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Abstract

We develop and estimate a life-cycle model in which individuals make decisions

about consumption, human capital investment, and labor supply. Retirement arises

endogenously as part of the labor supply decision. The model allows for both an

endogenous wage process through human capital investment (which is typically as-

sumed exogenous in the retirement literature) and an endogenous retirement decision

(which is typically assumed exogenous in the human capital literature). We estimate

the model using Indirect Inference to match the life-cycle profiles of wages and hours

from the SIPP data. The model replicates the main features of the data—in particular

the large increase in wages and small increase in labor supply at the beginning of the

life-cycle as well as the small decrease in wages but large decrease in labor supply

at the end of the life cycle. We also estimate versions of the model in which human

capital is completely exogenous and in which human capital is exogenous conditional

on work (learning-by-doing). The endogenous human capital model fits the data the

best; the learning-by-doing model is able to fit the overall life-cycle pattern; the exoge-

nous model does not. We find that endogenous labor supply is essential for under-

standing life-cycle human capital investment and life-cycle human capital investment

is essential for understanding life-cycle labor supply.
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1 Introduction

The Ben-Porath (1967) model of life-cycle human capital production and the life-cycle
labor supply model are two of the most important models in labor economics. The former
is the dominant framework used to rationalize wage growth over the life-cycle; the lat-
ter has been used to study hours worked over the life-cycle, including retirement. Quite
surprisingly, aside from the seminal work in Heckman (1976, 1975), there has been little
effort integrating these two important paradigms. This paper attempts to fill this void by
estimating a life-cycle model in which workers choose human capital and labor supply
jointly. Perhaps the most important aspect of our model is that we do not treat retire-
ment as a separate decision. It occurs endogenously as part of the optimal life-cycle labor
supply decision.

The retirement literature typically takes the wage process as given and estimates the
incidence of retirement. Cross-section raw wages for people who work fall substantially
before retirement. They decline by over 25% between ages 55 and 65. In much of the re-
tirement literature, this trend is critical to understanding retirement behavior. By contrast,
life-cycle human capital models take the retirement date as given, but model the forma-
tion of the wage process. While most work to date on the life-cycle human capital model
aims to explain wage growth early in the life-cycle, there has been little work studying
the interaction between human capital and labor supply at the end of the working life.
We estimate a model wherein the wage, labor supply and retirement choices are rational-
ized in one unified setting. After endogenizing both labor supply and human capital, this
model is rich enough to explain the life-cycle patterns of both wages and labor supply,
with a focus on wage patterns and retirement at the end of working life.

Specifically, we develop and estimate a Ben-Porath type human capital model in which
workers make consumption, human capital investment, and labor supply decisions. We
estimate the model using Indirect Inference, matching the wage and hours profiles of
male high school graduates from the Survey of Income and Program Participation (SIPP).
With a parsimonious life-cycle model in which none of the parameters explicitly depend
upon age or experience, we are able to replicate the main features of the data. In partic-
ular we match the large increase in wages and very small increase in labor supply at the
beginning of the life-cycle as well as the small decrease in wages but very large decrease
in labor supply at the end of the life-cycle.

The key to our ability to fit both ends of the life-cycle is human capital depreciation.
In a simple model without human capital depreciation, there is no a priori reason for
workers to concentrate their leisure towards the end of the life-cycle. However, this is no
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longer the case with human capital depreciation which imposes a shadow cost on leisure.
When workers take time off in the middle of their career, their human capital depreciates
and they earn less when they return to the labor market. On the other hand, if this period
of nonworking occurs at the end of the career, the shadow cost is much less a concern
because the horizon is shorter. Older workers may choose not to re-enter at a lower wage
so they continue to stay out of the labor market. We show that when we restrict our
framework to exogenous human capital accumulation across the life-cycle, the model
does not fit both the end and beginning of the life-cycle. When tastes for leisure do not
vary across the life-cycle, the exogenous model cannot simultaneously reconcile the small
increase in labor supply and large increase in wages at the beginning of the life-cycle and
the small decrease in wages and large decrease in labor supply at the end. By contrast,
the learning-by-doing model includes depreciation in much the same way and is able to
reconcile the main features of the data. Of course if one exogenously allowed both wages
and labor supply to depend upon age in a completely flexible way one could easily fit the
joint pattern with an exogenous model. But, it is not clear that this model would have any
testable implications. The goal of this paper is to try to fit the profiles without resorting
to arbitrary age varying taste preferences and exogenous wage variation.

An interesting aspect of our model is that even though the preference for leisure does
not vary systematically over the life-cycle, we do find that measured “labor supply elastic-
ities” do vary over the life-cycle. In our dynamic model, the shadow cost of not working
is much higher early in the life-cycle (as pointed out by e.g. Imai and Keane, 2004) and it
is lower for older workers as opposed to peak earners. We find that early in the life-cycle
the measured labor supply elasticity is low, around 0.2. However, workers around the
standard retirement age are more sensitive to wage fluctuations with elasticities between
0.6 and 1.0.

While our baseline model does not incorporate health, we estimate a specification that
allows the taste for leisure to depend on health and for this effect to increase with age.
Surprisingly, such an “enhanced” model does not significantly improve the fit of the life-
cycle patterns of wage and labor supply of the SIPP data. We also show that even within
this model that allows a direct and flexible effect of health on labor supply, health plays a
relatively minor role in the decline in labor supply late in life.

We use the estimated model to simulate the impacts of various Social Security policy
changes. Much serious work has been developed to quantitatively estimate the economic
consequences of an aging population and evaluate the remedy policies (Gustman and
Steinmeier, 1986; Rust and Phelan, 1997; French, 2005; French and Jones, 2011; Haan and
Prowse, 2014). They model retirement as a result of combinations of declining wages,
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increasing actuarial unfairness of the Social Security and pension system, and increas-
ing tastes for leisure. However, there is a major difference between our model and the
previous retirement literature. Prior work typically takes the wage process as given and
focuses on the retirement decision itself. For example, when conducting the counterfac-
tual experiment of reducing the Social Security benefit by 20%, the previous literature
takes the same age-wage profile as in the baseline model and re-estimates the retirement
behavior under the new environment. As the wage has already been declining signifi-
cantly and exogenously approaching the retirement age, under the new policy working
is still less likely attractive for many workers. However, as we show in our model, less
generous Social Security benefits result in higher labor supply later in the life-cycle, so
workers adjust their investment over the life-cycle, which results in a higher human cap-
ital level as well as higher labor supply earlier. On average the observed wage levels are
5% higher between 65 and 80. Over the whole life-cycle, observed average yearly wages,
total labor income, and total labor force participation rates increase by 1.5%, 2.17%, and
1.57%, respectively. By contrast, in the model with exogenous human capital, the percent-
age increases in yearly wages, total labor income and total labor supply are less signifi-
cant, by 0.2%, 1.26%, and 1.31%, respectively. The differences are more dramatic in the
experiments in which we remove the Social Security system, with the exogenous model
underestimating most effects.

2 Relevant Literature

Human capital models have been widely accepted as a mechanism to explain life-
cycle wage growth as well as the labor supply and income patterns. In his seminal paper,
Ben-Porath (1967) develops the human capital model with the idea that individuals in-
vest in their human capital “up front.” In what follows we often use the term—“human
capital model” to mean “Ben-Porath model.” Heckman (1975, 1976) further extends the
model and present more general human capital models in which each individual makes
decisions on labor supply, investment and consumption. In both papers, each individual
lives for finite periods and the retirement age is fixed. In their recent paper, Manuelli et al.
(2012) calibrate a Ben-Porath model to include the endogenous retirement decision. All
three models are deterministic.

Relative to the success in theory, there hasn’t been as much work empirically estimat-
ing the Ben-Porath model. Mincer (1958) derives an approximation of the Ben-Porath
model and greatly simplifies the estimation with a quadratic in experience, which is used
in numerous empirical papers estimating the wage process (Heckman et al., 2006, survey
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the literature). Early work on explicit estimation of the Ben-Porath model was done by
Heckman (1975, 1976), Haley (1976), and Rosen (1976). Heckman et al. (1998a) is a more
recent attempt to estimate the Ben-Porath model. They utilize the implication of the stan-
dard Ben-Porath model where at old ages the investment is almost zero. However, this
implication does not hold any more when the retirement is uncertain, where each indi-
vidual always has an incentive to invest a positive amount in human capital. Browning
et al. (1999) survey much of this literature.1

Another type of human capital model, the learning-by-doing model, draws relatively
more attention in empirical work. In the learning-by-doing model human capital accu-
mulates exogenously, but only when an individual works. Thus workers can only impact
their human capital accumulation through the work decision. In these models, the total
cost of leisure is not only the direct lost earnings at the current time, but also includes
the additional lost future earnings from the lower level of human capital. Shaw (1989)
is among the first to empirically estimate the learning-by-doing model, using the PSID
model and utilizing the Euler equations on consumption and labor supply with translog
utility. Keane and Wolpin (1997) and Imai and Keane (2004) are two classic examples of re-
search that directly estimate a dynamic life-cycle model with learning-by-doing. Blundell
et al. (2015) is a more recent example. These papers assume an exogenously fixed retire-
ment age. Wallenius (2009) points out that such a learning-by-doing model does not fit the
pattern of wages and hours well at old ages.2 Heckman et al. (2003) study the potential
effects of wage subsidies on skill formulation by comparing on-the-job training models
with learning-by-doing models. They simulate the effects of the 1994 EITC schedule for
families with two children and find evidence that EITC lowers the long-term wages of
people with low levels of education. They find that the learning-by-doing model pre-
dictions of the EITC policy effects fit the actual changes better than the Ben-Porath style
model.

There is a large and growing literature on many aspects of retirement. In these models,
typically retirement is induced either by increasing utility toward leisure (e.g. Gustman
and Steinmeier, 1986) or increasing disutility toward labor supply (e.g. Blau, 2008). Haan
and Prowse (2014) estimate the extent to which the increase in life expectancy affects
retirement. Blau (2008) evaluates the role of uncertain retirement ages in the retirement-
consumption puzzle.

1Other more recent work includes Taber (2002), who incorporates progressive income taxes into the
estimation, and Kuruscu (2006), who estimates the model nonparametrically.

2However, if one interprets the hourly wages as labor income and hours as labor force participation rates
(since there is no participation decision in their model), the fit in Imai and Keane (2004) would be improved
at older ages.
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Retirement can also be induced by declining wages at old ages and/or fixed costs
of working. Rust and Phelan (1997) estimate a dynamic life-cycle labor supply model
with endogenous retirement decisions to study the effect of Social Security and Medicare
in retirement behavior. French (2005) estimates a more comprehensive model including
savings to study the effect of Social Security and pension as well as health in retirement
decisions. French and Jones (2011) evaluate the role of health insurance in shaping re-
tirement behavior. Casanova (2010) studies the joint retirement decision among married
couples. Prescott et al. (2009) and Rogerson and Wallenius (2010) present models where
retirement could be induced by a convex effective labor function or fixed costs.

In all the retirement literature listed above—theoretical or empirical—the wage pro-
cess is assumed to be exogenous. That is, even when the environment changes while
conducting counterfactual experiments, for example changing the Social Security poli-
cies, the wage process is kept the same and only the response in the retirement decision
is studied.

3 Model

We present and estimate a Ben-Porath style human capital model with endogenous
labor supply and retirement in which individuals choose consumption, human capital
investment, and labor supply (including retirement as a special case). For simplicity we
suppress the individual subscript i for all variables. We allow for heterogeneity in some
of the parameters when estimating the model. We delay discussion of this to Section 4.1
for expositional convenience.

3.1 Environment

Demographics

Time is discrete and measured in years. Each individual lives from period t = 0 to
t = T. At the beginning of the initial period, each individual is endowed with an initial
asset A0 ∈ R and an initial human capital level H0 ∈ R+. Family status is an exogenous
discrete state variable, including marital status and spouse’s working status if married.
A single or divorced individual is denoted by Mt = 0, while a married individual is
indicated by either Mt = 1 (spouse not working) or Mt = 2 (spouse working). The family
status evolves following an age-dependent Markov transition matrix.
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Preference

In the baseline model we model the extensive margin of labor supply, so at each period
the individual decides either to work or not. The flow utility at period t is

ut (ct, `t, γt) = ψt
c1−ηc

t
1− ηc

+ γt`t (1)

where ct is family consumption and `t ∈ {0, 1} is leisure. The coefficient ψt shifts the
marginal utility of consumption (e.g., Gourinchas and Parker, 2002) and is assumed a
parametric form,

ψt = exp
(

ϕ1t + ϕ2t2 + ϕ3t3 + ϕ41 {Mt 6= 0}
)

Note the shifter may differ across the single and the married couple. The coefficient γt

represents taste for leisure and also depends on the family status. We allow for shocks in
γt which is assumed to be an i.i.d. random variable for each individual and is specified
in the next subsection.3

Human Capital

If an individual chooses to work, `t = 0, he decides on how much time, It, to invest in
human capital and spends the rest, 1− It, at effective (or productive) work from which the
wage income is earned. Human capital is produced according to the production function

Ht+1 = (1− δ) Ht + ξtπ IαI
t HαH

t (2)

where Ht is the human capital level at period t. The ξt is an idiosyncratic shock to the
human capital innovation. If an individual chooses not to work, he does not invest in
human capital (so It = 0) and human capital depreciates at rate δ.

The labor market is perfectly competitive. We normalize the rent of human capital to
one so that the wage for the effective labor supply equals the human capital Ht. Thus
pre-tax labor income at any point in time is

wt = Ht (1− `t) (1− It) .
3A key part of our exercise is that we do not explicitly allow γt to vary systematically across age. We

describe the exact process in the next subsection. The two terms—“period” and “age”—are used inter-
changeably throughout the paper.
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Social Security and Budget Constraint

While we have tried to keep the basic model as simple as possible, the social security
system in the U.S. is such a crucial part of the retirement decision that we incorporate it
into the model. We model the social security enrollment decision as a one time decision.
Once a person turns 62 they can start claiming social security and once they have started
claiming, they continue to collect benefits until their death. We will let ssat denote a
binary decision variable indicating whether a person starts claiming at period t and let
sst be a state variable indicating whether a person began claiming prior to period t. Since
claiming is irreversible, once sst = 1 then ssat is no longer a relevant choice variable. Thus
the law of motion can be written as

ss0 =0

sst =max {sst−1, ssat−1} . (3)

The claiming decision (ssat) is made separately from the labor force participation decision
(`t) so that one can receive the social security benefit while working (subject to applicable
rules such as the earnings test).

Once they have begun claiming, an individual collects benefits ssbt which are a func-
tion of the claiming age and the Average Indexed Monthly Earnings (AIMEt). In practice
we approximate the AIME and use the social security rules as of 2004. Details are in the
Appendix. This is incorporated into the budget constraint

At+1 = (1 + r)At + Yt (wt, Ys
t (Mt) , ssbt)− ct + τt, (4)

where At stands for asset and r is the risk free interest rate. Yt (·, ·) is the after-tax income
which is a function of wage income, spousal income (if available), the social security
benefit ssbt (if available), and the tax code. Ys

t (Mt) is the spousal income,

Ys
t (Mt) = ys

t · 1 {Mt = 2} , log (ys
t) ∼ N

(
ȳt, σ2

yt

)
(5)

where ys
t is an age-dependent log-normal random variable. Government transfers, τt,

provide a consumption floor c as in Hubbard et al. (1995) so

τt = max {0, c− ((1 + r)At + Yt −At+1)} , (6)

where At+1 is the asset lower bound at period t + 1.4

4We define the asset lower bound as the amount that each individual can pay back for sure before
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Life ends at the end of period T and each individual values the bequest he will leave.
It takes the form

b(AT+1) = b1
(b2 + AT+1)

1−ηc

1− ηc
(7)

where b1 captures the relative weight of the bequest motive and b2 determines its curva-
ture as in DeNardi (2004).

3.2 Solving the model

Four shocks affect individuals: the evolving marital status, Mt, the spousal income,
Ys

t (Mt), the shock in leisure taste, γt, and the human capital innovation shock, ξt. The
timing of the model works as follows: at the beginning of each period, Mt is realized,
followed by γt. He then simultaneously chooses consumption, labor supply, human cap-
ital investment, and social security application when relevant. After these decisions are
made, the spousal income and the human capital innovation shock are realized, which
determine the asset and the human capital level in the following period, respectively. All
Mt, Ys

t (Mt), γt and ξt are i.i.d. shocks from the perspective of the agents—so agents have
no private information about their value prior to their realizations.5

The recursive value function can be written as

Vt (Xt, γt) = max
ct,`t,It,ssat

{ut (ct, `t, γt) + βE [Vt+1 (Xt+1, γt+1)|Xt, ct, `t, It, ssat]} (8)

where Xt = {Mt, At, Ht, AIMEt, sst} is the vector of state variables. The expectation is
over the leisure shock in γt+1 and the human capital innovation ξt.

The solution to the agent’s problem each period is done in two stages. We first solve
for the optimal choices conditional on the labor supply decision and then we determine
the labor supply decision.

The optimal consumption Ct,0 (Xt), investment It,0 (Xt), and social security claiming
SSAt,0(Xt) decisions conditional on participating in the labor market (`t = 0) depend
only on Xt and can be obtained from

{Ct,0 (Xt) , It,0 (Xt) ,SSAt,0(Xt)} ≡ argmax
ct ,It ,ssat

{
c1−ηc

t
1− ηc

+ βE [Vt+1 (Xt+1, γt+1)|Xt, ct, `t = 0, It, ssat]

}
(9)

death, as in Aiyagari (1994). Since the probability of not working at each period is positive, the lower
bound is characterized by the nonnegative consumption and the bequest function specified below, which
is At = −b2/ (1 + r)T−t+1.

5We assume the stochastic spousal income, when available, is realized after all the decisions (consump-
tion, labor supply, ...) are made, to reduce the state space size and save computation time. Assuming its
realization before the decisions will not affect the estimation of the model significantly.
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and the conditional value function is

Ṽt,0 (Xt) ≡
(Ct,0 (Xt))

1−ηc

1− ηc
+ βE [Vt+1 (Xt+1, γt+1)|Xt, Ct,0 (Xt) , `t = 0, It,0 (Xt) ,SSAt,0(Xt)] (10)

Similarly, conditional on not working (`t = 1), we can calculate the optimal consump-
tion and claiming decision from

{Ct,1 (Xt) ,SSAt,1(Xt)} ≡ argmax
ct ,ssat

{
c1−ηc

t
1− ηc

+ βE [Vt+1 (Xt+1, γt+1)|Xt, ct, `t = 1, It = 0, ssat]

}
(11)

and define the conditional value function apart from γt to be

Ṽt,1 (Xt) ≡
(Ct,1 (Xt))

1−ηc

1− ηc
+ βE [Vt+1 (Xt+1, γt+1)|Xt, Ct,1 (Xt) , `t = 1, It = 0,SSAt,1(Xt)] . (12)

We use the parametric form for γt,

γt = exp (ã0 + aεεt) (13)

where ã0 = a0 + a11 {Mt = 1}+ a21 {Mt = 2} and εt follows an independent and identically-
distributed standard normal distribution. Therefore γt follows a log-normal distribution,
ln γt ∼ N

(
ã0, a2

ε

)
. Notice that since there is no serial correlation in the stochastic shocks

of leisure, εt, the conditional policy and value functions defined in equations (9)-(12) do
not depend on γt.

The optimal labor supply solution is

`t =arg max
`t∈{0,1}

Ṽt,`t (Xt) + γt`t (14)

Define
ε∗t ≡

1
aε
{log (γ∗t (Xt))− ã0} . (15)

where
γ∗t = Ṽt,0 (Xt)− Ṽt,1 (Xt)

and we have the following proposition.
PROPOSITION 1: The optimal labor supply decision is

`t =

1, if εt ≥ ε∗t

0, if εt < ε∗t
. (16)
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and the expected value function is

E [Vt (Xt, γt)|Xt] = Φ (ε∗t ) Ṽt,0 (Xt) + (1−Φ (ε∗t ))
[
Ṽt,1 (Xt) + E (γt| εt ≥ ε∗t )

]
where

E (γt| εt ≥ ε∗t ) = exp
(

ã0 +
a2

ε

2

)
Φ (aε − ε∗t )

Φ (−ε∗t )

PROOF: Appendix A.
Finally note that Xt+1 is a known function of Xt, ct, `t, It, ssat, ξt, Ys

t , and Mt+1, so to
solve for

E [Vt+1 (Xt+1, γt+1)|Xt, ct, `t, It, ssat] = E [E (Vt+1 (Xt+1, γt+1)|Xt+1)|Xt, ct, `t, It, ssat]

we just need to integrate over the distributions of Ys
t , Mt+1, and ξt. We assume ξt is i.i.d

and follows a log-normal distribution,

log (ξt) ∼ N

− log
(

σ2
ξ + 1

)
2

, log
(

σ2
ξ + 1

) (17)

so that ξt has mean of one and variance of σ2
ξ .

4 Estimation

The estimation of the model is carried out using a two-step strategy. First, we pre-
set parameters that either can be cleanly identified without explicitly using our model or
are not the focus of this paper. In the second step, we estimate the remaining preference
and production parameters of the model using Indirect Inference. The model is described
by equations (1)-(8) and we summarize the parameters here. The parameters related to
preferences are the discount rate, β, the intertemporal elasticity of consumption, ηc, the
consumption shifter, ϕ1−4, the taste for leisure, a0−2, aε, and the bequest parameters, b1

and b2. Human capital production is determined by δ, π, αI , αH and σξ . Parameters related
to the budget constraint are the interest rate r and the consumption floor c. Finally there
are initial values for the state variables, assets, A0, human capital, H0, and Averaged
Indexed Monthly Earnings, AIME0.
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Table 1: Normalized or pre-set parameters

Parameters Normalized/Pre-set Values
Interest rate r 0.03
Discount β 0.97
Initial wealtha A0 0.0
Initial AIMEa AIME0 0.0
Consumption floorb c 2.19
Bequest shifterc b2 222.0

aThe initial age is 18.
bThe consumption floor is equivalent to $4380 in 2004$, since we normalize the total
time endowment for labor supply at one period—which is 2000 hours—as one.
cThe bequest shifter is equivalent to $444, 000.

4.0.1 Pre-set Parameters

The set of parameters pre-set in the first stage includes the interest rate, initial wealth
and initial AIME, the time discount rate, consumption floor, and bequest shifter. In Sec-
tion 8.2 we look at the sensitivity of some of our results to these values.

One period is defined as one year.6 The initial period in our model corresponds to
age 18 and ends at age 80.7 The early retirement age is 62 and the normal retirement age
is 65. The risk free real interest rate is set as r = 0.03 and the time discount rate is set
as β = 0.97. The consumption floor is set as c = 2.19, as estimated in French and Jones
(2011).8

The parameter which determines the curvature of the bequest function is set as b2 =

222, as in French and Jones (2011).9 We assume all individuals start off their adult life
with no wealth and zero level of AIME at age 18. These normalized or pre-set parameters
are summarized in Table 1.

4.1 Heterogeneity

This leaves the following parameters: ηc, a0−2, aε, b1, δ, π, αI , αH, σξ , and H0. We
allow for heterogeneity in three of these: ability to learn (π), ability to earn (H0), and
tastes for leisure (a0). For computational reasons we only have nine types determining
the joint distribution of (a0, π). Specifically, we model it as a nine-point Gauss-Hermite

6Mid-year retirement might be an issue. However, more than half of workers are never observed work-
ing half-time approaching retirement, so it would not be a big issue.

7The life expectancy for white males is 74.1 in 2000 and 76.5 in 2010.
8c = 4380/2000 = 2.19 since we normalize the total time endowment for labor supply at one period as

one.
9It is equivalent to $444, 000 in 2004 U.S. dollar.
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approximation of a joint normal distribution, which depends on five parameters: the
mean and variance of a0, the mean and variance of π, and the correlation between the two.
Respectively we write this as (µa0 , σa0 , µπ, σπ, ρ). We emphasize that since we are only
using nine points we are not assuming that the Gauss-Hermite is a good approximation
of a normal, but rather view this as the parametrization itself. That is, we assume that the
joint distribution of (a0, π) is a parametric discrete distribution with 9 points determined
by the parameter vector (µa0 , σa0 , µπ, σπ, ρ).

Since human capital is already a state variable in our model, we can be more flexible
in modeling initial human capital. We allow it to be correlated with (a0, π) through the
functional form

H0 = exp (γ0 + γa0 a0 + γππ + σH0ν) (18)

where ν ∼ N (0, 1) is an i.i.d standard normal random variable.

4.2 Estimation Procedure

We apply Indirect Inference to estimate the parameters of interest, Θ,

Θ =

ηc, ϕ1−4,︸ ︷︷ ︸
c

µa0 , σa0 , aε, a1, a2,︸ ︷︷ ︸
leisure

b1,︸︷︷︸
bequest

δ, αI , αH, σξ , µπ, σπ, ρ,︸ ︷︷ ︸
human capital production

γ0, γa0 , γπ, σH0︸ ︷︷ ︸
initial human capital


according to the following procedure.

i) Calculate the auxiliary model from the data.
ii) Iterate on the following procedure for different values of Θ until the minimum dis-

tance has been found.
(a) Given a set of parameters, solve value functions and policy functions for the

entire state space grid.
(b) Generate the life-cycle profile for each simulated individual.
(c) Calculate the auxiliary model from the simulation.
(d) Calculate the distance between the simulated auxiliary model and the data aux-

iliary model.

4.3 Data and the Auxiliary Parameters

Our primary data set is the Survey of Income and Program Participation (SIPP). The
SIPP is comprised of a number of short panels of respondents and we use all of the panels
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starting with the 1984 panel and ending with the 2008 panel. To focus on as homogeneous
a group as possible, the sample only includes white male high school graduates.10

Our measure of labor force participation is a dummy variable for whether the indi-
vidual worked during the survey month.11 Clearly the aggregation is imperfect. We con-
struct the hourly wage as the earnings in the survey month divided by the total number
of hours worked in the survey month.

We begin estimation of the model from age 22 rather than 18 for two reasons. First,
we have a short panel meaning that many 19 year old high school graduates may return
to college after they leave the panel. Second, our model does not include any search or
matching behavior, which might be important for the labor force patterns among very re-
cent labor force entrance as they transition from school to work as suggested by literature
(Topel and Ward, 1992; Neal, 1999). Our model does over-predict the labor supply for
those individuals.

Six sets of moment conditions at each age from 22 to 65 (except the last two) are chosen
to assemble the auxiliary model. We use a total of 230,657 panel observations from 80,519
different respondents.

i) The labor force participation rates (LFPR);
ii) The first moments of the logarithm of observed wages;

iii) The first moments of the logarithm of observed wages after controlling for individ-
ual fixed effects.12

iv) The second moments (standard deviation) of the logarithm of observed wages.
v) The first moment of consumption from 27 to 6513

vi) The overall transition probabilities between age 35 and 50
(a) from working to not working
(b) from not working to working

As is standard in the literature on estimation of Ben-Porath style human capital we as-

10Estimation results for college graduates are presented in Appendix F.
11In SIPP an individual is observed in at most three months each year. If an individual is observed

working more than 50% of the time then he is categorized as participating in the labor force, otherwise not.
If one is sampled twice for the year and is observed working in one month only, the participation status is
determined randomly (50% for each possibility).

12To construct these moments we first regress log wage on the age dummies and survey year dummies
and obtain the predicted log wage, denoted as z. We pick a base age (age 30) and calculate the average
predicted log wage at the base age for each year, denoted as z̄a,j, where a is the base age and j is for survey
year. We then pick a base year y and calculate the difference of z̄a,j between each year j and the base year y,
denoted as ∆z̄a,j. Finally we calculate the difference between the original log wage and ∆z̄a,j and define the
result as ˜ln Wt, which is the log wage after filtering out the time fixed effects.

13The adult equivalent consumption profile is constructed from the Consumer Expenditure Survey as in
Fernández-Villaverde and Krueger (2007).
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sume that wages in the data correspond to

Wt = Ht (1− It) (19)

in the model. We match both age-wage profiles, with and without controlling for individ-
ual fixed effect as the two have quite different patterns.

Figures 1a-1c present these four profiles. Figure 1a plots the labor force participation
rates between age 22 and 65. Figure 1b plots two log wage profiles. The first one is the log
wage profile from the pooled sample, while the second one is the log wage profile after
controlling for individual fixed effects. The original log wage profile has a hump shape,
but the one filtering out individual fixed effects does not decline within the examined
period which is between age 22 and 65. Figure 1c shows the extent to which the variance
of log wages increases with age.

The most interesting result in Figures 1a-1c is the discrepancy between the age-wage
profiles with or without controlling for individual fixed effects. This has been docu-
mented in various data sets, including the National Longitudinal Survey of Older Men
(NLSOM) data (Johnson and Neumark, 1996), the Panel Study of Income Dynamics (PSID)
data (Rupert and Zanella, 2012), and the Health and Retirement Survey (HRS) data (Casanova,
2013). These papers find that after controlling for individual fixed effects the age-wage
profile is flatter than the hump-shaped age-wage profile estimated using pooling obser-
vations, and it does not decline until 60s or late 60s. All of these papers argue that this
evidence is not consistent with the traditional human capital model since the traditional
human capital model would predict a hump-shaped wage. The intuition is that when the
human capital depreciation outweighs the investment, wages start to decline which gen-
erates a hump-shaped profile. Fitting the wage profile after controlling for fixed effects
makes our problem more challenging because we need to explain the decrease in labor
supply later in life when there is little evidence that wages decline.

To further verify this result we compare our SIPP results with the Current Population
Survey (CPS) data. From the CPS Merged Outgoing Rotation Groups (MORG) data, we
match the same respondent in two consecutive surveys using the method proposed in
Madrian and Lefgren (2000), and we have a short panel with each individual interviewed
twice, one year apart.14 We construct a similar short panel from the CPS March Annual
Social and Economic Supplement files (March). The difference is that the wage informa-
tion is collected from the reference week in the CPS MORG data and from the previous
year in the CPS March data.

14For MORG data, they are the fourth and eighth interview.
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Figure 2 presents the age-wage profiles with or without controlling for individual
fixed effects for male high school graduates from the 1979-2012 CPS MORG data and the
1979-2007 CPS March data. We find a somewhat even larger discrepancy in the age-wage
profiles as in the SIPP data presented in Figure 1b.15

5 Estimation Results

The estimates of the parameters are listed in Table 2. Of particular importance are
the depreciation rate, δ, curvature in the human capital production function, αI , and aε

which determines the elasticity of labor supply. Before discussing these parameter values
we examine the fit of the model in Figures 3a-3d. The fit of the model in the two overall
transition probabilities is presented in the first two rows in Table E.16

The first and central point is that our parsimonious model can reconcile the main facts
in the data: a small increase in labor supply/large increase in wages at the beginning of
the life-cycle along with the large decrease in labor supply/small decrease in wages at the
end of the life-cycle.17

The simulated labor force participation rate increases slightly between age 22 and 30
as shown in Figure 3a. Our main result is that this simple model is able to generate a
massive decline in labor supply between age 55 and 65, which fits the sharp decline of
labor force participation rates within that age period in the data and simultaneously the
flat wage profile in the fixed effect model.

Our model generates similar discrepancy between the log wages with and without
controlling for individual fixed effects, as shown in Figures 3b and 3c, and both profiles fit
the data well. Log wages after filtering out individual fixed effects increase at a decreasing
pace from age 22 to age 58 and then decreases slightly (Figure 3b). On the other hand,
Figure 3c shows that the original log wage profile presents a hump shape which resembles
the data profile.

The model also replicates the log wage variation as in the data (Figure 3d). This in-
creasing variation mainly comes from the heterogeneity in the parameters. Without het-

15Time fixed effects are filtered out, as described in footnote 12. We use the same starting year for the
CPS MORG data and the CPS March data. Using the 1979-2007 CPS MORG data generates essentially same
profiles.

16The overidentification test statistic is reported in the bottom of Table 2. The model is rejected at the
0.1% level. The fact that we reject is not surprising given the simplicity of our model and the size of our
sample. One could easily add some extra parameters to pass the statistical criterion, but this is not our goal.
Our goal is to use a simple model that does a very good job of capturing the life-cycle patterns.

17One should keep in mind that our parsimonious specification might be a limitation on our policy coun-
terfactuals as other features that we have not explicitly modeled might impact those simulations.

15



Table 2: Estimates in the baseline modela

Parameters Estimates Standard Errors
HC depreciationb δ 0.109 (0.009)
HC production function: I factor αI 0.067 (0.024)
HC production function: H factor αH 0.123 (0.015
Standard deviation of HC innovation σξ 0.002 (0.003)
Consumption: CRRA ηc 4.040 (0.042)
Consumption shifter: coef on t (×10) ϕ1 0.259 (0.073)
Consumption shifter: coef on t2 (×102) ϕ2 0.123 (0.020)
Consumption shifter: coef on t3 (×103) ϕ3 -0.032 (0.003)
Consumption shifter: coef on married ϕ4 0.569 (0.160)
Leisure: Standard Deviation of Shock aε 0.265 (0.018)
Leisure: spouse not working a1 0.597 (0.088)
Leisure: spouse working a2 -0.566 (0.081)
Bequest weight b1 18,069,750 (4,611,752)
Parameter heterogeneityc

Leisure: mean of intercept µa0 -5.582 (0.118)
Leisure: standard deviation of intercept σa0 0.907 (0.045)
HC productivity, mean µπ 1.805 (0.110)
HC productivity, standard deviation σπ 0.675 (0.048)
Correlation between a0and π ρ -0.989 (0.088)
Initial human capital level at age 18
Intercept γ0 1.660 (0.086)
Coefficient on a0 γa0 0.064 (0.017)
Coefficient on π γπ 0.609 (0.067)
Standard deviation of error term σH0 0.007 (0.015)
χ2 Statistic = 529d Degrees of freedom = 200

aIndirect Inference estimates. Estimates use a diagonal weighting matrix. Stan-
dard errors are given in parentheses.
bHC: Human Capital.
cThe joint distribution of (a0, π) is a parametric discrete distribution with nine
points determined by these five parameters, using a nine-point Gauss-Hermite
approximation.
dThis is the J-statistic. The critical values of the χ2 distribution are χ2

(200,0.01) =

249, χ2
(200,0.005) = 255, χ2

(200,0.001) = 268.
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erogeneity in parameters, the wage variation would decrease with age as human capital
would converge due to concavity of the production function. With heterogeneity, the
human capital level might diverge, depending on parameter values.

Our model fits the shape and the level of the adult equivalent consumption profile
reasonably well, except for the young ages. The model generates the similar overall tran-
sition probabilities between working and not working as shown in Table E.

We obtain our fit of the life-cycle profiles of labor supply and log wages despite the
lack of any explicit time-dependent preference, production or constraints in our model.
Two key features of our model make them possible: the human capital depreciation and
the separation between the effective labor and observed labor. We discuss each of these
in turn.

We argued above that human capital depreciation is essential for matching the labor
force participation profile. This discussion implies that our estimate of a depreciation
value δ = 0.109 plays a major role explaining the pattern of wages and life cycle la-
bor supply. Given this, it is important to place this value into the range of estimates in
the literature. This is not easily done as there is a very large range of estimates—some
larger than our 10.9% estimate and some smaller. There are broadly three different liter-
atures that estimate related parameters. The first of these is motivated by family leave
for women and tries to estimate the effect of career interruption on wages. It finds esti-
mates ranging from 1.5% per year to 25%.18 A second literature looks at displacement
from the Displaced Worker Survey and also finds a wide range of estimates—many of
which are not directly comparable to ours.19 A third literature examines the effect of the

18A classic early paper on this topic is Mincer and Polachek (1974) which estimates a net depreciation rate
of around 1.5 percent per year. Mincer and Ofek (1982) go beyond this to discuss the difference between
short term and long term losses from interruption. In the long run individuals invest in human capital to
offset the initial loss, so Mincer and Ofek (1982)’s definition of short term losses is more closely related to our
concept of depreciation. Using panel data methods for the National Longitudinal Survey of Mature Women
they find estimates ranging from 5.6% to 8.9%. Light and Ureta (1995) use National Longitudinal Survey of
Youth 1979 data and estimate that the immediate effect of a year of non-participation in the labor market
leads to a decline in earnings of 25%. Kunze (2002) and Gorlich and de Grip (2009) both use German data
(IAB employment sample and German Socio-economic panel respectively). Kunze (2002) finds estimates
of about 2-5% wages losses for women from unemployment spells but about 13-18% from parental leave.
Gorlich and de Grip (2009) find a variety of results ranging from around 1.5% to 5% depending on the type
of spell.

19While much of this literature is more focused on earnings than wages, some papers look at weekly
earnings. Both Farber (1993) and Ruhm (1991) estimate the effect of a displacement on re-employment
wages and obtain a range of estimates with most being around declines of 10% but varying from 6.5% to
16.9%. These numbers are not annualized but are just from the incidence of displacement. Li (2013) uses
the same data but produces annualized versions so that the effects can be more easily compared to our
estimate of δ. She estimates the effects for many different occupations with a huge range of estimates across
occupations. Focusing on the three largest occupations she finds a deprecation of 9.4% for Installation and
Repair workers, 7.7% for Production workers, and 17.4% for workers in Transportation.
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length of an unemployment spell on the wage at rehire. Schmieder et al. (2014) is a recent
and convincingly identified paper of this type. They estimate the effect using a regression
discontinuity with German data. In Germany the length of eligibility for unemployment
insurance depends on age with jumps at ages 42 and at 44. They see an increase in un-
employment duration at these two discontinuity points, so they use the kink points as
instruments in order to estimate the effect of the length of unemployment duration on re-
employment wages. They find that one extra month of unemployment leads to a decrease
in wages of 0.8% which gives an annual rate remarkably close to our estimate of 10.9%.
While it looks at women in England, Blundell et al. (2015) is of similar style to our paper
in the sense that it is a structural life-cycle model of labor supply and human capital for-
mation. Interestingly, their analysis reveals a substantial depreciation of human capital
ranging from 6% to 11%.

A second important feature for explaining the life-cycle profiles comes from a point
emphasized by Heckman et al. (1998a): observed wages are different than observed hu-
man capital. We see in figure 3b that in both the model and the data, once fixed effects are
accounted for, wages are close to flat for ages 50-65 despite the fact that there is a large
decrease in labor supply. This distinction between human capital and wages can help
explain this effect. As shown in Figure 4a, at older ages (around 60) the actual human
capital level has already depreciated to a relatively low level, even though the observed
wage level is still quite high. This is due to the quick decline in investment that happens
around that time. This means that measured wages, Ht (1− It), can be flat while Ht is
decreasing as long as It is decreasing as well. The time investment profile in Figure 4b
matches this implication. The solid line is the unconditional investment profile while the
dashed line is the average investment profile conditional on working. These two profiles
are very close to each other at prime ages, and both decrease over time.

The relatively high value of investment late in the working career is also related to why
we find a much smaller level of the human capital curvature parameter, αI , compared to
the literature summarized in Browning et al. (1999). The larger is αI the steeper is the
decline in human capital investment with age. At the extreme when αI = 1 one gets a
“bang-bang” solution with full investment to a point and then zero investment thereafter.
Because depreciation is large, in order to fit the relatively flat wage profile that we see at
older ages one needs a lot of investment at this age which requires a small value of αI .
Heckman et al. (1998a) fit the wage data with a much larger value of αI but our models
are quite different in a number of ways including the fact that this model includes leisure
and in their model they set deprecation to zero.

At the early stage of the life-cycle, workers invest a considerable amount of time in
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human capital production which drives up both the human capital level and the wage.
Once the worker reaches his mid-career (around age 45), he reduces the time investment
at an increasing rate and human capital starts to decrease. As the worker spends less of
his working time investing, wages continue to increase. One can see in Figure 4a that the
observed wage keeps increasing after age 45 and peaks around 52, after which the ob-
served wage starts declining slowly. After age 62, however, since the worker has already
allocated most of his time in effective working, there is no further room for such adjust-
ment. As a result, the observed wage declines at almost the same rate at which human
capital depreciates. This leads to large falls in labor supply at older ages.

Such separation also helps generate the pattern that the working hours profile peaks
earlier than the wage profile (Weiss, 1986). Working hours increase slightly with age
when the worker is young, with a large portion devoted to human capital investment.
The working hours profile peaks around age 40 and starts declining. However, with
proportionally less time devoted to human capital investment and more time to effective
labor supply (Figure 4b), the observed wage increases from labor market entry to about
age 52.

5.1 Elasticity of Labor Supply

In this subsection, we investigate the model’s implications for elasticities of labor sup-
ply. Since labor supply is discrete, we examine the elasticity along the extensive margin.
At the individual level, the labor supply elasticity is zero unless the worker is exactly
indifferent between working or not, in which case it is infinite. Therefore, we can not
construct the standard Marshallian and Hicksian labor supply elasticities. Instead we
construct counterparts to these by increasing the human capital rental rate at different
ages by 10% (from 1 to 1.1), and then simulating the percentage change in the labor force
participation rate using the baseline model.20

Let hb
t be the labor force participation rate at age t in the baseline model and ht

t be the
labor force participation rate at age t (denoted by the subscript) in the simulation in which
we increase the rental rate at age t (denoted by the superscript) by 10%. Then our version
of the Marshallian elasticity is calculated as

me =
log
(
ht

t
)
− log

(
hb

t
)

log(1.1)
. (20)

20In both simulations we assume that the increase in rental rates is anticipated.
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We calculate the Intertemporal Elasticity of Substitution (IES) as

ies =
log
(
ht

t/ht
t−1
)
− log

(
hb

t /hb
t−1
)

log(1.1)
. (21)

The whole life-cycle age-wage profile will be different in this model even when the only
change is in the rental rate at age t. An alternative way of calculating these elasticities
is to compute the percentage changes in the labor supply responding to the percentage
changes in the observed wages,

me′ =
log
(
ht

t
)
− log

(
hb

t
)

log(wt
t)− log(wb

t )
(22)

ies′ =
log
(
ht

t/ht
t−1
)
− log

(
hb

t /hb
t−1
)

log
(
wt

t/wt
t−1

)
− log

(
wb

t /wb
t−1

) . (23)

The calculated Marshallian elasticity and IES at each age from both methods are plot-
ted in Figure 5a. Table 3 also documents both elasticities at selected ages. One can see that
labor supply is much more elastic at older ages than at younger ages in both calculations.
This is due in large part to the shadow cost of leisure. The shadow cost is substantially
larger for young workers than for older workers since the older workers have a shorter
time horizon. As a result, the labor supply of young workers is less responsive to tempo-
rary wage shocks than is the labor supply of older workers. It is also due to the density
of the tastes for leisure γt. When the probability of working is closer to 50% the density of
people close to indifferent will be larger which results in a larger elasticity. Note that the
second measure of the Marshallian elasticity or IES is almost universally smaller than the
first.21 The reason is that at age t the percentage change in the wage is larger than that in
the human capital rental rate. As a result of workers’ responses to the anticipated rental
rate increase, they adjust their investment strategy to take advantage of the higher rental
rate at age t.

Figure 5b provides some sense of how these temporary effects impact lifetime labor
supply. Panel (i) presents the effect of LFPR profiles for cases where the 10% increase in
the human capital rental rate occurs at different ages, specifically at ages 25, 35, 60, and
65. This shows the response in LFPR relative to the baseline model at different ages for
the positive shock at one specific age. The LFPR rises closer to the shock age and rises
sharply at the shock, due to dominating substitution effect. When it is distant from the
shock, the LFPR is lower than the baseline model, due to dominating income effect. The

21Except at very old ages.
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Table 3: Elasticities at selected ages

Responding to %∆ in H rental ratea Responding to %∆ in wagesb

Age Marshallian (me) IES (ies) Marshallian (me′) IES (ies′)
20 0.578 0.548 0.520 0.486
25 0.370 0.352 0.340 0.321
30 0.224 0.198 0.205 0.181
35 0.161 0.138 0.152 0.130
40 0.142 0.132 0.138 0.127
45 0.155 0.138 0.150 0.133
50 0.218 0.195 0.215 0.191
55 0.272 0.239 0.267 0.235
60 0.596 0.518 0.572 0.503
65 1.483 1.221 1.207 1.019
70 2.457 1.921 2.235 1.980

aThe Marshallian is me =
log(ht

t)−log(hb
t )

log(1.1) ; the IES is ies =

log(ht
t/ht

t−1)−log(hb
t /hb

t−1)
log(1.1) .

bThe Marshallian is me′ =
log(ht

t)−log(hb
t )

log(wt
t)−log(wb

t )
; the IES is ies′ =

log(ht
t/ht

t−1)−log(hb
t /hb

t−1)
log(wt

t/wt
t−1)−log(wb

t /wb
t−1)

shock also affects the time allocation at work. When approaching the shock age, workers
graduately increase time investment to achieve a higher human capital when the positive
shock arrives (Panel (ii) and (iii)). While at the shock, workers dramatically decrease time
investment and increase effective working hours to take advantage of the higher human
capital and its higher rental rate. Panel (iv) of Figure 5b summarizes the total change in
LFPR for such positive shocks at different ages. Assume that the human capital rental
rate only increases at age t and the timing of this shock is represented by the X-axis of this
figure. For this case, the “Overall” represents the overall change in LFPR over the entire
life-cycle (from age 18 to 80); the “Before t” represents the total change in LFPR before
age t; the “After t” is the total change after age t and the “At t” is the spot change at age t.
Notice that if the positive shock occurs during the early career, the wealth effect causes a
decline in the LFPR at later ages and the overall effect is negative in the LFPR. However,
a positive shock at older ages would encourage higher LFPR afterwards and the overall
LFPR increases. This is because one individual allocates more time in effective working
at old ages than at young ages. Thus the substitution effect is more prominent at older
ages, when the wage is around the peak.

For individuals under age 50 these estimates are very close to the estimates of labor
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supply elasticities found in the literature. For example, the early literature estimates the
Frisch elasticity being 0.09 (Browning et al., 1999), 0.15 (MaCurdy, 1981), and 0.31 (Al-
tonji, 1986). Chetty (2012) reports extensive (Hicksian) labor supply elasticities around
0.25 combining estimates from many different studies and approaches. Focusing on the
extensive margin, Rogerson and Wallenius (2013) suggest that the IES is 0.75 or greater
given empirically reasonable level of nonconvexities or fixed costs. The average of our
estimates between ages 55 and 65 is remarkably close to theirs.

6 Roles of Health or Part Time

We have intentionally kept our model simple to show that human capital can ex-
plain the dramatic fall in labor supply at the end of the life-cycle. However, there are
many alternative reasons why labor supply might decline. Aside from Social Security
rules, which we have already incorporated, the most important is health (e.g. Currie and
Madrian 1999, French and Jones 2011). If the primary reason for retirement is health, its
omission might seriously distort our results. In this section we incorporate health into
our model in a very flexible way. We show that while it is an important factor, it is not the
primary driver of retirement. We also investigate the case where individuals can choose
to work part time and show that the option of partial labor supply is not the main con-
tributing factor of retirement either.

6.1 The Role of Health

We allow for an additional state variable—health status, St ∈ {0, 1}, with 0 being in
good health and 1 in bad health. Each individual is assumed to have good health from
the beginning of the first period up to age 49, St = 0, t ≤ 49. Since age 50, the health
status evolves exogenously according to a time-dependent probability transition matrix,
and is realized at the beginning of each period before any choice is made.22

We allow the taste for leisure in the utility function (1) to depend on the health status
and change with age,

γt = exp (ã0 + St (as0 + astt) + aεεt) . (24)

That is, individuals with bad health have a different taste for leisure than those with good

22The health transition matrix is estimated from the Panel Study of Income Dynamics (PSID) data. We
include the health status from age 50 for two reasons. First, most individuals have good health before age
50. Second, this simplification saves computation time.
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health and this difference changes as they age.23 We refer to this model as the baseline
health model.

To estimate these two new parameters, as0 and ast, we include the difference in labor
force participation rates between workers with good health and workers with bad health,
from age 50 to 65 into our moment conditions. The data moments are derived from the
1963-2007 CPS March data.

We then re-estimate the whole model. The estimates of the parameters are listed in
the first two columns of Table 4. The fit of the model is presented in Figure 6a. Including
health (and the additional moments shown in panel (ii) of Figure 6a) into the model does
not improve its performance on the original moments in any significant way.

However, just because the fit does not improve much does not imply that health does
not play an important role. It may just be that either health or human capital could ex-
plain retirement.24 To explore the implications of health we use the model estimated
with health, but then simulate a counterfactual in which there was no health change.
Specifically, we eliminate the importance of health for individuals over 50 in two different
ways—we do not allow their health to worsen and we eliminate the interaction between
health and preferences for work. Specifically, we simulate an experiment in which the
health status that an individual had at age 50 remains for the rest of their life. Secondly,
in addition to fixing the health status at age 50, for individuals with bad health status on
and after age 50, we assume their taste for leisure does not increase with age. That is,
letting t∗ be the time period in which the individual turns 50, we assume that the taste for
leisure is now

γt = exp (ã0 + St (as0 + ast ·min {t, t∗}) + aεεt) (25)

and St = S50 for t > t ∗ . We then re-solve the modified model and simulate the life-cycle
profile for each individual using the same estimates from the aforementioned baseline
health model.25 The profiles of labor supply and human capital from the second experi-
ment are plotted in Figure 6b. The difference between the counterfactual and the baseline
health model is very small in both the labor force participation rate and the human capital

23A key aspect of the thought experiment behind this paper is to not allow preferences to vary systemat-
ically with age in our baseline model. In practice we can only fit the interaction of health and labor supply
in the data by allowing for an interaction between health and tastes for leisure. The main point of this
subsection is that health is not essential to explain the profiles, so even though we are favoring the model
with health by allowing this extra flexibility, health has a relatively minor role.

24Note that this is not to say they are not separately identified. The extra moments we use for the health
model identify the importance of health.

25We are assuming that agents have rational expectations and are aware that their health status will not
change. We have also simulated models in which they are not aware that their health status will remain
fixed—it does not change the basic message.
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level. This implies that at least in our model health is not a major factor driving retire-
ment. This result confirms findings in the previous literature. French (2005) estimates that
the changes in health attribute to roughly 10% of the drop in the labor force participation
rates between ages 55 and 70, and the contribution to hours worked by workers near re-
tirement is much smaller. Blau and Shvydko (2011) also report that health deterioration
is an important but not major cause of retirement.

6.2

6.3 The Role of Part Time

We now include the choice of part time working in the model. At each period, individ-
ual decides to work full time (`t = 0), or to work part time (`t = pt ∈ (0, 1)), or not work
(`t = 1). In general, the utility from working part time, pt, can vary over time and is to
be estimated. For simplicity of notation, we surpress the subscript for pt in the following
discussion and bring it back in estimation.

If an individual chooses to work part time, the investment in human capital is It ∈[
0, 1

2

]
and the effective work time is 1

2 − It, with wage earning

wt = Ht ·
(

1
2
− It

)
.

Note that working part time means spending half time in the labor market and the other
half time at leisure, which yields utility of γt p.

The solution is similar to the baseline model with binary labor supply choices. The
optimal labor supply solution is

`t =arg max
`t∈{0,p,1}

Ṽt,`t (Xt) + γt`t (26)

where

{
Ct,p (Xt) , It,p (Xt) ,SSAt,p(Xt)

}
≡ argmax

ct ,It ,ssat

{
ψt

c1−ηc
t

1− ηc
+ βE [Vt+1 (Xt+1, γt+1)|Xt, ct, p, It, ssat]

}
(27)

Ṽt,p (Xt) ≡ ψt

(
Ct,p (Xt)

)1−ηc

1− ηc
+ βE

[
Vt+1 (Xt+1, γt+1)|Xt, Ct,p (Xt) , p, It,p (Xt) ,SSAt,p(Xt)

]
(28)
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Table 4: Estimates in the models with health and with part time optiona

with Health with Part Time
Parameters Estimates S.E. Estimates S.E.
HC depreciationb δ 0.121 0.011 0.152 0.001
HC production function: I factor αI 0.038 0.013 0.064 0.001
HC production function: H factor αH 0.128 0.026 0.232 0.002
Standard deviation of HC innovation σξ 0.118 0.062 0.006 0.0001
Consumption: CRRA ηc 4.043 0.026 4.004 0.019
Consumption shifter: coef on t (×10) ϕ1 0.245 0.062 0.740 0.006
Consumption shifter: coef on t2 (×102) ϕ2 0.213 0.042 -0.012 0.0002
Consumption shifter: coef on t3 (×103) ϕ3 -0.054 0.007 -0.019 0.0003
Consumption shifter: coef on married ϕ4 1.108 0.389 1.728 0.024
Leisure: Standard Deviation of Shock aε 0.240 0.030 0.551 0.005
Leisure: spouse not working a1 0.417 0.126 1.936 0.045
Leisure: spouse working a2 -1.235 0.185 -1.047 0.039
Leisure: unhealthy as0 -0.088 0.029 - -
Leisure: unhealthy time trend ast 0.019 0.001 - -
Part time utility: constant ap0 - - 1.359 0.015
Part time utility: coef on t (×10) ap1 - - -1.147 0.008
Part time utility: coef on t2 (×102) ap2 - - 0.238 0.001
Bequest weight b1 27,839,860 5,664,820 8,830,654 53,919
Parameter heterogeneityc

Leisure: mean of intercept µa0 -5.667 0.116 -4.912 0.024
Leisure: standard deviation of intercept σa0 1.462 0.090 2.544 0.013
HC productivity, mean µπ 1.856 0.169 1.748 0.018
HC productivity, standard deviation σπ 0.529 0.045 0.863 0.003
Correlation between a0and π ρ -0.155 0.052 -0.993 0.003
Initial human capital level at age 18
Intercept γ0 1.427 0.303 2.236 0.019
Coefficient on a0 γa0 0.162 0.019 -0.415 0.009
Coefficient on π γπ 0.928 0.140 -1.410 0.025
Standard deviation of error term σH0 0.280 0.096 0.001 0.0004
χ2 Statisticd 1489 2905
Degrees of freedom 214 241

aIndirect Inference estimates. Estimates use a diagonal weighting matrix. Standard errors
are given in parentheses.
bHC: Human Capital.
cThe joint distribution of (a0, π) is a parametric discrete distribution with nine points deter-
mined by these five parameters, using a nine-point Gauss-Hermite approximation.
dThis is the J-statistic. The critical values of the χ2 distribution are χ2

(214,0.01) = 265,

χ2
(214,0.005) = 271, χ2

(214,0.001) = 283; χ2
(241,0.01) = 295, χ2

(241,0.005) = 301, χ2
(241,0.001) = 315.
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Define

γ∗t min ≡min

{
Ṽt,0 (Xt)− Ṽt,p (Xt)

p
, Ṽt,0 (Xt)− Ṽt,1 (Xt)

}

γ∗t max ≡max

{
Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p
, Ṽt,0 (Xt)− Ṽt,1 (Xt)

}

and we have the following proposition.
PROPOSITION 2: The optimal labor supply decision is

`t =


0, if εt ≤ ε∗t min,

p, if ε∗t min < γt < ε∗t max,

1, if εt ≥ ε∗t max.

where
ε∗tj ≡

1
aε

{
log
(

γ∗tj

)
− ã0

}
, j ∈ {min, max} ,

and

E [Vt (Xt, γt)|Xt] = Φ (ε∗t min) Ṽt,0 (Xt) + (1−Φ (ε∗t max)) ·
[
Ṽt,1 (Xt) + E (γt| εt ≥ ε∗t max)

]
+ (Φ (ε∗t max)−Φ (ε∗t min)) ·

[
Ṽt,p (Xt) + E (γt| ε∗t min < εt < ε∗t max)

]
where

E (γt| εt ≥ ε∗t max) = exp
(

ã0 +
a2

ε

2

)
Φ (aε − ε∗t max)

Φ (−ε∗t max)

E (γt| ε∗t min < εt < ε∗t max) = exp
(

ã0 +
a2

ε

2

)
Φ (aε − ε∗t min)−Φ (aε − ε∗t max)

Φ (ε∗t max)−Φ (ε∗t min)
.

PROOF: Appendix B.
Following the same strategy as in Section 4 and assuming

pt =
1

1 + exp
(
−ap0 − ap1 · t− ap2 · t2

) ,

we re-estimate the model with part time option.26 Table 4 presents parameter estimates.
The fit of the model, as shown in Figure 7a, is similar as the baseline model.

To investigate the effect of having a part time option, we use the estimates in Table

26We include the part time rate at each age from 22 to 65 as additional moments.
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4 and simulate a counterfactual without such an option. Figure 7b presents the profiles
of labor force participation and the human capital. It appears that removing the part
time option does not change the retirement pattern significantly, suggesting that the more
flexible labor supply arrangement is not the major source of retirement.

7 Alternative Human Capital Models

We compare our baseline human capital accumulation model with two variants. All
other aspects of the model remain the same. The first variation assumes the innovation
part in the human capital production function is completely exogenous. The second vari-
ation assumes the innovation only occurs if individuals work, but is exogenous condi-
tional on work. This is essentially a learning-by-doing model as in, for example, Imai
and Keane (2004). To keep this comparable, we alter our baseline model as little as pos-
sible. We also restrict the number of total parameters to remain the same so that we are
comparing models with similar levels of flexibility.

First we consider the model with exogenous human capital. In this case human capital
evolves according to the function

Ht+1 = (1− δ) Ht + ξtπ
(

1 + α1t + α2t2
)

where t is potential experience. Notice that this is very close to our standard model from
equation (2). We have exactly the same parameter names, except that (αI , αH) are re-
placed with (α1, α2) since their roles have changed considerably. In this case human capi-
tal evolves completely exogenously in the sense that individuals can do nothing to change
their human capital.

The parametrization of the second model is analogous. Here we alter the exogenous
model so that human capital only grows for workers:

Ht+1 = (1− δ) Ht + (1− `t) ξtπ
(

1 + α1t + α2t2
)

.

We refer to this as the “learning-by-doing” model. Even though it looks quite similar to
the exogenous model, as a practical matter it is very different as workers can control their
human capital through their labor force participation decision. When individuals do not
work, their human capital depreciates at rate δ.

In section 5 above we discuss two different reasons why our model can fit the life-
cycle profiles of wages and labor supply and in particular the large increase in wages but
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small increase in labor supply at the beginning of the life-cycle and the large decrease in
labor supply but small decrease in wages at the end. The first is human capital deprecia-
tion: when workers stop working their human capital falls. The second is the distinction
between observed wages and human capital. These two models allow for us to see the
relative importance for these two different explanations because the exogenous human
capital model lacks both of these features while the learning-by-doing allows for the for-
mer but not the latter.

The estimates of these models are presented in Table 5 and the fits of the two models
are presented in Figure 8a. We first discuss the completely exogenous model. The within
sample fit of the model is reasonably well on all moments between Age 22 and 65. How-
ever, the exogenous model has very poor out of sample fit at the worker’s early career.
Between age 20 and 22, there is a sharp increase in the labor force participation rate (Panel
(i)), accomponies by a spike in the wage (Panel (iii)). The reason is that to fit the decrease
in labor supply at the end requires a very large labor supply elasticity (as well as a lot
of sample selection bias to give an estimated flat wage). However, the large elasticity to
explain labor supply at the end leads to a huge increase in labor supply and the sample
selection bias leads to a spike in the wage at the beginning, neither of which we see in the
data. To see the size of the elasticity, we estimate our version of the Intertemporal Elas-
ticity of Substitution as above and present it in figure 8b as well as in table 6 at selected
ages. The exogenous model requires a substantially larger elasticity.

By contrast the learning-by-doing model fits the data well—though not quite as well as
our baseline model, especially in the labor force participation at early career. The elasticity
of labor supply is much closer to the baseline model than it is to the exogenous model—as
one can see from figure 8b or from the fact that aε takes on a similar value 0.180 as opposed
to 0.002 in the exogenous model. In comparing the fit, all three models explain the fixed
effect wage profile, the standard deviation profile and the consumption profile fairly well.
The exogenous model does not fit the early career aspect of the labor force participation
rate well. The learning-by-doing fits labor supply better than the exogenous model, but
not quite as well as the baseline model. The exogenous model performs considerably
worse in the log wage profile at early career. It is important to note here that we did not
try a wide range of exogenous or learning-by-doing models; we just did a comparison
between our baseline model and an exogenous or learning-by-doing model chosen to be
close to our baseline model. Presumably alternative and more flexible models could fit
the data better—though this is true of our baseline model as well.

This comparison between the fit of the three models suggests that the human capi-
tal depreciation rate seems to be relatively more important for fitting the data than the
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Table 5: Estimates of alternative modelsa

Exogenousb Learning-by-Doingc

Parameters Estimates S.E. Estimates S.E.
HC depreciationd δ 0.098 0.003 0.090 0.004
HC production function: on t α1 0.014 0.003 0.001 0.001
HC production function: on t2 (×104) α2 −4.116 (0.559) −0.018 (0.008)
Standard deviation of HC innovation σξ 1.495 0.092 0.003 0.005
Consumption: CRRA ηc 4.258 0.031 3.636 0.021
Consumption shifter: on t (×10) ϕ1 0.202 0.035 0.365 0.056
Consumption shifter: on t2 (×102) ϕ2 0.100 0.015 0.043 0.013
Consumption shifter: on t3 (×103) ϕ3 -0.040 0.002 -0.021 0.002
Consumption shifter: coef on married ϕ4 2.249 0.168 0.004 0.002
Leisure: Standard Deviation of Shock aε 0.002 0.001 0.180 0.026
Leisure: spouse not working a1 1.129 0.132 5.214 0.533
Leisure: spouse working a2 -1.199 0.257 -1.887 0.201
Bequest weight b1 25,157,726 4,132,866 6,564,966 898,777
Parameter heterogeneity
Leisure: mean of intercept µa0 -6.513 0.041 -4.965 0.109
Leisure: standard deviation of intercept σa0 1.351 0.058 1.699 0.122
HC productivity, mean µπ 1.567 0.042 1.766 0.065
HC productivity, standard deviation σπ 0.459 0.035 0.622 0.043
Correlation between a0and π ρ -1.000 0.064 0.031 0.026
Initial human capital level at age 18
Intercept γ0 2.292 0.392 1.024 0.288
Coefficient on a0 γa0 0.253 0.039 0.065 0.016
Coefficient on π γπ 0.802 0.140 0.777 0.181
Standard deviation of error term σH0 0.626 0.055 0.124 0.090
χ2 Statistice 1185 1839
Degrees of freedom 200 200

aIndirect Inference estimates. Estimates use a diagonal weighting matrix. Standard errors are
given in parentheses.
bIn the exogenous model, the human capital production function is Ht+1 = (1− δ) Ht +
ξtπ

(
1 + α1t + α2t2).

cIn the learning-by-doing model, the human capital production function is Ht+1 =
(1− δ) Ht + (1− `t) ξtπ

(
1 + α1t + α2t2).

dHC: Human Capital.
eThis is the J-statistic. The critical values of the χ2 distribution are χ2

(200,0.01) = 249, χ2
(200,0.005) =

255, χ2
(200,0.001) = 268.
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Table 6: Elasticities at selected ages, responding to % changes in wagesa

Baseline Model Exogenous Model Learning-by-doing Model
Age Marshallian IES Marshallian IES Marshallian IES

20 0.520 0.486 5.054 5.499 0.228 0.224
25 0.340 0.321 2.801 3.065 0.233 0.209
30 0.205 0.181 1.190 1.492 0.189 0.176
35 0.152 0.130 0.926 1.105 0.111 0.098
40 0.138 0.127 0.798 0.954 0.100 0.090
45 0.150 0.133 0.895 1.025 0.117 0.093
50 0.215 0.191 1.097 1.273 0.226 0.202
55 0.267 0.235 1.812 2.010 0.333 0.305
60 0.572 0.503 3.096 3.285 0.586 0.587
65 1.207 1.019 3.627 4.383 0.324 0.258
70 2.235 1.980 9.087 9.801 0.200 0.135

aThe Marshallian is me′ =
log(ht

t)−log(hb
t )

log(wt
t)−log(wb

t )
; the IES is ies′ =

log(ht
t/ht

t−1)−log(hb
t /hb

t−1)
log(wt

t/wt
t−1)−log(wb

t /wb
t−1)

.

difference between human capital and observed wages.

8 Changes in Tax and Social Security

The preceding sections show that the model fits the life-cycle profiles of labor supply
and log wages in the data well. In this section, we use the model to predict how changes
in the taxes or Social Security rules would affect behavior in labor supply, human capital
investment and the resulting log wage profile. We conduct seven counterfactual policy
experiments which reflect various changes in the tax codes and Social Security rules. The
results of these experiments are summarized in columns 2-8 in Table 7, where the first
column is the baseline model. All numbers are summations or averages throughout the
life-cycle (from age 18 to 80).

8.1 The Baseline Model

The first experiment increases the income tax proportionally by 50%. Column 2 shows
that after the tax increase, an average individual works additional 1.061 years over the
life-cycle, equivalent to 2.7% of the total labor supply. Most of the increase in the labor
supply is allocated to the effective labor, which increases by almost one year or 2.69%. The
investment increases by 3.5%, which leads to 2.8% increase in the human capital level and
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1.06% increase in the observed log wages.27 Annual consumption reduces by 2.37%. A tax
hike has both substitution and income effects. The substitution effect discourages labor
supply while the income effect encourages labor supply. Our first experiment indicates
that in our model the income effect dominates the substitution effect and this is the case
with most of our experiments. We also see that human capital investment increases in
this experiment. The direct effect of taxes discourages human capital investment, but the
increase in labor supply (and in particular delayed retirement) increases human capital
investment.

The manner in which Social Security rules affect labor supply and wages is of central
interest to policy makers. The six experiments in columns 3-8 are devoted to answering
these questions. In the first three we manipulate the current Social Security rules (columns
3-5) while in the last three we decompose the distortionary effects of the current Social
Security system (columns 6-8).

First we remove the Social Security earnings test, which is effective between age 62
and 70 in the baseline model. In the second one, we delay Normal Retirement Age (NRA)
by two years: the new NRA is age 67 in this counterfactual experiment while it is age 65
in the baseline model. In the third one, we reduce the Social Security benefit proportion-
ally by 20%. The results are presented in columns 3-5 in Table 7. Removing the Social
Security earnings test between ages 62 and 70 has a smaller effect on all variables except
the log wages; delaying the normal retirement age by two years, has a slightly larger im-
pact; reducing the generosity of the social security benefit has the largest effect among
these three. For instance, they increase the labor force participation by four-and-a-half,
five, or seven-and-a-half months, respectively. One important feature is that the change
in the labor supply does not only happen later in the life-cycle when the policy change is
directly effective, it takes place over the whole life-cycle, as indicated in Figure 9a. When
the NRA is delayed two years or the Social Security benefit is reduced, workers also in-
vest more and therefore have higher human capital levels, which leads to higher wages
at old ages (Figure 9a). The wage difference is negligible before age 60 but increases sub-
stantially after that, reaching 5% or 8% around age 67. On the other hand, removing
the Social Security earnings test induces substantially higher labor force participation as
well as more investment, resulting up to 15% higher wages within the relevant age win-
dow.28 Ignoring such a wage response in experiments involving retirement policy will

27Other papers have looked at the effects of taxes and human capital with this type of model. Examples
are Heckman et al. (1998b), Heckman et al. (1999), and Taber (2002). These experiments are quite different
as labor supply makes a large difference here so the results are not directly comparable.

28Removing the Social Security earnings test is equivalent to a positive shock to the human capital rental
rate for age 62-70, where substitution effect is more prominent.
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most likely introduce bias.
In the last three experiments, we decompose the effect of the current U.S. Social Secu-

rity system into the individual effects of the Social Security taxes and the Social Security
benefit. In Column 6 we keep the Social Security benefit but eliminate the Social Security
taxes (the payroll taxes);29 in Column 7 we remove the Social Security benefit completely
but keep the Social Security taxes; in Column 8 we remove the entire Social Security sys-
tem, that is, both the Social Security taxes and the benefit. Removing the Social Security
taxes induces an average individual to supply 2.7 years less labor. This is not surprising
because removing the Social Security taxes is essentially a universal cut in the tax rate.
In our tax hike counterfactual, the income effect dominates the substitution effect as is
true for the cut in social security taxes as well. Analogously, removing the Social Security
benefit induces more labor supply. However, the increase in the labor supply is 5.2 years,
which is much higher than 2.7 years reduction of labor supply in the case of removing
Social Security Taxes. The combination of these two effects leads to the results in the last
experiment where both the Social Security taxes and benefit are removed. Column 8 in-
dicates that eliminating the current Social Security system increases average labor supply
by 1.2 years over the life-cycle. Such observation is also mentioned qualitatively in Gust-
man and Steinmeier (1986) and Rust and Phelan (1997). Figure 9b shows that the changes
in the labor supply and log wages are most phenomenal at old ages in the experiment
without Social Security system.

Another point worth emphasizing is that in almost every policy counterfactual, the
increase in the endogenously determined wage levels are substantial. This is especially
true at old ages: 15% when removing the earnings test, 5% when delaying NRA by two
years, 8% when reducing Social Security benefit, over 15% when removing Social Secu-
rity taxes, benefit or the entire Social Security system. These are caused by changes in
the human capital levels as a result of higher or lower investment. For this reason, it is
likely that ignoring the human capital investment channel would generate bias in terms
of predicting LFPR at old ages in similar experiments.

8.2 Sensitivity to Alternative Models

Table 8 presents the results of experiments from the alternative models, specifically,
Panel A from the exogenous model, Panel B from the learning-by-doing model, Panel C
from the model with health, and Panel D from the model with part time option. Across
four different models the responses to the policy changes are qualitatively similar to our

29The income taxes are still effective.
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baseline model in all experiments, although they differ quantitatively in some experi-
ments.

First we focus on the three models of exogenous or endogenous human capital ac-
cumulation. In the first experiment (column 2), the labor supply response to tax hike
is largest in the exogenous model and smaller in the learning-by-doing model. This is
consistent with the pattern of labor supply elasticities as discussed in subsection 5.1. In
the experiments of altering Social Security benefits (columns 3-5), the labor supply re-
sponse to the policy changes is smallest in the learning-by-doing model, larger when the
human capital is exogenous, and largest in the baseline model. This result comes from
several different features of these three models. Consider the experiment that reduces
the Social Security benefit by 20% (Column 5). The change in labor supply is essentially
purely due to the income effect. We see that the largest impact on labor supply comes
from the baseline model, the second highest from the exogenous model, and the lowest
in the learning-by-doing model. The key to understanding this difference is human cap-
ital. When the Social Security benefit is reduced, the reduction in the expected wealth
induces higher labor force participation particularly for older workers. In the two hu-
man capital models this “delayed retirement” increases the expected return to the human
capital investment, which in turn induces higher participation at earlier ages. This “ad-
jacent complementarity” channel makes the labor supply response more efficient. Such
channel does not operate for the exogenous model, so the change in labor supply leads
to larger response in the exogenous model than in the learning-by-doing model. On the
other hand, the baseline model gives a worker an extra channel for adjustment—the allo-
cation of time between investment and working. This channel serves as an augmentation
for the labor supply response, especially during early career.30 This results a larger labor
supply response in the baseline model than in the learning-by-doing model.

In Panel C, we present the experiment results for the model with health as described in
subsection 6.1 in Panel D the results for the model with part time option in subsection 6.3.
In most cases, the results are qualitatively similar to our baseline model but quantitatively
differ in some experiments.

30This is one of the reasons why the labor supply elasticity is higher in the baseline model than in the
learning-by-doing model before age 50, as shown in Figure 8b. However, one should not confuse the income
effect discussed in this subsection with the substitution effect discussed in subsection 5.1.
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Table 7: Effects of changing taxes or Social Security rules, baseline model

1 2 3 4 5 6 7 8
Baseline Tax Increase 50% No Earnings Test NRA = 67 Reduce SSB 20% No SS Taxes No SS Benefit No SS System
Levela ∆Levelb %∆c ∆Level %∆ ∆Level %∆ ∆Level %∆ ∆Level %∆ ∆Level %∆ ∆Level %∆

LFPR 38.861 1.061 2.731 0.379 0.976 0.446 1.147 0.639 1.645 -2.694 -6.932 5.202 13.385 1.216 3.128
Effective Labor 0.585 0.016 2.690 0.006 0.972 0.007 1.134 0.010 1.648 -0.040 -6.843 0.079 13.416 0.019 3.235
Pre-tax Income 9.815 0.433 4.412 0.102 1.041 0.134 1.370 0.206 2.096 -0.914 -9.307 1.520 15.484 0.207 2.104

Average lnw 2.618 0.028 1.059 0.015 0.570 0.007 0.285 0.010 0.388 -0.031 -1.196 0.036 1.387 -0.012 -0.445
Human Capital 13.371 0.374 2.798 0.108 0.810 0.125 0.937 0.184 1.373 -0.836 -6.250 1.254 9.379 0.193 1.443

Investment 0.032 0.0011 3.489 0.0003 1.053 0.0004 1.384 0.0005 1.599 -0.0027 -8.569 0.0041 12.822 0.0004 1.155
Consumption 9.075 -0.215 -2.368 0.010 0.107 -0.033 -0.361 -0.049 -0.540 0.241 2.651 -0.164 -1.811 0.030 0.333

aThe "Level" column refers to the annual value averaged over the whole life-cycle, except the "LFPR" which is the total number of years worked over the
whole life-cycle. For example, in the baseline model, the total LFPR is 38.861 years from 18 to 80.
bThe "∆Level" column refers to the difference of the total value between the current experiment and the baseline model. For example, in the "No Earnings
Test" case, the LFPR is 0.379 years higher than that in the baseline model across the whole life-cycle from 18 to 80.
cThe "%∆" column refers to the percentage of the difference in the "∆Level" column relative to the level in the baseline model. For example, in the "No Earn-
ings Test" case, the LFPR increases by 0.379 years which is equivalent to 0.976% of the LFPR in the baseline model.

34



Ta
bl

e
8:

Ef
fe

ct
s

of
ch

an
gi

ng
ta

xe
s

or
So

ci
al

Se
cu

ri
ty

ru
le

s,
al

te
rn

at
iv

e
m

od
el

s

1
2

3
4

5
6

7
8

Ba
se

lin
e

Ta
x

In
cr

ea
se

50
%

N
o

Ea
rn

in
gs

Te
st

N
R

A
=

67
R

ed
uc

e
SS

B
20

%
N

o
SS

Ta
xe

s
N

o
SS

Be
ne

fit
N

o
SS

Sy
st

em
Le

ve
la

∆
Le

ve
lb

%
∆

c
∆

Le
ve

l
%

∆
∆

Le
ve

l
%

∆
∆

Le
ve

l
%

∆
∆

Le
ve

l
%

∆
∆

Le
ve

l
%

∆
∆

Le
ve

l
%

∆

Pa
ne

lA
:E

xo
ge

no
us

M
od

el
LF

PR
38

.6
75

1.
06

1
2.

74
4

0.
07

2
0.

18
6

0.
30

4
0.

78
7

0.
48

7
1.

26
0

-2
.1

87
-5

.6
55

2.
80

2
7.

24
5

0.
12

7
0.

32
8

Pr
e-

ta
x

In
co

m
e

9.
84

5
0.

27
8

2.
82

3
0.

02
1

0.
21

1
0.

07
1

0.
72

5
0.

11
3

1.
14

4
-0

.5
29

-5
.3

75
0.

64
5

6.
54

9
0.

00
9

0.
09

4
A

ve
ra

ge
ln

w
2.

66
5

0.
00

1
0.

05
5

0.
00

01
0.

00
3

-0
.0

01
-0

.0
42

-0
.0

01
-0

.0
50

0.
00

04
0.

01
5

-0
.0

08
-0

.3
00

-0
.0

05
-0

.1
73

C
on

su
m

pt
io

n
8.

59
3

-0
.2

43
-2

.8
31

0.
00

9
0.

10
6

-0
.0

40
-0

.4
68

-0
.0

64
-0

.7
39

0.
34

3
3.

99
2

-0
.3

39
-3

.9
46

0.
02

7
0.

31
3

Pa
ne

lB
:L

ea
rn

in
g-

by
-d

oi
ng

M
od

el
LF

PR
41

.7
02

0.
66

7
1.

59
9

0.
07

4
0.

17
7

0.
16

6
0.

39
7

0.
24

2
0.

58
0

-1
.6

62
-3

.9
85

1.
90

2
4.

56
1

0.
17

5
0.

42
0

Pr
e-

ta
x

In
co

m
e

10
.3

07
0.

25
2

2.
44

9
0.

02
2

0.
20

9
0.

05
3

0.
51

5
0.

08
3

0.
80

4
-0

.5
96

-5
.7

81
0.

79
6

7.
72

1
0.

18
7

1.
81

5
A

ve
ra

ge
ln

w
2.

63
4

0.
00

8
0.

30
5

0.
00

1
0.

03
1

0.
00

1
0.

05
0

0.
00

3
0.

10
5

-0
.0

18
-0

.6
91

0.
01

8
0.

69
0

-0
.0

04
-0

.1
44

H
um

an
C

ap
it

al
13

.4
25

0.
23

5
1.

74
8

0.
02

0
0.

14
6

0.
04

2
0.

31
4

0.
06

5
0.

48
1

-0
.5

32
-3

.9
64

0.
67

4
5.

02
3

0.
10

2
0.

76
1

C
on

su
m

pt
io

n
8.

52
9

-0
.3

03
-3

.5
48

0.
01

1
0.

13
3

-0
.0

50
-0

.5
89

-0
.0

88
-1

.0
35

0.
41

6
4.

88
0

-0
.4

03
-4

.7
24

0.
00

7
0.

08
0

Pa
ne

lC
:M

od
el

w
it

h
H

ea
lt

h
LF

PR
41

.6
96

0.
89

3
2.

14
3

0.
14

6
0.

34
9

0.
18

8
0.

45
1

0.
30

5
0.

73
1

-2
.1

67
-5

.1
98

2.
96

1
7.

10
2

0.
49

6
1.

18
9

Ef
fe

ct
iv

e
La

bo
r

0.
64

0
0.

01
4

2.
14

4
0.

00
2

0.
34

7
0.

00
3

0.
45

3
0.

00
5

0.
74

5
-0

.0
33

-5
.1

45
0.

04
2

6.
56

3
0.

00
7

1.
11

7
Pr

e-
ta

x
In

co
m

e
10

.2
59

0.
29

1
2.

83
9

0.
03

0
0.

29
0

0.
06

3
0.

61
8

0.
10

4
1.

01
6

-0
.6

73
-6

.5
65

0.
72

4
7.

05
6

0.
05

0
0.

48
7

A
ve

ra
ge

ln
w

2.
65

4
0.

00
7

0.
26

9
-0

.0
01

-0
.0

24
0.

00
2

0.
07

9
0.

00
4

0.
15

3
-0

.0
16

-0
.6

04
0.

01
5

0.
56

5
-0

.0
03

-0
.0

95
H

um
an

C
ap

it
al

13
.1

38
0.

29
2

2.
22

2
0.

03
6

0.
27

4
0.

05
1

0.
38

8
0.

08
2

0.
62

3
-0

.6
51

-4
.9

57
0.

71
9

5.
47

5
0.

05
9

0.
44

9
In

ve
st

m
en

t
0.

02
2

0.
00

05
2.

11
3

0.
00

01
0.

42
5

0.
00

01
0.

39
9

0.
00

01
0.

33
3

-0
.0

01
5

-6
.7

30
0.

00
2

9.
15

7
0.

00
02

0.
91

5
C

on
su

m
pt

io
n

8.
71

1
-0

.2
49

-2
.8

60
0.

00
7

0.
08

0
-0

.0
40

-0
.4

54
-0

.0
59

-0
.6

79
0.

34
7

3.
98

6
-0

.3
03

-3
.4

84
0.

04
6

0.
53

0

Pa
ne

lD
:M

od
el

w
it

h
Pa

rt
Ti

m
e

O
pt

io
n

LF
PR

41
.5

87
0.

73
5

1.
76

7
0.

10
0

0.
24

1
1.

28
3

3.
08

5
1.

32
7

3.
19

0
-0

.7
42

-1
.7

83
1.

61
2

3.
87

5
0.

65
2

1.
56

8
Ef

fe
ct

iv
e

La
bo

r
0.

59
9

0.
01

0
1.

74
9

0.
00

2
0.

25
6

0.
01

5
2.

46
8

0.
01

7
2.

81
1

-0
.0

16
-2

.7
19

0.
02

7
4.

44
4

0.
00

9
1.

51
8

Pr
e-

ta
x

In
co

m
e

11
.4

05
0.

22
6

1.
98

5
0.

02
8

0.
24

7
0.

10
7

0.
93

7
0.

14
7

1.
29

0
-0

.5
14

-4
.5

03
0.

70
7

6.
19

6
0.

07
9

0.
69

6
A

ve
ra

ge
ln

w
2.

63
1

0.
00

1
0.

03
1

0.
00

1
0.

03
6

-0
.0

65
-2

.4
67

-0
.0

61
-2

.3
21

-0
.0

88
-3

.3
31

0.
16

5
6.

28
0

-0
.0

17
-0

.6
28

H
um

an
C

ap
it

al
14

.0
83

0.
20

5
1.

45
5

0.
02

5
0.

17
5

0.
10

8
0.

76
5

0.
13

8
0.

97
7

-0
.4

38
-3

.1
10

0.
61

5
4.

36
5

0.
05

1
0.

36
5

In
ve

st
m

en
t

0.
04

4
0.

00
09

2.
02

3
0.

00
00

1
0.

01
8

0.
00

22
4.

97
7

0.
00

22
5.

09
6

-0
.0

00
6

-1
.2

67
0.

00
26

5.
85

4
0.

00
20

4.
47

0
C

on
su

m
pt

io
n

10
.0

97
-0

.4
25

-4
.2

13
0.

00
0

0.
00

5
-0

.0
74

-0
.7

37
-0

.0
63

-0
.6

26
0.

42
4

4.
19

5
-0

.3
03

-3
.0

03
0.

18
6

1.
84

7
a Th

e
"L

ev
el

"
co

lu
m

n
re

fe
rs

to
th

e
an

nu
al

va
lu

e
av

er
ag

ed
ov

er
th

e
w

ho
le

lif
e-

cy
cl

e,
ex

ce
pt

th
e

"L
FP

R
"

w
hi

ch
is

th
e

to
ta

ln
um

be
r

of
ye

ar
s

w
or

ke
d

ov
er

th
e

w
ho

le
lif

e-
cy

cl
e.

Fo
r

ex
am

pl
e,

in
th

e
ex

og
en

ou
s

m
od

el
,t

he
to

ta
lL

FP
R

is
38

.6
75

ye
ar

s
fr

om
18

to
80

.
b Th

e
"∆

Le
ve

l"
co

lu
m

n
re

fe
rs

to
th

e
di

ff
er

en
ce

of
th

e
to

ta
lv

al
ue

be
tw

ee
n

th
e

cu
rr

en
t

ex
pe

ri
m

en
ta

nd
th

e
ba

se
lin

e
m

od
el

.
Fo

r
ex

am
pl

e,
in

th
e

"N
o

Ea
rn

in
gs

Te
st

"
ca

se
,t

he
LF

PR
is

0.
07

2
ye

ar
s

hi
gh

er
th

an
th

at
in

th
e

ba
se

lin
e

ex
og

en
ou

s
m

od
el

ac
ro

ss
th

e
w

ho
le

lif
e-

cy
cl

e
fr

om
18

to
80

.
c T

he
"%

∆
"

co
lu

m
n

re
fe

rs
to

th
e

pe
rc

en
ta

ge
of

th
e

di
ff

er
en

ce
in

th
e

"∆
Le

ve
l"

co
lu

m
n

re
la

ti
ve

to
th

e
le

ve
li

n
th

e
ba

se
lin

e
m

od
el

.F
or

ex
am

pl
e,

in
th

e
"N

o
Ea

rn
-

in
gs

Te
st

"
ca

se
,t

he
LF

PR
in

cr
ea

se
s

by
0.

07
2

ye
ar

s
w

hi
ch

is
eq

ui
va

le
nt

to
0.

18
6%

of
th

e
LF

PR
in

th
e

ba
se

lin
e

ex
og

en
ou

s
m

od
el

.
d In

th
e

ex
og

en
ou

s
m

od
el

,t
he

ef
fe

ct
iv

e
la

bo
r

is
sa

m
e

as
LF

PR
.

35



9 Robustness Check

Recall that some of parameters are set to certain values taken from the previous litera-
ture. In this section we vary those pre-set parameters to see how they affect our estimation
results. In particular, we check following variants: (1) increase the consumption floor c
from 2.19 to 2.5; (2) decrease the consumption floor c from 2.19 to 1.8; (3) decrease the
time discount rate β from 0.97 to 0.96 but increase the interest r from 0.03 to 0.04; (4) in-
crease the initial asset A0 from 0.0 to 50, 000. In each case, all other pre-set parameters are
kept the same as the baseline model, and then we re-estimate all of the parameters of the
model. The estimation results are listed in Table 9, and the moments are plotted in Figure
10.

In all cases the simulated moments fit the data moments quite well. Varying pre-set
parameters does change the estimated values of some parameters, but in all variants our
model generates simulated auxiliary model which match data auxiliary model quite well.

10 Conclusion

This paper develops and estimates a rich life-cycle model that merges a Ben-Porath
style human capital framework with a neoclassical style framework with endogenous
labor supply and retirement framework. In the model, each individual makes decisions
on consumption, human capital investment, labor supply and retirement. Investment in
human capital generates wage growth over the life-cycle, while depreciation of human
capital is the main force generating retirement. We show that the parsimonious model
is able to fit the main features of life-cycle labor supply, wages (with and without fixed
effects) as well as retirement. In particular we can fit both the large increase in wages
and small changes in labor supply at the beginning of the life-cycle along with the small
changes in wages but large changes in labor supply at the end. We incorporate health
and part time option into the model individually and show that while both are important
factors, human capital remains the main explanation for the decline in labor supply for
older workers.

Despite the fact that our framework does not rely on age or time varying preference or
production function parameters, our model implies a rather small and empirically plausi-
ble Marshallian elasticity rises with age. We also estimate the same basic framework using
two different approaches to human capital accumulation—exogenous human capital as
well as learning-by-doing. While we find that the baseline model is better at replicat-
ing the main features of the data, the learning-by-doing captures the main features. The
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exogenous model does not. In our baseline model, the level of human capital falls for peo-
ple working with their wages being flat due to investment on the job. This mechanism
which is intrinsic to the Ben-Porath framework is not in play in either the learning-by-
doing framework or the exogenous human capital model and this plays a central role in
generating a better fit. The model is robust to several robustness checks.

We use the estimated model to simulate the impacts of various policy changes. While
prior work typically takes the wage process as given and focuses on the retirement de-
cision, we are able to model the effect of the policy change on the wage process and the
labor supply decisions. As we show in our model, less generous Social Security benefits
result in higher labor supply later in the life-cycle, so workers adjust their investment over
the life-cycle. This results in a higher human capital level as well as higher labor supply
earlier in the life-cycle. Compared with the baseline model, the labor supply response
to policy changes are much smaller in most experiments in the learning-by-doing model,
but slightly larger in most experiments when human capital is completely exogenous. The
bottom line is that modeling labor supply and human capital decisions jointly is critical
in an analysis of the effects of policy changes. While presumably other factors would be
important for explaining other features of labor markets, endogenous labor supply is crit-
ical for understanding life-cycle human capital investment and life-cycle human capital
investment is critical for understanding life-cycle labor supply.
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Figure 1a: Labor force participation rate—SIPP data
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Figure 1b: Log wages with and without controlling for individual fixed effects—SIPP data
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Figure 1c: Standard deviation of log wages—SIPP data
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Figure 2: Log wage profiles of male high school graduates with and without controlling
for individual fixed effects, CPS MORG and March data.
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Figure 3a: Fit of model: labor force participation rate
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Figure 3b: Fit of model: log wages after controlling for individual fixed effects
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Figure 3c: Fit of model: log wages
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Figure 3d: Fit of model: standard deviations of log wages
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Figure 3e: Fit of model: adult equivalent consumption
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Figure 4a: Log wages and human capital
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Figure 4b: Investment, and human capital
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Figure 5a: Calculated elasticities
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Figure 5b: Labor force participation rates (LFPR) for positive shocks

(i) Responses in LFPR.
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(ii) Responses in investment.
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(iii) Responses in human capital.
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(iv) Decomposition of LFPR Profiles.
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Figure 6a: Fit of model with health

(i) Labor Force Participation Rates
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Figure 6b: Sensitivity to heath preferences: health status fixed and taste for leisure un-
changed after age 50

(i) Labor Force Participation Rates
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Figure 7a: Fit of model with part time

(i) Labor Force Participation Rates
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Figure 7b: Sensitivity to part time option: turn off the part time option

(i) Labor Force Participation Rates
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Figure 8a: Exogenous and learning-by-doing models moments

(i) Labor Force Participation Rates
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Figure 8b: Comparison of the Intertemporal Elasticities of Substitution (IES).

(i) LFPR Responses to % Changes in H Rental Rate
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Figure 9a: [Baseline model] Policy experiments: reduce Social Security benefits

(i) Difference in Labor Force Participation Rates

0
.0

2
.0

4
.0

6
.0

8
D

if
fe

re
n

c
e

 i
n

 L
F

P
R

20 30 40 50 60 70 80
Age

Increase tax 50%

No ET

NRA=67

Reduce SS 20%

(ii) Difference in Log Wages
−

.0
5

0
.0

5
.1

.1
5

D
if
fe

re
n

c
e

 i
n

 L
o

g
 W

a
g

e
s

20 30 40 50 60 70 80
Age

Increase tax 50%

No ET

NRA=67

Reduce SS 20%

(iii) Difference in Investment

−
.0

0
1

0
.0

0
1

.0
0

2
.0

0
3

D
if
fe

re
n

c
e

 i
n

 I
n

v
e

s
tm

e
n

t

20 30 40 50 60 70 80
Age

Increase tax 50%

No ET

NRA=67

Reduce SS 20%

(iv) Difference in Human Capital

0
.5

1
D

if
fe

re
n

c
e

 i
n

 H
u

m
a

n
 C

a
p

it
a

l

20 30 40 50 60 70 80
Age

Increase tax 50%

No ET

NRA=67

Reduce SS 20%

51



Figure 9b: [Baseline model] Policy experiments: remove Social Security taxes or benefits

(i) Difference in Labor Force Participation Rates
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Figure 10: Fit of alternative models

(i) Labor Force Participation Rates
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Appendix

A Proof of Proposition 1

The solution to 14 is that the individual works if and only if

Ṽt,0 (Xt) ≥Ṽt,1 (Xt) + γt.

This means that there exists a threshold value

γ∗t = Ṽt,0 (Xt)− Ṽt,1 (Xt)

such that

`t =

1, if γt ≥ γ∗t

0, if γt < γ∗t
.

From (13) we have

`t =

1, if εt ≥ ε∗t

0, if εt < ε∗t
.

where ε∗t is defined as (15).
We know that

Ṽt,0 (Xt) > Ṽt,1 (Xt)

thus
γ∗t = Ṽt,0 (Xt)− Ṽt,1 (Xt) > 0

and there exists
ε∗t ≡

1
aε
{log (γ∗t (Xt))− a0}

Conditional on Xt, the expected value is straightfoward,

E [Vt (Xt, γt)|Xt] = Φ (ε∗t ) Ṽt,0 (Xt) + (1−Φ (ε∗t ))
[
Ṽt+1,1 (Xt+1) + E (γt| εt ≥ ε∗t )

]
Since γt is log-normal, we have

E (γt| εt ≥ ε∗t ) = E (γt| γt ≥ γ∗t ) = exp
(

ã0 +
a2

ε

2

)
Φ (aε − ε∗t )

Φ (−ε∗t )

Q.E.D.
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B Proof of Proposition 2

The solution to 26 is

`t =


0 Ṽt,0 (Xt) > max

{
Ṽt,p (Xt) + γt p, Ṽt,1 (Xt) + γt

}
p Ṽt,p (Xt) + γt p > max

{
Ṽt,0 (Xt) , Ṽt,1 (Xt) + γt

}
1 Ṽt,1 (Xt) + γt > max

{
Ṽt,0 (Xt) , Ṽt,p (Xt) + γt p

}
or

`t =


0, γt < min

{
Ṽt,0(Xt)−Ṽt,p(Xt)

p , Ṽt,0 (Xt)− Ṽt,1 (Xt)

}
p, Ṽt,0(Xt)−Ṽt,p(Xt)

p < γt <
Ṽt,p(Xt)−Ṽt,1(Xt)

1−p ,

1, γt > max
{

Ṽt,p(Xt)−Ṽt,1(Xt)
1−p , Ṽt,0 (Xt)− Ṽt,1 (Xt)

}
First we know that

Ṽt,0 (Xt) > Ṽt,p (Xt) > Ṽt,1 (Xt)

thus given p ∈ (0, 1), we have

Ṽt,0 (Xt)− Ṽt,1 (Xt) > 0

Ṽt,0 (Xt)− Ṽt,p (Xt)

p
> 0

Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p
> 0

Since Ṽt,0 (Xt) − Ṽt,1 (Xt) is a weighted average of Ṽt,0(Xt)−Ṽt,p(Xt)
p and Ṽt,p(Xt)−Ṽt,1(Xt)

1−p , we
have

min

{
Ṽt,0 (Xt)− Ṽt,p (Xt)

p
,

Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p

}
≤ Ṽt,0 (Xt)− Ṽt,1 (Xt) ≤ max

{
Ṽt,0 (Xt)− Ṽt,p (Xt)

p
,

Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p

}

Define

γ∗t min (Xt) ≡min

{
Ṽt,0 (Xt)− Ṽt,p (Xt)

p
, Ṽt,0 (Xt)− Ṽt,1 (Xt)

}

γ∗t max (Xt) ≡max

{
Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p
, Ṽt,0 (Xt)− Ṽt,1 (Xt)

}

60



There are two cases.
Case 1.

Ṽt,0 (Xt)− Ṽt,p (Xt)

p
≤ Ṽt,0 (Xt)− Ṽt,1 (Xt) ≤

Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p

where two equalities do not hold simultaneously. In this case, option `t = p will be
chosen by any individual with a positive probability. We also have

γ∗t min =
Ṽt,0 (Xt)− Ṽt,p (Xt)

p

γ∗t max =
Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p

Solving εt from (13) yields

ε∗tj =
1
aε

{
log
(

γ∗tj

)
− ã0

}
, j ∈ {min, max}

Since γt is log-normal, we have

E
(

γt| εt ≥ ε∗tj

)
= exp

(
ã0 +

a2
ε

2

) Φ
(

aε − ε∗tj

)
Φ
(
−ε∗tj

) , j ∈ {min, max}

Note that

E (γt| εt ≥ ε∗t min) =E (γt| ε∗t min < εt ≤ ε∗t max) Pr (εt ≤ ε∗t max | εt ≥ ε∗t min)

+ E (γt| εt ≥ ε∗t max) Pr (εt > ε∗t max | εt ≥ ε∗t min)
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so

E (γt| ε∗t min < εt ≤ ε∗t max)

=
E (γt| εt ≥ ε∗t min)− E (γt| εt ≥ ε∗t max) Pr (εt > ε∗t max | εt ≥ ε∗t min)

Pr
(
ε∗t min < εt ≤ ε∗t max | εt ≥ ε∗t min

)
=

exp
(

ã0 +
a2

ε
2

)
Φ(aε−ε∗t min)
Φ(−ε∗t min)

− exp
(

ã0 +
a2

ε
2

)
Φ(aε−ε∗t max)

Φ(−ε∗t max)
Φ(−ε∗t max)

Φ(−ε∗t min)
Φ(ε∗t max)−Φ(ε∗t min)

Φ(−ε∗t min)

=
exp

(
ã0 +

a2
ε

2

)
Φ(aε−ε∗t min)
Φ(−ε∗t min)

− exp
(

ã0 +
a2

ε
2

)
Φ(aε−ε∗t max)

Φ(−ε∗t min)
Φ(ε∗t max)−Φ(ε∗t min)

Φ(−ε∗t min)

= exp
(

ã0 +
a2

ε

2

)
Φ (aε − ε∗t min)−Φ (aε − ε∗t max)

Φ (ε∗t max)−Φ
(
ε∗t min

)
Case 2.

Ṽt,0 (Xt)− Ṽt,p (Xt)

p
≥ Ṽt,0 (Xt)− Ṽt,1 (Xt) ≥

Ṽt,p (Xt)− Ṽt,1 (Xt)

1− p

In this case, option `t = p is a dominated strategy and will be chosen by any individual
with zero probability. We also have

γ∗t min = γ∗t max = Ṽt,0 (Xt)− Ṽt,1 (Xt) .

and
Φ (ε∗t max)−Φ (ε∗t min) = 0.

In either case, it is straightforward to calculate E [Vt (Xt, γt)|Xt]. Q.E.D.

C Taxes

We use tax codes in the year of 2004. There are two different kinds of taxes that the
worker’s wage income is subject to, namely the payroll taxes and the federal income
taxes. We ignore the state income taxes. The payroll taxes include the Social Security
portion, 6.2% capped at $87, 900, and the Medicare tax, 1.45% uncapped. The federal
income taxes are progressive and we use the tax rules under head of household. The
personal exemption for each person is $3, 100 and the standard deduction for head of
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Table C1: Wage income tax codes (in 2004$).

Marginal Tax Rate Pre-tax (Y) Post-tax Income
0.0765 ≤ 10, 250 0.9235Y
0.1765 10, 251− 20, 450 9, 465.88 + 0.8235 (Y− 10, 250)
0.2265 20, 451− 49, 150 17, 865.58 + 0.7735 (Y− 20, 450)
0.3265 49, 151− 87, 900 40, 065.03 + 0.6735 (Y− 49, 150)
0.2645 87, 901− 110, 750 66, 163.15 + 0.7355 (Y− 87, 900)
0.2945 110, 751− 172, 950 82, 969.33 + 0.7055 (Y− 110, 750)
0.3445 172, 951− 329, 350 126, 851.43 + 0.6555 (Y− 172, 950)
0.3645 ≥ 329, 351 229, 371.63 + 0.6355 (Y− 329, 350)

household is $7, 150. These all together generate the tax codes used in the paper in Table
C1.

D Social Security

We use most Social Security rules in the year of 2004.31

D.1 The Social Security Benefits

The normal retirement age (NRA) is 65. The worker receives full Social Security ben-
efits if he applies for the benefits at the NRA. The full retirement benefits are equal to
the Primary Insurance Amount (PIA), which is a function of Average Indexed Monthly
Earnings (AIME),

PIA = 0.9 ∗min {bp1, AIME}+ 0.32 ∗min {bp2 − bp1, max {0, AIME− bp1}}

+0.15 ∗max {0, AIME− bp2} , (D.1)

where (bp1, bp2) = (612, 3689).
The AIME is computed as the monthly average earning of the 35 years with highest

inflation-adjusted earnings. Only earnings subject to the Social Security tax are used in
the calculation and therefore AIME is capped. The included earning in a specific year is
adjusted for wage inflation by multiplying the wage growth rate relative to the base year,
which is at age 60. The wage growth rate is calculated by dividing the average wage in
the base year by the average wage in that specific year. Earnings after the base year are
not adjusted. Interestingly, the wage growth rate of the national average wage index is
very similar to the growth rate of CPI-U after Year 1969, as shown in Figure D1, so we

31Most of information about Social Security benefits in this section is extracted from http://www.ssa.gov.
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ignore the small difference between these two and use the real wages to update AIME
without adjustment.

Computing exact AIME requires keeping tracking of the worker’s earning history,
which is computationally infeasible. Instead we apply an approximating method, taking
into account the wage growth pattern over the life-cycle,

AIMEt+1 = AIMEt + max
{

0,
sset

35× 12
− sharemin (t) · AIMEt

}
(D.2)

where sset = min {Ht (1− `t) (1− It) , ¯sse} is included earning, capped at ¯sse = $87, 900.
The sharemin is the share of minimum wage in AIME. Figure D2 lists the estimated sharemin (t)
from CPS data for age 52 to 76, assuming the starting working age of 16, and sharemin (t < 52)=0.

The early retirement age (ERA) is 62. Starting from ERA, the worker is eligible to
receiving the Social Security benefits at a reduced level. In this case, the benefit is reduced
5/9 of one percent for each month before NRA, or 6.67% per year, up to three years.
Beyond three years, the benefit is reduced 5/12 of one percent per month or 5% per year.

On the other hand, delayed receiving Social Security benefits after the NRA increases
benefits. The delayed retirement credit (DRC) of 6% is given to the applicant for each
delayed year up to age 69.32 No DRC is given for applicants at age 70 or older.

D.2 The Social Security Earnings Test

We use the Social Security earnings test rules in 1999.33 The Social Security benefits
could be withheld partly or totally if the worker is earning income while taking the Social
Security benefits at ages before 70.

For beneficiary under age 65, $1 of benefits for every $2 of earnings in excess of the
exempt amount ($10, 885 in 2004 dollars) is withheld. The benefit withholding rate for
those aged 65-69 is $1 of benefits for every $3 of earnings in excess of the exempt amount
($17, 575 in 2004 dollars).

If a whole year’s worth of benefits is withheld between ages 62 to 64, benefits in the
future will be raised by 6.7% each year. If the benefit is withheld between age 65 to 69,
the future benefits will be raised by 6.0%. Given our terminal age at 80, it is favorable for
individuals aged 62 to 64 but not actuarially fair for individuals aged 65 or older.

32The 6% DRC is for cohorts born between 1935 and 1936 (inclusive). The DRC varies from 3% for cohorts
born in 1924 or earlier to 8% for cohorts born in 1943 or later. In between, it increases by 0.5% every two
years.

33Before 2000, the earnings test applies to ages before 70. Since 2000, the earnings test is eliminated after
reaching NRA.
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D.3 Taxable Social Security Benefits

The Social Security benefits are not taxable if it is the only income. If there is other
income, compute “total income” as the sum of half of the benefits and all other income.
If total income is no more than the base amount ($25, 000 for head of household) then no
benefits are taxable. If total income is higher than $34, 000 then up to 85% of the benefits
could be taxable. Assume the Social Security benefits are yss and all the other income is
yo, the taxable part of Social Security benefits is calculated as

yss,taxable =


0, if yo = 0 or yo +

yss
2 ≤ 25000

min
{

0.85yss, 1
2 min

{
yss, yo +

yss
2 − 25000, 9000

}
,

+ 0.85 max
{

0, yo +
yss
2 − 34000

}}
otherwise.

(D.3)

Figure D1: Relative (to Year 2004) indices of National Average Wage Index and CPI-U.
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Figure D2: Share of minimum wage on AIME, assuming starting working from age 16.
CPS data.
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Table E: Transitions from various modelsa

Models Working to Not Working Not Working to Working

High school graduates:
1 Data 0.041 0.230
2 Baseline model 0.044 0.253

Alternative human capital models:
3 Exogenous 0.039 0.238
4 Learning-by-doing 0.036 0.245

Robustness check:
5 Larger c 0.046 0.271
6 Lower c 0.047 0.272
7 Change δ, r 0.044 0.256
8 Smaller δ 0.039 0.224
9 Larger A0 0.043 0.256

Other models:
10 With health 0.032 0.228
11 With Part Time option 0.046 0.241

College graduates:
12 Data 0.022 0.334
13 Model 0.020 0.321

aThe transition rate is the overal transition probability between age 35 and 50.
Columns 1-11 are for high school graduates while columns 12-13 are for college
graduates.
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Table F: Estimates in the baseline model for college graduatesa

Parameters Estimates Standard Errors
Human capital depreciation δ 0.089 (0.007)
Human capital production function: I factor αI 0.015 (0.007)
Human capital production function: H factor αH 0.100 (0.008)
Standard deviation of human capital innovation σξ 0.006 (0.011)
Consumption: CRRA ηc 3.784 (0.024)
Consumption shifter: coefficient on t (×10) ϕ1 0.256 (0.067)
Consumption shifter: coefficient on t2 (×102) ϕ2 0.103 (0.027)
Consumption shifter: coefficient on t3 (×103) ϕ3 -0.033 (0.004)
Consumption shifter: coefficient on married ϕ4 0.816 (0.231)
Leisure: Standard Deviation of Shock aε 0.136 (0.028)
Leisure: spouse not working a1 0.779 (0.137)
Leisure: spouse working a2 -0.787 (0.146)
Bequest weight b1 16,594,247 (2,158,990)
Parameter heterogeneityb

Leisure: mean of intercept µa0 -6.220 (0.058)
Leisure: standard deviation of intercept σa0 0.190 (0.076)
Human capital productivity, mean µπ 2.221 (0.119)
Human capital productivity, standard deviation σπ 0.907 (0.010)
Correlation between a0and π ρ -0.741 (0.208)
Initial human capital level at age 18
Intercept γ0 1.759 (0.174)
Coefficient on a0 γa0 0.034 (0.015)
Coefficient on π γπ 0.482 (0.054)
Standard deviation of error term σH0 0.316 (0.121)
χ2 Statistic = 874c Degrees of freedom = 200

aIndirect Inference estimates. Estimates use a diagonal weighting matrix. Standard er-
rors are given in parentheses.
bThe joint distribution of (a0, π) is a parametric discrete distribution with nine points
determined by these five parameters, using a nine-point Gauss-Hermite approximation.
cThis is the J-statistic. The critical values of the χ2 distribution are χ2

(200,0.01) = 249,

χ2
(200,0.005) = 255, χ2

(200,0.001) = 268.
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E Transitions

F College Graduates

Figure F: Fit of model with college graduates
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(iii) Standard Deviation of Log Wages
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