that consumer behavior can slow the process of innovation
and bend it towards less efficacious products that hamper survival probabilities.

Because individuals do not internalize the consequences of their product choices on other con-
sumer’s welfare, an externality arises through their impact on technological progress. Our esti-
mates show that a constrained planner can increase average welfare by at least two percent (ap-
proximately $6,000 per individual), and that providing incentives for trial participation can improve
social welfare. Although demand pull has been widely recognized as a source of innovation, the
externality it creates had not been previously quantified. Our demand-pull framework could be
applied to other industries and integrated with models focusing on the supply side.
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For Online Publication Supplement to

“Innovation and Diffusion of Medical Treatment”

A Data Appendix

Data collection for the Multi-Center AIDS Cohort Study started in 1984 with 4,954 men enrolled.35

Two more enrollments have taken place: one in 1987-1991 (668 additional men) and another in
2001-2003 (1,350 additional men). We only use data from the first two enrollments. Since data is
semi-annual each period t corresponds to 6 months. Below we describe the main variables we use
in our study:

Health (hit): at every visit individuals undertake a physical examination that includes a blood
sample which provides a measure of underlying health status: the individual’s CD4 count. We
denote as hit the CD4 count at of the individual at the start of period t. According to the official
U.S. government’s website for HIV:36

The CD4 count is [...] a snapshot of how well your immune system is functioning.
CD4 cells (also known as CD4+ T cells) are white blood cells that fight infection. [...]
These are the cells that the HIV virus kills. As HIV infection progresses, the number
of these cells declines. When the CD4 count drops below 200 [cells per microliter]
due to advanced HIV disease, a person is diagnosed with AIDS. A normal range for
CD4 cells is about 500-1,500.

Ailments (y1it): starting at visit 4, individuals are asked about physical symptoms. We focus on
unusual bruises lasting at least two weeks, unintentional weight loss of at least 10 pounds, fatigue,
diarrhea, fever, night sweats, and tender/enlarged glands. The last 5 ailments must be felt for at
least 3 days during the period. Although individuals are asked explicitly about side effects starting
at visit 13, we choose not to use this part of the data because it lacks consistency over time and
more importantly, because individuals are most likely unable to correctly distinguish between side
effects and symptoms. Thus, in our model y1it takes the value of 1 if an individual reports having
any of the problems mentioned above.

35Data in this manuscript were collected by the Multi-Center AIDS Cohort Study with centers (Principal In-
vestigators) at The Johns Hopkins Bloomberg School of Public Health (Joseph B. Margolick, Lisa P. Jacobson),
Howard Brown Health Center, Feinberg School of Medicine, Northwestern University, and Cook County Bureau
of Health Services (John P. Phair, Steven M. Wolinsky), University of California, Los Angeles (Roger Detels),
and University of Pittsburgh (Charles R. Rinaldo). The MACS is funded by the National Institute of Allergy
and Infectious Diseases, with additional supplemental funding from the National Cancer Institute. UO1-AI-35042,
5-MO1-RR-00052 (GCRC), UO1-AI-35043, UO1-AI-35039, UO1-AI-35040, UO1-AI-35041. Website located at
http://www.statepi.jhsph.edu/macs/macs.html.

36See https://www.hiv.va.gov/patient/diagnosis/labs-CD4-count.asp
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Labor supply (y2it): whether the individual worked full time (35 hours or more per week)
during period t.

Income (y3it): starting at visit 14, individuals answer the question “Which of the following

categories describes your annual individual gross income before taxes?” For visit 14, categories
are brackets that increase every $10,000, the last category being censored at “$70,000 or more.”
For visits 15 to 35 the brackets are censored at $50,000 and for visits 36 to 41 the brackets are
censored at $60,000. We censor at $50,000 to obtain a uniform question over time. Then we
assign the middle point to individuals in the bracket. For the highest bracket we assign the upper
limit ($50,000). We divide gross income by two since our periods are half-years. Gross income as
well as out-of-pocket expenditures (below) are in constant dollars of 2000.

Out-of-pocket expenditures (y4it): starting at visit 14, individuals are asked a version of the
following question “Please, estimate the TOTAL out-of-pocket expenses that you or other personal

sources (your lover, family or friends) paid for prescription medications since your last visit.” This
question is open so values are not categorized.

Demographics (ait): individuals are either white, black or Hispanic, and their age increases by
half a year every period.

A.1 Products and Product Components

Starting at visit 6 individuals are asked about their medication. From visit 13 forward, as the
number of treatments available increase, they answer separate survey modules for antiretroviral
drugs (ARVs) and non antiretroviral drugs (NARVs). We focus on ARVs since these are the drugs
used to treat HIV infection. Below we provide the empirical definition of trial and market products
that we use in the paper.

Trial Products. Individuals are asked to name specifically which drugs they took as well as
whether or not they took the drug as part of a research study. In the original data, some of the
reported drugs are themselves coded as trials. We regard these instances as individuals participating
in trials. If an individual consumes one of his drugs as part of a trial we regard the individual as
consuming a trial product in that period.

Market Products. We define a market product as a combination of components where no com-
ponent is consumed in trial. This definition generates 1,835 products. We reduce the number of
market products using the following algorithm:

1. We start with the set of treatments that have more than 40 observations in the sample and
denote this the set of “core market products.”37 Our core market products are listed in Table

37We tried different criteria for the minimum number of observations and product classification did not change
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S1 which shows that there are 70 core market products overall with at most five components.
Out of 20,142 subject-visit observations of individuals taking market products, 13,767 are
covered by treatments classified as core market products.

2. We code the remaining 6,375 observations of non-core market products as core market prod-
ucts using the steps below. Each step sequentially assigns the remaining observations that
were not assigned in previous steps.

(a) Non-core market product k is assigned to core market product k′ if k′ is the core market
product with the highest number of components that is contained by k. Of the remain-
ing 6,375 observations of non-core market products, this rule assigns 2,963 uniquely
and leaves 3,412 with unassigned (1,647 that were assigned to multiple core market
products plus 1,765 that were not assigned to any core market product).

(b) If assigned to multiple core market products in step (a):

i. First, we use the past history of the individual. If at period t the individual is con-
suming non-core market product k′′ that was assigned to both core market products
k and k′ in step (a), and he was observed consuming core market product k in pe-
riod t− 1, then his treatment at t is recoded as k. We repeat this procedure until
no further gains are obtained. Out of the remaining 1,647 observations assigned to
multiple core market products, 428 are assigned uniquely in this step.

ii. Second, we use the future history of the individual. If at period t the individual
is consuming non-core market product k′′ that was assigned to both core market
products k and k′ in step (a), and he was observed consuming core market product
k′ in period t + 1, then his treatment at t is recoded as k′. We repeat this proce-
dure until no further gains are obtained. Out of the remaining 1,219 observations
assigned to multiple core market products, 274 are assigned uniquely in this step.

iii. Third, we use the core market product with the highest share at t. If at period t the
individual is consuming non-core market product k′′ that was assigned to both core
market products k and k′ in step (a), and skt > sk′t , then his treatment at t is recoded
as k. This final step assigns uniquely the remaining 945 observations assigned to
multiple core market products.

(c) If not assigned to a core market product in step (a): we regard all 1,765 observations as
“fringe treatments” since they do not contain any core market product. We aggregate
all fringe treatments that appear at period t into one single “fringe mix,” and assign to it

substantially. Since our definition of core market products can miss treatments appearing near the end of the time
period studied, we select the core products using all periods but exclude the last 4 periods from estimation.
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all users consuming this product over time. We only consider fringe mixes that have at
least 40 users. This reduces the number of observations by 345 (which represents 1.6%
of the number of observations of individuals using a treatment). This aggregation leads
to 16 fringe mixes that we pool with the set of core market products, which amounts to
a total of 86 market products overall. (See Table S1.)

3. In the paper we specified that a treatment gets withdrawn from the market altogether when
its share falls below s for 2 consecutive periods. However, in the data, a treatment may have
a share below s for more than 2 consecutive periods and then reappear again. 78 out of 86
core market products have unique spells without “reappearance.” We regard the remaining
treatments with multiple spells as measurement error and follow the next procedure to ensure
that treatments have unique spells without reappearance. For every core market product k

with reappearance:

(a) We identify all spells that treatment k has in the data. This is, we identify the first spell
and all reappearances.

(b) From those spells we select the one that contains the period t ′ in which skt was the
highest. We drop all observations of individuals consuming market product k in other
spells.

Out of 19,797 (20,142 minus 345 from step 2(c)) observations of individuals taking market
products, this smoothing procedure drops 42 observations leaving 19,755 observations of
individuals taking market products. Supporting the importance of the spells selected by this
procedure, the maximum share in the selected spell is on average about 24 times larger that
the maximum share in other spells of the same market product.38 Table S1 includes entry
and exit dates implied by this spell smoothing procedure.

B Estimation Appendix

B.1 Product Characteristics

We estimate product characteristics using the larger sample (visits 6 to 49) thereby using all data
available on previous health, individual treatment usage, and subsequent health and ailments. Es-

38In addition to this procedure we tried (i) selecting the spell with the highest average share and (ii) selecting the
spell with the highest sum of shares. All criteria result in very similar entry and exit dates.
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APPENDIX TABLE S1: Market Products

Market Product Entry Exit Market Product Entry Exit
AZT 1987 S1 - ddI , d4T, Nevirapine 1997 S2 -

Interferons (α and/or β ), AZT 1987 S2 1995 S2 ddI , 3TC, Nelfinavir 1997 S2 -
AL-721 egg lecithin 1987 S2 1991 S2 ddI , d4T, Efavirenz 1998 S2 2008 S1

AZT, Acyclovir 1989 S2 2000 S1 3TC, Abacavir, Efavirenz 1998 S2 -
Acyclovir 1989 S2 2000 S1 AZT, Nevirapine, 3TC, Abacavir 1999 S1 -

AZT, Acyclovir, ddI 1990 S1 1997 S1 AZT, 3TC, Abacavir, Efavirenz 1999 S1 -
Acyclovir, ddI 1990 S1 2000 S1 AZT, 3TC, Efavirenz 1999 S1 -

AZT, ddC 1990 S1 2001 S2 AZT, 3TC, Abacavir 1999 S1 -
AZT, ddI 1990 S1 2004 S2 d4T, 3TC, Efavirenz 1999 S1 2006 S1

ddI 1990 S1 - Nevirapine, 3TC, Abacavir 1999 S2 -
AZT, ddC, Acyclovir, ddI 1991 S1 1997 S1 d4T, 3TC, Kaletra 2001 S1 2006 S1

AZT, ddC, Acyclovir 1991 S1 1999 S2 3TC, Kaletra, Abacavir 2001 S2 -
AZT, ddC, ddI 1991 S1 1995 S2 AZT, 3TC, Kaletra 2001 S2 -
ddC, Acyclovir 1991 S1 1997 S2 AZT, 3TC, Kaletra, Abacavir 2002 S1 -

ddC 1991 S1 1999 S1 3TC, Abacavir, Efavirenz, Tenofovir 2002 S1 -
d4T 1993 S1 - AZT, 3TC, Abacavir, Tenofovir 2002 S1 -

AZT, Acyclovir, 3TC 1994 S2 2000 S1 AZT, 3TC, Kaletra, Tenofovir 2002 S1 -
AZT, 3TC 1995 S1 - Nevirapine, 3TC, Tenofovir 2002 S1 2007 S1

Acyclovir, d4T, 3TC 1995 S2 2000 S1 3TC, Kaletra, Tenofovir 2002 S1 -
AZT, 3TC, Saquinavir 1996 S1 2005 S1 Kaletra, Efavirenz, Tenofovir 2002 S1 -

d4T, 3TC 1996 S1 - 3TC, Efavirenz, Tenofovir 2002 S1 -
AZT, 3TC, Saquinavir, Ritonavir 1996 S2 - AZT, 3TC, Kaletra, Abacavir, Tenofovir 2002 S2 -
AZT, Acyclovir, 3TC, Indinavir 1996 S2 2000 S1 ddI , Kaletra, Tenofovir 2002 S2 -
Acyclovir, d4T, 3TC, Indinavir 1996 S2 2000 S1 ddI , Efavirenz, Tenofovir 2002 S2 -
AZT, 3TC, Ritonavir, Indinavir 1996 S2 2006 S2 Abacavir, Efavirenz, Tenofovir 2002 S2 -
d4T, 3TC, Ritonavir, Indinavir 1996 S2 2006 S2 Kaletra, Abacavir, Tenofovir 2002 S2 -

d4T, 3TC, Saquinavir, Ritonavir 1996 S2 2004 S2 3TC, Ritonavir, Abacavir, Atazanavir 2003 S2 -
ddI , d4T, Indinavir 1996 S2 2004 S2 Efavirenz, Tenofovir, Emtricitabine 2003 S2 -

d4T, 3TC, Indinavir 1996 S2 2008 S1
Ritonavir, Efavirenz, Tenofovir,

Emtricitabine, Atazanavir 2004 S1 -

AZT, 3TC, Indinavir 1996 S2 -
3TC, Ritonavir, Abacavir, Tenofovir,

Atazanavir 2004 S1 -

d4T, Nevirapine, 3TC 1997 S1 - ddI , Ritonavir, Tenofovir, Atazanavir 2004 S1 -

AZT, Nevirapine, 3TC 1997 S1 -
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir 2004 S1 -

AZT, 3TC, Nelfinavir 1997 S1 - Nevirapine, Tenofovir, Emtricitabine 2004 S1 -
ddI , d4T, Nelfinavir 1997 S1 2005 S2 Kaletra, Tenofovir, Emtricitabine 2004 S2 -

d4T, 3TC, Nelfinavir 1997 S2 -
Ritonavir, Tenofovir, Emtricitabine,

Lexiva 2005 S1 -

Fringe Mixes

Isoprinosine, Ribavirin, Interferons (α
and/or β ) 1987 S1 1992 S1

Nevirapine, 3TC, Ritonavir, Kaletra,
Tenofovir 2003 S1 -

Interferons (α and/or β ), 3TC,
Saquinavir, Indinavir, Efavirenz 1997 S1 2007 S1

3TC, Ritonavir, Kaletra, Abacavir,
Tenofovir, Atazanavir 2004 S1 -

Nevirapine, 3TC, Saquinavir, Ritonavir,
Indinavir 1997 S2 2006 S2

Ritonavir, Tenofovir, Emtricitabine,
Atazanavir, Lexiva 2004 S2 -

Nevirapine, 3TC, Saquinavir, Ritonavir,
Nelfinavir 1998 S1 2006 S2

Saquinavir, Ritonavir, Tenofovir,
Emtricitabine, Atazanavir 2005 S1 -

Nevirapine, Saquinavir, Ritonavir,
Abacavir, Efavirenz 1999 S1 2005 S2

3TC, Ritonavir, Abacavir, Tenofovir,
Atazanavir, Lexiva 2005 S2 -

Nevirapine, Ritonavir, Nelfinavir,
Abacavir, Efavirenz 1999 S2 -

Saquinavir, Ritonavir, Abacavir,
Tenofovir, Emtricitabine 2007 S1 -

Nevirapine, Ritonavir, Kaletra, Abacavir,
Efavirenz 2001 S2 2008 S2

3TC, Ritonavir, Tenofovir, Emtricitabine,
Raltegravir 2008 S1 -

Nevirapine, 3TC, Nelfinavir, Abacavir,
Tenofovir 2002 S2 -

Ritonavir, Tenofovir, Emtricitabine,
Darunavir, Raltegravir 2008 S2 -

Notes: Entry and exit dates implied by the smoothing of spells in Step 3 of the algorithm used to reduce market products in Section A.1. S1 and S2
indicate the semester within a year. Many products had not exited by the end of the sample. For Fringe Mixes we only include the 5 or 6 most used

products in the mix.
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timation equations follow from (20) and (21):
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Along with estimates of product characteristics, (S1) and (S2) provide parameter vectors γh and γx

that describe the health transition in (20) and the process for physical ailments in (21).

B.2 Clusters

In our empirical implementation we assume there are J clusters every period. We implement the
following version of the k-means algorithm. At every period t:

1. Select the products for which the s rule has not been applied. In other words, select products
that are still available for new consumers at t. Denote this set of products At .

2. In order to keep comparability, re-scale the characteristics of all products available for clus-
tering at t by computing:

θ̃
r
k =

θ r
k

maxk∈At

∣∣θ r
k

∣∣ , for r = 1,2 (S3)

Thus, by construction θ̃ ∈ [−1,1]× [−1,1].

3. Select the first J centroids using the scaled characteristics θ̃ of J randomly selected products
from At .

4. Allocate all remaining products k ∈ At to clusters sequentially. At each step select for allo-
cation the product whose scaled characteristics θ̃k are closest to one of the existing clusters.
Assign product k to the closest cluster and update the centroid of the cluster. Repeat this
process until all products in At are assigned to a cluster.

5. Taken the centroids as given, reallocate all products to their closest centroid.

6. Calculate the value of the clustering rule C
(
{θk}k∈Pt

)
in (17) for the current allocation.

7. Repeat 200 times steps 3 to 6 using the scaled characteristics θ̃ of different groups of J

randomly selected products in At as initial centroids. The allocation with the lowest value of
C
(
{θk}k∈Pt

)
is chosen.39

39In estimation, whenever we simulate clusters we only repeat the process 50 times.
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B.3 Innovation

According to (13), the characteristics of new products and trial products are displaced innovations
about the centroid (current or previous), and depend on previous trial participation and a draw
from the distribution of innovation shocks fν(ν). To estimate (13) and fν(ν) we use all periods
in the MACS data with relevant information on treatment consumed, health and ailments (1986
to 2008). Over the time span in our data, and given our definition of products, we observe 86
realized innovations from newly introduced market products and 22 realized innovations from
trials products. Consistent with our definition of market products, we only consider trial products
that entail at least 40 users. We do not impose that innovations vectors cannot be strictly negative.
In other words, relative to the centroid, inferior products with lower quality in both dimensions
(health and ailments) may be introduced.40

B.4 Utility Parameters

We estimate the utility parameters in (26) using a GMM estimator and moment conditions that
equate the log odds ratio of current conditional choice probabilities with a representation of the
differences in conditional value functions in terms of utility parameters and future CCPs, states and
choices (Hotz et al., 1994; Altuğ and Miller, 1998). Below we explain this step of the estimation
process in more detail.

B.4.1 Moment Condition

Our moment conditions appeal to well-known results following from our assumption that the taste
shocks ε jit are iid Extreme Value Type I distributed (Hotz and Miller, 1993). They rely on dif-
ferences between the log odds ratio and an alternative representation of differences in conditional
value functions (v j(zit)−v0(zit)) in terms of future conditional choice probabilities, choices, states
and utility parameters. Recalling the definition of V (zit) in (10), the conditional value function of
choosing alternative j at period t is:

v j (zit) = E
{

u j (hit ,yit)+βV (zit+1)
∣∣zit ,d jit = 1

}
(S4)

Let p jit (zit) be the probability that individual i chooses option j at time t conditional on his state
zit . Let ψ jit (zit) be the expected value of the jth taste shock conditional on alternative j being

40This is consistent with what we observe in the data, and theoretical reasons why this may happen have been
provided in the literature (Miller, 1988).
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optimal, and let γ be the Euler constant. Since the joint distribution of εt is Extreme Value Type-I:

ψ j (zit)≡ Eε

[
ε jit |zit ,de

jit = 1
]
= γ− ln

(
p jit (zit)

)
(S5)

Define E j{·} as the expectation conditional on d jit = 1. Dropping the individual subindex i for
simplicity, using (S5), we can write the conditional value function in (S4) in terms of future utility
flows induced by all available alternatives, weighted by the future probabilities of those alterna-
tives being chosen and corrected by the fact that the alternative may not be optimal. Notably, the
weighted average of corrected flow payoffs of a given period must be discounted by the probabil-
ity of survival up to that period conditional on today’s state and choice. Letting T ∗ be an arbitrary
period with t < T ∗ ≤ T , he alternative representation of the conditional value function is given by:

v jt(zt) = E j
{
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}
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Let w(zit) be a vector of instruments orthogonal to the difference between the log odds ratio
and the alternative representation. Hence, we can form the following moment conditions:

E

w(zit)⊗


ln
(

p0it(zit)
p1it(zit)

)
+ v1it(zit)− v0it(zit)

...

ln
(

p0it(zit)
pJ+1+rit ,it(zit)

)
+ vJ+1+rit ,it(zit)− v0it(zit)


= 0. (S7)
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B.4.2 Conditional Choice Probabilities

The individual’s choice set {0,1, . . . ,J + 1+ rit} includes the following alternatives: no product,
one of J clusters, a trial product, and last-period’s product (if rit = 1). The probability that an
individual chooses one of the alternatives depends on the individual and aggregate elements of
his state, where the aggregate state is given by zt = {{θk}k∈Pt

,ωt ,κt ,set−1,Ft}. In estimation
we include ωt , κt and set−1 directly into the CCPs and characterize other components of zt as
follows. The set of products available is {θk}k∈Pt

is characterized by the distribution of product
characteristics of all clusters. We use the first two moments of these distributions in estimation. The
distribution of consumer characteristics Ft is controlled for using a set of non parametric moments
denoted F̃t .41 Let m jit be the moments describing the distribution of characteristics induced by
alternative j for individual i at period t—mean vector and the variance matrix. Effectively, m jit is
heterogeneous across individuals only when j = J+2, i.e. when the individual decides to purchase
the same product he consumed last period. Let m jitm jit denote a vector of interactions between
the elements of m jit . Let x̃it and z̃it be subsets of the individual-specific components of the state.42

Let ωtm jit denote a vector of interactions between the centroid and the elements of m jit . Similarly,
let m jit z̃it be a vector of interactions between the components of m jit and individual-specific state
components and let ωtm jit z̃it be defined in a similar fashion. Our flexible CCPs are given by:

p jit =
exp(I jit)

∑
J+1+rit
j′=0 exp

(
I j′it
) (S8)

where

I0it ≡ 0 (S9)

I jit ≡ γJ x̃it +β0m jt +β1m jt m jt +β2ωt m jt +β3m jt z̃it +β4ωt m jt z̃it +β5m jtF̃t +β6κt +β7set−1, j = 1, . . . ,J (S10)

IJ+1,it ≡ γJ+1x̃it +β0mJ+1,t +β1mJ+1,t mJ+1,t +β3mJ+1,t z̃it +β5mJ+1,tF̃t +β6κt +β7set−1 (S11)

IJ+2,it ≡ γJ+2x̃it +β0mJ+2,it +β1mJ+2,it mJ+2,it +β2ωt mJ+2,it +β3mJ+2,it z̃it +β4ωt mJ+2,it z̃it +β5mJ+2,itF̃t +β6κt +β7set−1 (S12)

Although the characteristics of the choice sets are non stationary due to product entry and exit,
by interacting our time-varying regressors z̃it with the characteristics of the choice for individual
i, m jit , we are able to control for the state of the world inside the CCPs.43 This procedure gives
us CCPs for any simulated world as long as our observed worlds cover the space of possible
worlds. Additionally, we include in the CCPs ancillary coefficients that are unrelated to the state
of technology, denoted γ in (S10) to (S12), which capture stationary taste differences between
alternatives. Because, conditional on cluster characteristics, all clusters are equivalent to “trying a
new market product,” we impose γ j = γJ = for any j = 1, . . . ,J.

41We specify these moments as shares of people with different sets of characteristics.
42z̃it includes hit−1, ait−1, bi, y2it while x̃it includes a constant, ait−1, bi.
43Because some of the components of mJ+1t are linear functions of ωt−1 (see (13)) we avoid collinearity by not

including terms ωtmJ+1,t and ωtmJ+1,t z̃it in (S11).
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Figure S1 displays the mean predicted conditional choice probability using (S8) over time
against the correspondent share of the population who chose the alternative.44
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APPENDIX FIGURE S1: Average CCPs
Notes: The figure shows the average estimated conditional choice probability against the share of people choosing the alternative. Dashed lines

represent 95% confidence intervals around the predicted CCPs. Three periods of special relevance are highlighted in the Figure: two periods
during which enrollment into the sample was undertaken and the period in which products belonging to the HAART class were introduced.

B.4.3 Simulation

In order to form the sample analog of the moment condition in (S7) we obtain a simulated version
of the conditional value function in (S6) truncated at T ∗ for every observation {i, t} and alternative
j ∈ {0,1, . . . ,J+1+rit}. We select T ∗ = 10 so that the product β T ∗+1

∏
T ∗+1
r=1 fb (hit+r) approaches

zero, eliminating further differences in conditional value functions beyond T ∗. Let S denote the
number of simulated paths for each { j, i, t} and let the superscript s indicate that a quantity is
simulated. For individual i and alternative j at period t we write the simulated counterpart of the
truncated value function as

v̄ jit (zit)≡
1
S

S

∑
s=1

{
u j (hit ,ys

it)+
T ∗

∑
τ=1

β
τ

(
τ

∏
r=1

fb
(
hs

it+r
)) J+1+rt+τ

∑
j′=0

ds
j′it+τ

[
u j′
(
hs

it+τ ,y
s
it+τ

)
+ψ j′

(
zs

it+τ

)]}
(S13)

Each future path depends on the current individual state zit , and hence on the current aggregate
state zt , and the current choice j. We first simulate as many aggregate paths at t as there are
individuals at period t. Overall this yields IT paths of technological innovation. Then, because
individuals are atomistic, for each observation {i, t} and alternative j we generate sequences of
future choices and payoffs taking as given S = 20 artificial technological paths chosen at random

44We also explore the fit of our CCP estimates comparing the relative shares that clusters received in reality against
the predictions from our estimated CCPs. We ranked the three clusters at every period by the share they received and
compare this ranking against the ranking obtained from our estimated CCPs. Predicted ranks match observed ranks in
about 80% of the periods.
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from the set of I simulated technological paths that start at date t.45 This serves two purposes. It
maintains the assumption, needed for consistency of the estimator, that the sample draws from the
moment conditions—the contribution from each observation—are independent from each other,
and it prevents simulation errors in technology paths from propagating across all observations.

Simulation of Aggregate State. Taking as given the current aggregate state zt we create as many
simulated aggregate state paths {zs

t+τ}T ∗
τ=1 as there are individuals at every t. In other words, we

repeat the algorithm below to generate I simulated aggregate paths for every period t:

1. Let τ = 1.

2. Supply. Simulate a number of new products at t + τ , News
t+τ , using the entry process in

(14). If News
t+τ > 0, for each simulated new product draw simulated characteristics using

(13). Simulate the characteristics of the trial product using (13). Obtain κs
t+τ using (2) and

(15). For all incumbent products, apply the exit rule {s,s} taking into account the extent to
which it binds according to (16). From the simulated set of products in Ps

t+τ that have not
yet satisfied the s exit rule, form clusters following the clustering rule in (17). Obtain the
distribution of characteristics of each cluster using (18) and (19). For τ > 1 compute the
simulated centroid ωs

t+τ using (1).

3. Demand. For all individuals i′ at t: If τ = 1, define hs
i′t+1 ≡ hi′t+1 and ds

i′t ≡ di′t , otherwise,
simulate hs

i′t+τ
using (20). Draw a simulated labor state ys

2i′t+τ
using (22). Compute de-

terministic transitions (e.g. age). Using zs
i′t+τ

, and hence zs
t+τ , and (S8) to (S12) compute

simulated CCPs ps
ji′t+τ

(
zs

i′t+τ

)
for every alternative j ∈ {0,1, . . . ,J +1+ rs

it+τ
} and draw a

decision ds
i′t+τ

. Obtain the simulated share of trial participation ss
e,t+τ and the nonparametric

representation of the simulated distribution of consumer characteristics F̃ s
t+τ .

4. Cycle back. If τ = T ∗ end the loop. Otherwise, let τ = τ +1 and go back to step 2.

Simulation of Individual Paths. For every observation {i, t} and every alternative j∈{0,1, . . . ,J+
1+rit} we generate S sequences of future states, choices and outcomes {zs

it+τ
,ds

it+τ
,ys

it+τ
}T ∗

τ=1 tak-
ing as given a subset of S simulated aggregate paths—that start at t—chosen at random without
replacement. We follow the steps below:

1. Let τ = 1.
45Notice that we could rely on Hotz et al. (1994) and set S = 1 and obtain consistency of our estimator. However,

we choose S = 20 after trying different values for robustness.
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2. Demand. Same as above but only for individual i. When j is not equal to the observed choice
for {i, t}, we also simulate health at the beginning of period t +1. For this we back out the
realized health residual using (S1) and use (20) to simulate health hs

it+1 under counterfactual
choice j. Additionally, we compute the simulated one-period-ahead survival probability
fb
(
hs

it+τ

)
.

3. Outcomes. Only for individual i: Simulate (lack of) ailments using (21) and the relevant dis-
tribution of product characteristics implied by the simulated choice ds

it+τ
. Simulate income

using (23) and out-of-pocket expenditures using (24).46

4. Cycle back. If τ = T ∗ end the loop. Otherwise, let τ = τ +1 and go back to step 2.

When simulating a path following an alternative j that is not the observed choice for {i, t}, we
obtain current-period simulated payoffs u j (hs

it ,y
s
it) by simulating current income, out-of-pocket

expenditures and ailments conditional on the counterfactual choice j at t.

B.4.4 Estimator

Let j = 0 be the base alternative, and let δit be an indicator of whether individual i is in the data at
period t. The simulated sample analog of the moment condition in (S7) is

1
∑i ∑t δit

I

∑
i=1

T

∑
t=1

δitw(zit)⊗


ln
(

p0it(zit)
p1it(zit)

)
+ v̄1it(zit)− v̄0it(zit)

...

ln
(

p0it(zit)
pJ+1+rit ,it(zit)

)
+ v̄J+1+rit ,it(zit)− v̄0it(zit)

= 0 (S14)

Denote Λ as the M−dimensional vector of parameters of the utility function. Following Hotz
et al. (1994) we estimate Λ as the vector that minimizes the following objective function:

(
(IT )−1

I

∑
i=1

T

∑
t=1

δitw(zit)⊗Ait(zit ,Λ)

)′
Wn

(
(IT )−1

I

∑
i=1

T

∑
t=1

δitw(zit)⊗Ait(zit ,Λ)

)
(S15)

Ait(zit ,Λ)≡


ln
(

p0it(zit)
p1it(zit)

)
+ v̄1it(zit)− v̄0it(zit)

...

ln
(

p0it(zit)
pJ+2it(zit)

)
+ v̄J+2it(zit)− v̄0it(zit)

 (S16)

46Even though individuals know their idiosyncratic income shocks εm
it we do not need to simulate these shocks as

they are iid, have mean zero, and enter linearly in the flow utility, which results in them averaging out to zero in the
moment condition.
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where Wn is a square weighting matrix. Using the linear structure of the utility function in (26) we
collect and factor terms in order to write the jth component of the vector Ait(zit ,Λ) as the linear
form

ỹ jit− x̃′jitΛ (S17)

Define Y as a vector with (J +2)IT rows that stacks all ỹ jit , and X as a (J +2)IT ×M matrix that
stacks all x̃ jit . Define Z as the IT ×R matrix whose columns contain the R instruments orthogonal
to the difference between the log odds ratio of current conditional choice probabilities and the
alternative representation of the differences in conditional value functions.47 Thus

Y =



ỹ1,1,1

ỹ1,1,2
...

ỹ1,I,T−1

ỹ1,I,T
...

ỹJ+2,1,1

ỹJ+2,1,2
...

ỹJ+2,I,T−1

ỹJ+2,I,T



, X =



x̃1,1,1,1 . . . x̃1,1,1,M

x̃1,1,2,1 . . . x̃1,1,2,M
...

...
x̃1,I,T−1,1 . . . x̃1,I,T−1,M

x̃1,I,T,1 . . . x̃1,I,T,M
...

...
x̃J+2,1,1,1 . . . x̃J+2,1,1,M

x̃J+2,1,2,1 . . . x̃J+2,1,2,M
...

...
x̃J+2,I,T−1,1 . . . x̃J+2,I,T−1,M

x̃J+2,I,T,1 . . . x̃J+2,I,T,M



, Z =


w(z11)1 . . . w(z11)R

w(z12)1 . . . w(z12)R
...

...
w(zIT )1 . . . w(zIT )R

 (S18)

Finally, let I[J+2] be a (J+2)-dimensional identity matrix and define Z̃ ≡ I[J+2]⊗Z. Then we can
write the objective function in (S15) as(

(IT )−1 Z̃′ (Y −XΛ)
)′

Wn

(
(IT )−1 Z̃′ (Y −XΛ)

)
(S19)

Equation (S19) is a linear arrangement so we can obtain a close form solution for Λ̂ as the optimal
GMM estimator. It entails first and second stage estimators given by

Λ̂
1S =

(
X ′Z̃Z̃′X

)−1 (X ′Z̃Z̃′Y
)
, Λ̂

2S =
(
X ′Z̃Ŝ−1Z̃′X

)−1 (
X ′Z̃Ŝ−1Z̃′Y

)
(S20)

where

Ŝ =
1
I∗

Z̃′DZ̃, I∗ = IT (J+1)+
I

∑
i=1

T

∑
t=1

rit (S21)

accounts for the fact that some individuals cannot repeat their previous consumption (for instance,
if the product was withdrawn), and D is the I (J+2) square diagonal matrix with diagonal elements

û2
jit =

(
y jit− x′jitΛ̂

1S
)2

. As instruments we use initial health hit , lagged labor state y2it−1, income

47Hence Wn is a (J+2)R-dimensional square matrix.
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fixed effect ηi, race, education indicators, and age ait , the centroid ωt and the lagged share of trial
participation set−1, as well as interactions between these variables. The variance-covariance matrix
of the second stage estimator is

V̂ 2S = I∗
(
X ′Z̃Ŝ−1Z̃′X

)−1
(S22)

B.5 Standard Errors

The uncorrected standard errors for our utility parameters yield from the variance-covariance ma-
trix in (S22). In order to obtain corrected standard errors we undertake subsampling taking as given
the following objects obtained from the full sample: the definition of products (i.e. what their com-
ponents are, for instance, AZT or AZT + ddI), their corresponding entry and exit dates, and the exit
thresholds σ̃1 and σ̃2 specified in Section 3. We draw R = 100 subsamples containing a proportion
p̃ = 0.9 of the individuals in the sample drawn without replacement, and estimate all parameters
in the model using each subsample. This includes estimating product characteristics, parameters
governing transition and outcome processes, and simulating forward paths of technology to ob-
tain utility parameters. For any parameter γ with estimated value γ̂r from the rth subsample, the
subsampling standard errors are obtained as

se(γ̂)≈ se(γ̂r) ·
√

p̃ (S23)

where se(γ̂r) is estimated as the standard deviation of the R quantities γ̂r.
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C Results Appendix

C.1 Estimates
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APPENDIX FIGURE S2: Distribution of Number of New Products
Notes: Model is specified in (14). Figure shows the empirical distribution of the number of new products and the average over time of the

predicted probabilities using the estimated parameters in Table 3.

APPENDIX TABLE S2: Within Cluster Share Function

variable coef. (γw) se
Ailments Rk -0.427 (0.124)

Ailments Rk × Health Rk 0.074 (0.020)
Health Rk2 -0.029 (0.008)

Ailments Rk2 -0.019 (0.006)
NP -0.509 (0.048)

Health Rk × NP 0.046 (0.009)
Ailments Rk × NP 0.063 (0.010)

Ailments Rk × Health Rk × NP -0.007 (0.002)
New -0.352 (0.508)

New × NP 0.027 (0.404)
Constant 0.786 (0.121)

Notes: Parameters estimates from (18) and (19). Rk stands for the rank of the characteristic compared to other treatments within a cluster. NP is
the cluster size. New indicates whether the product just entered the market. In parentheses, standard errors computed using subsampling with 100

subsamples.
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APPENDIX TABLE S3: Product Characteristics

Ailments, θ 2 Health, θ 1 Ailments, θ 2 Health, θ 1

Market Product coeff se coeff se Market Product coeff se coeff se
AZT -0.500 (0.020) -12.004 (0.736) ddI , d4T, Nevirapine 0.753 (0.175) 44.240 (3.781)

Interferons (α and/or β ), AZT -0.600 (0.061) -55.796 (3.102) ddI , 3TC, Nelfinavir -0.810 (0.083) 47.816 (6.848)
AL-721 egg lecithin -0.433 (0.087) -19.655 (3.917) ddI , d4T, Efavirenz -0.626 (0.078) 41.280 (2.772)

AZT, Acyclovir -0.539 (0.050) -12.752 (1.670) 3TC, Abacavir, Efavirenz 0.108 (0.047) 53.341 (1.501)
Acyclovir -0.783 (0.047) -0.017 (2.678) AZT, Nevirapine, 3TC, Abacavir 0.038 (0.131) 39.379 (3.369)

AZT, Acyclovir, ddI -0.851 (0.037) -16.474 (1.497) AZT, 3TC, Abacavir, Efavirenz 0.348 (0.080) 78.914 (3.549)
Acyclovir, ddI -0.348 (0.043) -4.159 (2.479) AZT, 3TC, Efavirenz 0.342 (0.079) 43.526 (3.073)

AZT, ddC -0.439 (0.029) -5.155 (1.309) AZT, 3TC, Abacavir -0.442 (0.078) 54.824 (3.175)
AZT, ddI -0.571 (0.061) -16.615 (2.488) d4T, 3TC, Efavirenz -0.346 (0.069) 47.978 (3.876)

ddI -0.375 (0.071) 15.263 (2.587) Nevirapine, 3TC, Abacavir -0.470 (0.099) 17.866 (12.148)
AZT, ddC, Acyclovir, ddI -0.789 (0.115) -13.351 (7.73) d4T, 3TC, Kaletra -0.310 (0.123) 35.611 (5.199)

AZT, ddC, Acyclovir -0.514 (0.086) -13.186 (2.168) 3TC, Kaletra, Abacavir -0.934 (0.124) 51.570 (5.325)
AZT, ddC, ddI -1.440 (0.047) -32.700 (1.801) AZT, 3TC, Kaletra -0.655 (0.140) 49.838 (3.967)
ddC, Acyclovir -0.310 (0.093) 2.415 (4.370) AZT, 3TC, Kaletra, Abacavir 0.298 (0.234) 9.855 (9.404)

ddC -0.358 (0.084) -18.630 (3.389) 3TC, Abacavir, Efavirenz, Tenofovir -0.308 (0.070) 31.845 (3.848)
d4T -0.717 (0.054) 39.776 (2.210) AZT, 3TC, Abacavir, Tenofovir -0.652 (0.074) 19.273 (5.651)

AZT, Acyclovir, 3TC -0.527 (0.096) 42.267 (3.394) AZT, 3TC, Kaletra, Tenofovir -0.552 (0.067) 32.227 (2.681)
AZT, 3TC 0.064 (0.051) 34.398 (1.875) Nevirapine, 3TC, Tenofovir -0.258 (0.163) 27.246 (4.619)

Acyclovir, d4T, 3TC -0.509 (0.100) 33.792 (4.664) 3TC, Kaletra, Tenofovir -0.092 (0.082) 51.672 (2.709)
AZT, 3TC, Saquinavir -0.271 (0.052) 38.283 (1.992) Kaletra, Efavirenz, Tenofovir -0.966 (0.100) 47.617 (2.684)

d4T, 3TC -0.104 (0.112) 37.173 (4.070) 3TC, Efavirenz, Tenofovir -0.011 (0.108) 47.790 (5.468)

AZT, 3TC, Saquinavir, Ritonavir -0.591 (0.085) 57.776 (10.571)
AZT, 3TC, Kaletra, Abacavir,

Tenofovir -0.738 (0.141) 19.980 (4.226)

AZT, Acyclovir, 3TC, Indinavir -0.479 (0.056) 63.734 (2.201) ddI , Kaletra, Tenofovir -0.276 (0.112) 18.396 (4.015)
Acyclovir, d4T, 3TC, Indinavir -0.295 (0.108) 78.559 (3.665) ddI , Efavirenz, Tenofovir -0.420 (0.117) 2.381 (2.505)
AZT, 3TC, Ritonavir, Indinavir -0.567 (0.102) 35.032 (6.629) Abacavir, Efavirenz, Tenofovir -0.762 (0.140) 39.457 (3.150)
d4T, 3TC, Ritonavir, Indinavir -0.767 (0.049) 33.510 (3.321) Kaletra, Abacavir, Tenofovir -0.820 (0.198) 14.891 (2.601)

d4T, 3TC, Saquinavir, Ritonavir -0.444 (0.085) 42.631 (5.409) 3TC, Ritonavir, Abacavir, Atazanavir -0.061 (0.039) 26.850 (1.181)
ddI , d4T, Indinavir -0.048 (0.137) 32.286 (3.981) Efavirenz, Tenofovir, Emtricitabine 0.118 (0.082) 54.798 (2.464)

d4T, 3TC, Indinavir -0.395 (0.096) 53.128 (4.546)
Ritonavir, Efavirenz, Tenofovir,

Emtricitabine, Atazanavir 0.306 (0.053) 83.823 (1.706)

AZT, 3TC, Indinavir -0.075 (0.066) 65.041 (2.809)
3TC, Ritonavir, Abacavir, Tenofovir,

Atazanavir -0.403 (0.163) 38.313 (10.521)

d4T, Nevirapine, 3TC -0.386 (0.052) 46.846 (2.962) ddI , Ritonavir, Tenofovir, Atazanavir 0.049 (0.108) 47.800 (2.837)

AZT, Nevirapine, 3TC 0.109 (0.087) 46.275 (4.061)
Ritonavir, Tenofovir, Emtricitabine,

Atazanavir 0.138 (0.104) 53.028 (3.940)

AZT, 3TC, Nelfinavir -0.432 (0.072) 50.776 (3.924) Nevirapine, Tenofovir, Emtricitabine -0.205 (0.079) 37.227 (2.303)
ddI , d4T, Nelfinavir -1.049 (0.060) 57.227 (3.672) Kaletra, Tenofovir, Emtricitabine -0.183 (0.093) 46.723 (5.990)

d4T, 3TC, Nelfinavir -0.881 (0.134) 48.018 (9.588)
Ritonavir, Tenofovir, Emtricitabine,

Lexiva -0.372 (0.116) 30.226 (3.328)

Fringe Mixes

Isoprinosine, Ribavirin, Interferons (α
and/or β ) -1.017 (0.110) -21.950 (6.644)

Nevirapine, 3TC, Ritonavir, Kaletra,
Tenofovir -1.265 (0.113) 45.683 (4.934)

Interferons (α and/or β ), 3TC,
Saquinavir, Indinavir, Efavirenz -0.054 (0.243) 65.353 (5.179)

3TC, Ritonavir, Kaletra, Abacavir,
Tenofovir, Atazanavir -0.465 (0.077) 28.440 (2.687)

Nevirapine, 3TC, Saquinavir,
Ritonavir, Indinavir 0.068 (0.134) 6.457 (7.335)

Ritonavir, Tenofovir, Emtricitabine,
Atazanavir, Lexiva -0.612 (0.142) 42.050 (3.579)

Nevirapine, 3TC, Saquinavir,
Ritonavir, Nelfinavir -0.689 (0.156) 30.293 (7.841)

Saquinavir, Ritonavir, Tenofovir,
Emtricitabine, Atazanavir -0.665 (0.120) 31.824 (3.879)

Nevirapine, Saquinavir, Ritonavir,
Abacavir, Efavirenz -1.121 (0.161) 19.278 (4.112)

3TC, Ritonavir, Abacavir, Tenofovir,
Atazanavir, Lexiva -0.210 (0.078) 26.678 (5.890)

Nevirapine, Ritonavir, Nelfinavir,
Abacavir, Efavirenz -0.697 (0.099) 31.044 (4.027)

Saquinavir, Ritonavir, Abacavir,
Tenofovir, Emtricitabine 0.072 (0.142) 32.865 (4.856)

Nevirapine, Ritonavir, Kaletra,
Abacavir, Efavirenz -0.410 (0.174) 43.495 (5.757)

3TC, Ritonavir, Tenofovir,
Emtricitabine, Raltegravir 0.032 (0.094) 33.352 (2.728)

Nevirapine, 3TC, Nelfinavir,
Abacavir, Tenofovir -0.467 (0.109) 27.893 (3.250)

Ritonavir, Tenofovir, Emtricitabine,
Darunavir, Raltegravir -0.221 (0.067) 47.736 (2.929)

Notes: Product characteristics are estimated as indicators for treatment usage in (S1) and (S2). In parentheses, standard errors computed using
subsampling with 100 subsamples. For Fringe Mixes we only include the 5 or 6 most used products in the mix.

52



APPENDIX TABLE S4: Health Effects on Future Health and Ailments

Ailments, γx Health, γh

Variables coef. se coef. se
ht 0.008 (0.0004) 1.152 (0.013)

h2
t /103 -0.013 (0.001) -0.519 (0.043)

h3
t /107 0.109 (0.017) 4.375 (0.546)

h4
t /1010 -0.040 (0.010) -2.016 (0.298)

h5
t /1014 0.054 (0.021) 2.803 (0.546)

Constant -0.929 (0.038) -5.874 (1.350)

Notes: Parameters estimated using (S1) and (S2). In parentheses, standard errors computed using subsampling with 100 subsamples.

APPENDIX TABLE S5: Gross Income, y3t

variable coef. (γm) se
ht 0.018 (0.001)

h2
t /103 -0.064 (0.007)

h3
t /107 1.138 (0.171)

h4
t /1010 -1.030 (0.213)

h5
t /1014 4.854 (1.414)

h6
t /1018 -11.270 (4.712)

h7
t /1020 0.101 (0.062)
aget 0.482 (0.034)
age2

t -0.006 (0.0004)
black -5.534 (0.115)

hispanic -4.167 (0.222)
some college 2.497 (0.141)

college 5.812 (0.157)
more than college 8.203 (0.151)

labor participationt , y2t 5.738 (0.074)
lack o f ailmentst , y1t 0.207 (0.024)

constant -2.095 (0.801)
Notes: Estimates of (23). Random effects regression of gross-income on covariates. y3t is measured in thousands of real dollars of 2000. Health is

given by the CD4 count measured in hundreds of cells per microliter. In parentheses, standard errors computed using subsampling with 100
subsamples.
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APPENDIX TABLE S6: Out-of-pocket Expenditures, y4t

variable coef. (γo) se
ht -0.002 (0.0004)

h2
t /103 0.009 (0.002)

h3
t /107 -0.133 (0.032)

h4
t /1010 0.090 (0.029)

h5
t /1014 -0.266 (0.118)

h6
t /1018 0.279 (0.181)
aget 0.037 (0.004)
age2

t -0.0002 (0.0001)
black -0.240 (0.014)

hispanic -0.119 (0.016)
some college 0.169 (0.016)

college 0.318 (0.018)
more than college 0.336 (0.018)
market productt 0.429 (0.016)
trial productt 0.313 (0.021)

labor participationt , y2t 0.105 (0.009)
lack o f ailmentst , y1t -0.122 (0.008)

constant -1.459 (0.099)

σo 0.862 (0.027)
Notes: Estimates of (24) using a Tobit Model for data censored at 0. market productt = dJ+2,t +∑

J
k=1 dkt . Out-of-pocket expenditures y4t are

measured in thousands of real dollars of 2000. Health is given by the CD4 count measured in hundreds of cells per microliter. In parentheses,
standard errors computed using subsampling with 100 subsamples.

APPENDIX TABLE S7: Labor Supply, y2t

variable coef. (γ l) se
ht 0.009 (0.0003)

h2
t /103 -0.013 (0.001)

h3
t /107 0.075 (0.005)

h4
t /1010 -0.013 (0.002)
aget 0.102 (0.009)
age2

t -0.001 (0.0001)
black -0.168 (0.025)

hispanic -0.040 (0.044)
some college 0.312 (0.031)

college 0.537 (0.029)
more than college 0.613 (0.033)

labor participationt−1, y2t−1 4.458 (0.028)
constant -5.914 (0.190)

Notes: Estimates of the Logit model in (22). Health is given by the CD4 count measured in hundreds of cells per microliter. In parentheses,
standard errors computed using subsampling with 100 subsamples.
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APPENDIX TABLE S8: Death, 1−bt

variable coef. (γd) se
ht -0.028 (0.001)

h2
t /103 0.079 (0.005)

h3
t /107 -1.104 (0.102)

h4
t /1010 0.704 (0.088)

h5
t /1014 -1.610 (0.285)
aget -0.116 (0.021)
age2

t 0.002 (0.0002)
black -0.509 (0.069)

hispanic 0.034 (0.076)
some college 0.060 (0.057)

college -0.353 (0.053)
more than college -0.512 (0.060)

lack o f ailmentst−1, y1t−1 -1.140 (0.050)
constant 1.682 (0.474)

Notes: Estimates of the Logit model in (25). Health is given by the CD4 count measured in hundreds of cells per microliter. In parentheses,
standard errors computed using subsampling with 100 subsamples.

APPENDIX TABLE S9: Utility Parameters, yit

coef. variable est. se unc. se
αm NetIncomet (y3t− y4t) 0.057 (0.057) (0.010)
αxp NoAilmentst ·NoProductt (y1td0t) 1.019 (1.767) (0.260)

Cluster Trial Repeat
j = 1, . . . ,J j = J+1 j = J+2

coef. variable est. se unc. se est. se unc. se est. se unc. se
α jw White -3.546 (0.744) (0.179) -1.468 (0.280) (0.136) 0.502 (0.567) (0.130)
α jb Black -4.190 (0.762) (0.190) -2.553 (0.334) (0.142) 0.276 (0.613) (0.145)
α jl Hispanic -3.967 (0.958) (0.647) -1.585 (0.356) (0.300) 0.707 (0.454) (0.354)
α ja Aget 0.043 (0.011) (0.004) 0.032 (0.005) (0.003) 0.009 (0.007) (0.002)
α jh ht/103 -2.021 (0.423) (0.104) -2.461 (0.203) (0.078)

Notes: Estimates of (26). Discount factor β = .95. J = 3. NoProductit indicates whether he did not consume a product. ht is defined as the number
of white blood cells per cubic millimeter of blood. In parentheses, uncorrected standard errors (unc. se) computed using (S22), and corrected

standard errors (se) computed using subsampling with 100 subsamples.
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C.2 The Likelihood of Technological Progress
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APPENDIX FIGURE S3: Distribution of Technology Paths: Technology and Consumption
Notes: 100 simulated paths conditional on the state of the world at 1991 and 1996.

C.3 Alternative Regimes

Exogenous scientific intervention. In these regimes we separate the process of innovation from
demand. At the entry margin we transform the centroid to be simply the average of the characteris-
tics of products currently available on the market, as opposed to the share weighted average in the
baseline model (see (1)), and take the estimates from the supply process in Section 5.1 as given.
Since gN (Nt |κt−1,set−1 ) depends on set−1, we use the trial participation path resulting from aver-
aging the simulated trial share paths from the baseline model. By following this approach we keep
that part of the comparison constant relative to the baseline. At the exit margin we exogenously
drop products from the market based on their quality. For this we follow one of two procedures as
explained below:

↪→ Frontier. Any product that is not in the technological frontier is dropped from the market.

↪→ Inverse frontier. We use the exit rate path resulting from averaging the simulated exit rate
paths from the baseline model. This exit rate determines the number of products nt to be
dropped. We define the inverse qualities of product k as −θk and the inverse frontier as the
technological frontier constructed using the inverse qualities. Then we drop nt products at
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random from the inverse frontier. If nt is larger than the amount of products in the inverse
frontier, we construct the new inverse frontier and repeat the process until nt products are
dropped from the market.

Eliminating the effect of repeat purchase. In this regime we study the evolution of product
quality when the process of innovation responds to demand but demand by repeat consumers is
random. This regime neutralizes the dependence of the technological path on the preferences and
characteristics of repeat consumers without changing the nature of the process on the supply side.
We avoid spurious effects on the process of innovation, yielding from arbitrary aggregate shares
(e.g. 1/G for a choice set of size G), by setting the unconditional shares of this alternative regime
to match the unconditional shares in the baseline.

Mandated treatment. The first planner can only assign alternatives based on whether a person’s
health is high or low and whether the person decided to consume a market treatment last period
(either by repeating his previous market product or by choosing a cluster). Hence, the planner’s
policy rules can be based only on four different categories. The planner can send all individuals in
each of the four groups to any of the J+2+rit alternatives available. We nest the baseline compet-
itive equilibrium allocation by adding one alternative to the planner’s action set: the competitive
equilibrium allocation. Hence, there are J+3+rit alternatives in the planners action set and he can
base his assignment on 4 categories. Since only two of the four categories can repeat their previous
market treatment (when rit = 1), this amounts to 72× 62 = 1,764 policy rules. An example of a
policy rule is presented in Table S10. We precompute a set of continuation values and match them
to allocation rules to avoid forward simulation for each rule. We further explain these procedures
below.

APPENDIX TABLE S10: Example of an Action-Constrained Planner’s Policy Rule

Category Alternatives
Health status Product t−1 Cluster 1 Cluster 2 Cluster 3 Trial Repeat No product CE

high yes x
high no x
low yes x
low no x

Notes: Product t−1 column indicates whether individuals in this category consumed a market product in t−1. CE column indicates that the
planner assigns the competitive equilibrium allocation.

Optimal experimentation with trial products. The second planner we consider can base his
policy on the entirety of the individual state but his action set has only two elements: he can give
the person the trial product or he can allocate the competitive equilibrium allocation (excluding
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the trial product). Policy rules for this planner are levels of trial participation and his problem also
nests the competitive equilibrium allocation. For policy rules below the competitive trial share set

the planner incurs a welfare costs by preventing people from rationally joining a trial. For policy
rules above set he incurs a welfare costs by forcing people to join a trial who rationally avoided it.
Welfare gains, if any, come from the externality via experimentation in clinical trials, which pushes
innovation. We evaluate policies in increments of 0.5 percent points, which amounts to 202 policy
rules. Here we also use the set of precomputed continuation values and match them to allocation
rules to avoid forward simulation for each rule.

C.3.1 Continuation Values and Smoothing

We obtain continuation values for every planner rule by implement the following algorithm:

1. Create a collection, denoted A , of 500 continuation value vectors computed for as many t+1
states—each row in a value vector is an individual. Each value vector v ∈A corresponds to
a t +1 aggregate state zv

t+1.

2. For each rule n in a given planner problem, we compute each individual’s current payoff and
their future state, as well as the implied t +1 aggregate state zn

t+1.

3. We match rule n to the continuation value vector v∗ ∈A corresponding to the t+1 aggregate
state that is closest to the aggregate state induced by rule n. In other words, we match rule n

to the continuation value vector v∗ that solves:

v∗ = arg min
v∈A
||zn

t+1− zv
t+1|| (S24)

We use a measure of Euclidean distance that yields from discretizing the aggregate states
zn
t+1 and zv

t+1 into vectors with 196 components. We scale each component of the discretized
aggregate state vectors to be between zero and one by dividing over its largest value.

4. We repeat steps 2 and 3 one thousand times for every rule n and average over repetitions.

As Figure S4 shows, our method of matching continuation values generates noise around the
mapping from planner rules into average consumer lifetime utility for the planner who chooses
the optimal trial share s∗t . Hence, we use a local polynomial to smooth the mapping in an interval
starting at the competitive equilibrium share set and going 15 percent points above it (from 0.09 to
0.24). This produces Figure 12 and the results associated with it in Table 6.
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APPENDIX FIGURE S4: Optimal Assignment to Clinical Trials
Notes: The solid line represents average lifetime utility. The dashed line indicates the planner’s optimal share s∗et . The dotted line represents the

competitive equilibrium share set . Year is 1996.
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