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Many school and college admission systems 
use centralized mechanisms with lottery tie-
breakers to allocate seats. Abdulkadiroğlu et al. 
(2015) show how lottery tiebreaking creates 
a stratified randomized trial, where the strata 
are preferences and priorities. In many set-
tings, however, tiebreaking uses nonrandomly 
assigned criteria like a test score.

Non-lottery tiebreaking produces assignments 
that are correlated with applicants’ potential out-
comes, but the non-lottery scenario opens the 
door to regression discontinuity (RD) designs to 
measure school effects. This paper introduces a 
hybrid RD/propensity score empirical strategy 
that exploits the experiments embedded in serial 
dictatorship (SD), a mechanism widely used for 
college and selective K–12 admissions. The key 
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to our analysis is an RD-SD propensity score 
that controls for the local probability of school 
assignment. We use the RD-SD propensity score 
to estimate effects of Chicago’s exam schools on 
student achievement.

I. Characterizing Serial Dictatorship

Serial dictatorship with exam-score tie-
breaking assigns applicants one at a time in the 
order of their exam scores to their most pre-
ferred schools with available seats. We assume 
(without loss of generality) that SD processes 
applicants in ascending order of exam scores, 
referred to here as the running variable and 
denoted by   r i    for applicant  i . SD assignments 
are characterized by a set of admissions cutoffs. 
Let  c = (  c 1   ,  .  .  . ,  c S   )  denote admissions cutoffs, 
where   c s    is the cutoff at school  s ∈ {1,  .  .  . , S} . 
SD assigns applicant  i  her most preferred school 
for which   r i   <  c s   . With a continuum of appli-
cants and school seats, these cutoffs are known 
to be constant, that is, fixed in repeated draws of 
the tiebreaker (Azevedo and Leshno 2017).

As in Abdulkadiroğlu et al. (2015), our goal 
is to learn about school effects using offers of 
school seats as instrumental variables for school 
attendance. Applicant type or preference order 
(denoted by   θ i   ) is a source of omitted variables 
bias (OVB) in such comparisons because appli-
cants who rank schools differently tend to have 
different socioeconomic characteristics and 
therefore different outcomes. Type conditioning 
eliminates this source of OVB, but is unattractive 
when there are many types (5,776 applicants with 
nontrivial risk of an offer from Chicago’s nine 
exam schools include 4,580 types). Our frame-
work exploits the fact that the OVB induced 
by the correlation between type and offers is 
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 controlled by conditioning on a scalar function of 
type, the propensity score (Rosenbaum and Rubin 
1983). This function is the conditional probabil-
ity of  assignment,   p s   (θ) = E [  D is   |  θ i   = θ]  , where   
D is    indicates the SD-generated offer of a seat at 
school  s  to applicant  i .

In general,   p s   (θ)  is an unrestricted function 
of type, so score conditioning would appear to 
have little advantage over full type condition-
ing. But the asymptotic approximation devel-
oped in Abdulkadiroğlu et al. (2015) yields 
a large market score for markets with lottery 
tiebreaking that is determined by only two sta-
tistics. Here, we derive a large market propen-
sity score for SD mechanisms with nonrandom 
tiebreakers.

II. The RD-SD Propensity Score

We model assignment risk as being gener-
ated by draws from the running variable dis-
tribution, fixing the set of applicants and their 
preferences. Assume that running variables,   
R i   , are distributed over  [0, 1]  , with cumulative 
distribution function   F  R  i     . Running variables for 
applicants  i  and  j  are independent, but, in con-
trast with the lottery case, not necessarily iden-
tically distributed. Note that   r i    is the realized 
value of   R i   .

The continuum economy RD-SD propen-
sity score for any given treatment school s 
depends on at most two cutoffs. The first is the 
cutoff at  s . The second, called the most infor-
mative disqualification and denoted by  MI D θs    , 
varies with type. The cutoff  MI  D θs    equals zero 
when  s  is type  θ ’s first choice, but is otherwise 
the most forgiving (i.e., the maximum) cut-
off among the schools type  θ  ranks ahead of  s .  
 MI D θs    captures the effect of truncation induced 
by disqualification at schools preferred to  s  on 
assignment risk at  s : students who qualify at a 
school they prefer to  s  are never offered seats 
at  s .

By the law of iterated expectations, the prob-
ability a type  θ  applicant has a running vari-
able value below   r 0    is   F R   ( r 0   |θ) = E [  F  R  i   ( r 0  ) |  θ i   
= θ]  , where   F  R  i   ( r 0   )  is   F  R  i    evaluated at   r 0   . Our 
first result, implied by a more general result in 
Abdulkadiroğlu et al. (2017), uses   F R   ( r 0   |θ)  to 
derive the RD-SD propensity score.

PROPOSITION 1: For all  s  and  θ  in any contin-
uum economy, we have

  p s   (θ ) = (1 −  F R   (MI D θs   |θ )) 

  ×   max  
 
 
 
   {0,   

 F R   ( c s   |θ ) −  F R   (MI D θs   |θ)  __________________  
1 −  F R   (MI D θs   |θ)

  } , 

where we set   p s   (θ) = 0  when  MI D θs   = 1 .
This proposition reflects the forces of qual-

ification and disqualification that determine 
SD-generated assignment risk. Applicant  
i  of type  θ  is assigned a school she prefers 
to  s  when   r i   < MI D θs   . Therefore, fraction 
 1 −  F R   (MI D θs   |θ)  of type  θ  applicants are con-
sidered for  s . The second line is the probabil-
ity of being assigned  s   conditional on not being 
assigned a more preferred choice, an event 
that occurs if and only if  MI D θs   <  r i   ≤  c s    ,  
Applicants for whom  MI D θs   >  c s    are never 
seated at  s  because in this scenario those who 
fail to clear  MI D θs    are surely disqualified at  s  as 
well. Proposition 1 generalizes Corollary 1 of 
Abdulkadiroğlu et al. (2015) to cover arbitrary 
distributions of   R i   .

Control for the RD-SD propensity score elim-
inates OVB due to the association between type 
and potential outcomes. But Proposition 1 raises 
three empirical challenges not encountered 
under lottery tiebreaking. First, because   F R   ( ·  | θ)  
depends on  θ , the score in Proposition 1 need not 
have coarser support than  θ . This is in spite of 
the fact applicants with different values of  θ  have 
the same  MI D θs   . Second, the conditional running 
variable distribution,   F R   ( ·  | θ)  , is unknown and 
must be estimated for each  θ . Third, while control 
for the propensity score eliminates confounding 
from type, conditional on   p s   (θ)  , assignment is 
still correlated with potential outcomes because   
D is    is a function of   r i   .

We tackle these three problems by focus-
ing on applicants with running variable values 
in a  δ− neighborhood of admissions cutoffs. 
Specifically, define the probability of an offer 
from school  s  for applicants in a neighbor-
hood of   r 0    as   p s   (θ;  r 0   , δ ) = E [  D is   |  θ i   = θ, 
 R i   ∈ ( r 0   − δ,  r 0   + δ)]   for  δ > 0 . For small 
enough  δ  , the restriction to applicants with 
admissions scores in  ( r 0   − δ,  r 0   + δ)  eliminates 
OVB from the running variable, while con-
ditioning on values of   p s   (θ;  r 0   , δ)  eliminates 
confounding from differences in applicant  
preferences.

Our second theoretical result characterizes 
the local RD-SD propensity score as the limit of   
p s   (θ;  r 0   , δ)  as  δ  goes to  0 .
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PROPOSITION 2: Suppose   F R   (  r 0   |θ)  is differ-
entiable everywhere and that   c s   ≠  c  s ′      for any 
 s ≠  s ′   . Then for all  s  ,  θ  in a continuum  
economy,

   lim  
δ→0

  
 
    p s   (θ;  r 0   , δ )  =  { 

0
  

 if   c s   < MI D θs      
0.5

  
 if MI D θs   <  c s   

     

for   r 0   = MI D θs  , or   c s    , and

     lim  
δ→0

  
 
    p s   (θ;  r 0   , δ) =  { 

1
  

 if   r 0   ∈ (MI D θs  ,  c s  )   
0
  

 otherwise
    

 for all   r 0   ≠ MI D θs  ,  c s   .

The local propensity score in Proposition 2 
is constant at 0.5 for applicants with nontrivial 
assignment risk, obviating the need to estimate 
  F R   ( r 0   |θ) . Proposition 2 also reveals the school-
level RD-style experiments embedded in SD. In 
particular, consider type  θ  applicants to  s  with 
exam scores in nonoverlapping intervals around    
c s    and  MI D θs   . Proposition 2 says that offers to 
applicants in these intervals are approximately 
determined by a coin toss.

Figure 1 depicts the cutoffs that determine 
assignment risk for 373 applicants to King High 
School for whom  MI D θs    is the cutoff at (more 
selective) Brooks High School. The Brooks cut-
off is indicated with a left vertical line; King 
applicants with MID equal to the Brooks cutoff 
are never seated at King when they qualify at 
more highly ranked Brooks. The King cutoff is 
indicated with the right vertical line; applicants 
with running variable values above this are like-
wise never seated at King. Applicant with values 
between the King and Brooks cutoffs are offered 
seats at King. Dots in the figure identify average 
offer rates as a function of the running variable. 
A consequence of Proposition 2 is that marginal 
applicants at King include two groups: appli-
cants with running variable values near the King 
cutoff, and a group well away from the King cut-
off, near the Brooks cutoff instead. Exam school 
effects might differ for these two groups.

The fact that offers are randomized while 
enrollment remains a choice motivates our two-
stage least squares (2SLS) estimation strategy 
using offer dummies to instrument enrollment. 
Many King offers are declined; this can be seen 
in the enrollment rates plotted with triangles in 
Figure 1. No applicant not offered a seat at King 

enrolls there, while the King first-stage, that is, 
the offer take-up rate between MID and the cut-
off, averages around 0.35.

We’re often interested in an overall school 
sector effect, rather than the effect of enrollment 
at specific schools. Under SD, the risk of receiv-
ing an exam school offer somewhere is deter-
mined by the cutoff at the least selective school 
an applicant ranks. Formally, let   S θ    be the set of 
exam schools that type  θ  ranks and define the 
qualifying cutoff to be the most forgiving cut-
off among schools in   S θ   :  Q  C θ   =  max  s∈ S θ    

     c s   . An 
indicator for any exam school offer can then be 
coded as   D i   = 1 [  r i   < Q  C  θ i     ] =  ∑ s      D is    , where 
the second equality reminds us that, because SD 
is a single-offer system, the any-offer dummy 
equals the sum of all single offer dummies.

As in Proposition 2, the any-offer pro-
pensity score is derived after first defining a 
local assignment probability around value   r 0   : 
  q s  (θ;  r 0  , δ)  =  E[ D i   |  θ i    =  θ,  R i   ∈ ( r 0    − δ,  r 0   + δ)] .  
Using this notation, we have the following result.

PROPOSITION 3: If   F R    is differentiable every-
where and   c s   ≠  c  s ′      for any  s ≠  s ′    , then for all  θ  
in a continuum economy and for any   r 0   ∈ [0, 1]  ,

   lim  
δ→0

  
 
   q(θ;  r 0   , δ) =  

⎧
 

⎪

 ⎨ 
⎪

 
⎩

  
0
  

if   r 0   > Q C θ   
   0.5  if   r 0   = Q C θ      

1
  

if   r 0   < Q C θ   
    . 

Brooks cutoff 

King cutoff
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Figure 1. Offers and Enrollment at King

Note: Offers and enrollment for 373 applicants to King with 
MID given by the Brooks cutoff.
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Proposition 3 reflects the simplified nature 
of the risk behind   D i   : applicants with a running 
variable value below their qualifying cutoff are 
sure to get an offer somewhere, though they may 
do better than the school that determines quali-
fication. The limiting score treats qualification 
as random for those with values near the cutoff; 
this local risk is again a coin toss.

III. Empirical Strategies and Estimates

Proposition 2 and 3 provide a foundation for 
identification strategies that capture the causal 
effect of enrollment at Chicago’s exam schools 
on achievement, as measured by tenth grade 
PLAN and eleventh grade ACT tests. Chicago 
students apply for exam school seats in eighth 
grade, hoping to enroll in ninth grade.

In our sample period (2011–2012), Chicago 
Public Schools (CPS) operated nine exam 
schools. Applicants rank up to six schools. 
Exam schools prioritize applicants using a 
common composite index formed from an 
admissions test, GPA, and grade 7 standard-
ized test scores. This composite is the running 
variable.

The CPS exam school assignment mechanism 
incorporates place-based affirmative action, in 
which applicant addresses are classified into 
one of four tiers by the socioeconomic status 
of the census tract in which they live. Schools 
divide 70 percent of their seats equally between 
applicants from each of the four tiers, with 
each quarter treated as a subschool that assigns 
priority to one tier. The remaining 30 percent, 
said to be merit seats, are assigned without 
priorities.

In practice, applicants from a given tier 
are almost always offered either a merit seat 
or one of the seats prioritizing their tier. We 
can therefore analyze Chicago’s assignment 
system as a serial dictatorship in which each 
school is split into five subschools.1 Applicants 

1 Specifically, each school is split into five sub-schools 
as follows: 30 percent merit, and equal-size tier 1, tier 2, 
tier 3, and tier 4 subschools each with size 17.5 percent. An 
applicant from a given tier first ranks the merit subschool 
and then the tier subschool corresponding to their tier.  Since 
CPS assigns merit seats before reserve seats, this version of 
the Chicago assignment mechanism matches 99.7 percent of 
the assigns from their DA-based system.  Dur, Pathak, and 
Sonmez (2016) present more details on Chicago’s assign-
ment system.

to school  s  are treated as if they apply to both 
the subschool containing merit seats and the 
subschool containing seats reserved for their 
tier. Our notation for empirical models below 
ignores tiers; empirically, each school indexed 
by  s  is a school-tier combination.

We use Propositions 2 and 3 to classify appli-
cants by risk for school-specific and any-school 
offers, and to find students in the neighborhood 
of each school’s cutoff. The realized CPS allo-
cation for school year 2011–2012 is used to 
compute these cutoffs. These in turn determine 
 MI D  θ i  s    for each applicant i.

Individual school offer dummies,   D is    , indicate   
r i   ∈ [MI D  θ i  s  ,  c s   ] . Given a cutoff-specific band-
width   δ s    , the estimated local RD-SD propensity 
score for each school-specific offer to an appli-
cant of type   θ i   ,    p ˆ   is    , is computed as follows:

   p ˆ   is     =   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

0.5

  

if  MID  θ i  s   <  c s   and

   

 

  

  r i   ∈ ( c s   −  δ s  ,  c s   +  δ s  ) or

    

 

  

  r i   ∈ ( MID  θ i  s   −  δ s  ,  MID  θ i  s   +  δ s  )
    1  if  MID  θ i  s   <  c s   and   

 

  

  r i   ∈ ( MID  θ i  s   +  δ s  ,  c s   −  δ s  )
    

0

  

if  MID  θ i  s   >  c s   or

   

 

  

  r i   ∉ ( MID  θ i  s   −  δ s  ,  c s   +  δ s  )

    

Because each school offer changes exam 
enrollment to a different degree, we use the 
collection of school-specific offers to construct 
over-identified 2SLS estimates of the effects of 
any exam school enrollment, indicated by   C i   . 
For outcome variable   Y i    , the 2SLS first and sec-
ond stages can be written

(1)   C i   =   ∑   
      

s
     γ 1s    D is   +   ∑   

      
s
      ∑   

      
p
     η 1ps    1 {  p ̂   is  =p}   

 + h( r i   )  +  ν i  ;

  Y i   =  γ 2    C i   +   ∑   
      

s
      ∑   

      
p
     η 2ps    1 {  p ̂   is  =p}   

 + h( r i   ) +  ϵ i  , 

where  h( r i   )  is a running variable control 
described below. The   η 1ps    and   η 2ps    coefficients 
control for the propensity score associated 
with each offer dummy in the first and second 
stages. The sample consists of applicants for 
whom    p ˆ   is   ∈ (0, 1)  for at least one  s .
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The score for any offer,   D i    , denoted    q ˆ   i    , is 
computed as

     q ˆ   i   =  

⎧
 

⎪

 ⎨ 
⎪

 
⎩

 
0.5

  
if   r i   ∈ [Q C i   −  δ s   , Q C i   +  δ s   ]

    1  if   r i   < Q C i   −  δ s     

0

  

if   r i   > Q C i   +  δ s   

    ,

where s is the school that determines applicant 
i’s qualifying cutoff,   QC i   .

Using a single any-offer instrument and the 
propensity controls suggested by Proposition 
3 generates the following just-identified 2SLS 
setup:

(2)   C i   =  γ 1    D i   +   ∑   
      

s
     α 1s    1 {s= s  θ  

q }    + h( r i   ) +  ν i  ;

  Y i   =  γ 2    C i   +   ∑   
      

s
     α 2s    1 {s= s  θ  

q }   + h( r i   ) +  ϵ i  , 

where   s  θ  
q   identifies the school that determines the 

qualifying cutoff for type  θ . This model omits 
score controls because the estimation sample is 
limited to applicants with    q ˆ   i   = 0.5 . These appli-
cants have running variable values in the band-
width around their qualifying cutoff.

We report 2SLS estimates using two specifi-
cations of the running variable control function,  

h(r) :   h 1   (r) =  ϕ 0   r +  ∑ s      ϕ s   max  { 0, r −  c s   }  , and   

h 2   (r) =  ∑ k=0  
4     ϕ k    r   k  . The first specifies a piece-

wise linear function of the running variable, 
with slope changes at each cutoff (in practice, 
these are school and tier specific). This control 
function is motivated by commonly employed 
RD implementation strategies using local lin-
ear control for the running variable with slope 
changes at the cutoff.  The second control func-
tion specifies a quartic with polynomial coeffi-
cients that are fixed throughout the support of 
the running variable.

All models are estimated in a sample of appli-
cants with running variable values in a set of cut-
off-specific bandwidths. This is motivated by the 
limiting argument behind Propositions 2 and 3. 
Within these bandwidths, propensity scores are 
fixed at  0.5  for applicants with nontrivial risk of 
assignment; no further controls should there-
fore be necessary. Not surprisingly, however, 
and as in other RD applications, bandwidths 
are large enough to require control for running 
variable effects; this is accomplished here by 
including the control function,  h(r) . We also 
add a set of four tier dummies to the running 

variable  controls. These improve both precision 
and covariate balance for parsimonious specifi-
cations of  h(r) .  Finally, because bandwidths are 
cutoff-specific, the risk of any exam school offer 
varies (in our finite sample) with the identity 
of the qualifying cutoff.  Just-identified models, 
 therefore, include qualifying-cutoff fixed effects 
(  α 1s    and   α 2s   ).

The any-offer first stage for exam school enroll-
ment is about 0.38. First stages for  individual 
school offers range from 0.26–0.69. The 2SLS 
estimates from both  over-identified and just-iden-
tified models, and for different choices of the run-
ning variable control, consistently suggest exam 
schools have no effect on student achievement. 
These results can be seen in panel A of Table 1, 
which reports over-identified estimates based on 
Proposition 2 in the first two rows for two choices 
of  h(r) . Exam school effects on math range from  
− 0.11  to  − 0.16  , while effects on reading are very 
close to zero. Just-identified estimates using a 
single any-offer instrument, reported in the fourth 

Table 1—2SLS Estimates Exam School Effects

Instrument

PLAN
Math 
(1)

PLAN 
Reading 

(2)

ACT 
Math 
(3)

ACT 
Reading

 (4)

Panel A. Propensity score conditioning
School-specific −0.137 −0.003 −0.114 0.058
 offers (0.096) (0.096) (0.087) (0.093)
School-specific −0.163 −0.022 −0.151 0.036
 offers (poly-
 nomial controls)

(0.095) (0.094) (0.085) (0.088)

Observations 5,387 4,969 5,275 4,624

Any offer −0.035 −0.094 −0.220 0.050
(0.131) (0.133) (0.133) (0.137)

Observations 4,815 4,301 4,639 3,816

Panel B. Full type conditioning
School-specific −0.053 0.108 −0.018 0.301
 offers (0.216) (0.228) (0.202) (0.218)
Observations 1,747 1,532 1,657 1,489

Any offer −0.109 0.275 −0.194 0.511
(0.260) (0.271) (0.277) (0.295)

Observations 1,406 1,162 1,269 1,056

Notes: This table reports 2SLS estimates of exam school 
enrollment effects for four outcomes. Panel A shows esti-
mates using propensity score controls; panel B reports 2SLS 
estimates controlling for preferences and tier. Models using 
school-specific offers are over-identified. The school-spe-
cific specification uses a uniform kernel, while the any offer 
specification uses the edge kernel. Estimates in this table 
were computed using the Imbens-Kalyanaraman bandwidth.
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row of the table, are similar though less pre-
cise. For example, the ACT math standard error 
increases from 0.087 to 0.133 between row 1 and 
row 3. Barrow, Sartain, and de la Torre (2016) 
 similarly find no evidence of achievement gains 
at Chicago exam schools.

The payoff to propensity score control for 
applicant risk can be seen in panel B of Table 1. 
This panel reports estimates of models (1) and 
(2) that include a full set of controls for appli-
cant type, as in Abdulkadiroglu, Angrist, and 
Pathak (2014). The panel A sample is limited to 
applicants with nontrivial assignment risk, that 
is, with local propensity scores of 0.5. Full type 
control reduces the panel A sample by about two-
thirds because, within type, there is no treatment 
variation. Consequently, panel B shows results 
that are far less conclusive. We see, for example, 
large positive and negative effects. None of these 
are significantly different from zero, since the 
standard errors here are more than twice those 
in panel A.
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