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Introduction

Moving away from the benchmark

@ We have already shown that if no restrictions are placed on how the
observed variables affect utility: the model is exactly identified off a
long panel if one of the payoffs is known for each state and if the
distribution of unobserved variables is known.

@ Therefore, absent further restrictions, the model loses point
identification if:

@ the panel is short rather than long

@ the distribution of unobserved variables is unknown
© the discount factor is unknown

@ the payoff from one choice for each state is unknown

@ In empirical applications we typically parameterize the effects of
observed variables, freeing up equations to relax these restrictions.

@ This lecture is a preliminary investigation of the first two issues.
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Bayesian Learning

Motivation

@ Adam Smith, and many others, including perhaps your parents, have
commented on "the hasty, fond, and foolish intimacies of young
people" (Smith, page 395, volume 1, 1812).

@ One approach to explaining such behavior is to argue that some
people are not rational all the time.

@ A challenge for this approach is to develop an axiomatic theory for
irrational agents that has refutable predictions.

@ There is ongoing research in behavioral economics and economic
theory in this direction.

@ Another approach, embraced by many labor economists, is that by
repeatedly sampling experiences from an unfamiliar environment,
rational Bayesians update their prior beliefs as they sequentially solve
their lifecycle problem.

Miller (University of Tokyo) Lecture 4 October 2019 3/49



Bayesian Learning

Applying the methodology

@ This issue seems like a candidate for applying the methodology
described in the previous slides:

@ Write down a dynamic discrete choice model of Bayesian updating and
sequential optimization problem;

Solve the individual's optimization problem (for all possible
parameterizations of the primitives);

Treat important factors to the decision maker that are not reported in
the sample population as unobserved variables to the econometrician;
Integrating over the probability distribution of unobserved random
variables, form the likelihood of observing the sample;

Maximize the likelihood to obtain the structural parameters that
characterize the dynamic discrete choice problem;

Predict how the individual would adjust her behavior if she was
confronted with new opportunities to learn or different payoffs.

© 06 ©6 0 o
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Job Matching and Occupational Choice (Miller JPE, 1984)

Individual payoffs and choices

@ The payoff from job m € M at time t € {0,1,...} is:

Xmt =P, +Cpy + Tm€Eme
where:
e 1, is a lifecycle trend shaping term that plays no role in the analysis;
e (,, is a job match parameter drawn from N (’ym,égn);
e €m¢ is an idiosyncratic iid disturbance drawn from N (0, 1)

@ Every period t the individual chooses a job m to work in. The choice
at t is denoted by dp,; € {0,1} for each m € M where:
Z dme =1
meM
@ The realized lifetime utility of the individual is:

Z Z ,Btdmtxmt

t=0 meM
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Job Matching and Occupational Choice

Processing information

o At t = 0 the individual sees (7y,,,6,) for all m € M.

@ At every t, after making her choice, she also sees ¢,, and dpxm: for
allme M.

e Following Degroot (Optimal Statistical Decisions 1970, McGraw Hill)
the posterior beliefs of an individual for job m € M at time
t € {0,1,...} are N (77, 02,) where:

5;12r)/m + 0;72 ZE;%) (Xms — l/)s) dms
O’ + 0m” L2 dms

t—1
Smi = 0+ 007 Y dms
s=0

’)/mt =

@ She maximizes the sum of expected payoffs, sequentially choosing d¢
for each m € M at t given her beliefs N (7, 6,;) -
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Optimization

Maximization using Dynamic Allocation Indices (DAls)

Corollary (from Theorem 2 in Gittens and Jones,1974)

At each t € {1,2,...} it is optimal to select the m € M maximizing:

EYr—: B" (Xmr = ¥,) [Yimes Ome ] }
DAl (Y e Ome) = su L e
(’)/ ‘ t) TZI;{ E| ::t,B |V me» Omt |

@ To understand the intuition for this rule, consider two projects, m’
taking 4 periods with payoffs {1,8,7,x’} and another m” taking 2
periods with payoffs {6, x"} .

@ Suppose m’ can be split into a 3 period project with payoffs {1,8,7}
and an additional 1 period project with payoff {x’} that cannot be
undertaken before the 3 period project is completed, but does not
have to be undertaken immediately afterwards.

@ Prove the DAI rule optimally schedules the projects.
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Optimization

Optimal turnover

@ Proposition 4 of Miller (1984) shows:

DALy (VY imt: Omt) = Vit + Ome D

om\ > t—1

(M) + ZSZO dms
where D (-) is the (standard) DAI for a (hypothetical) job whose
match parameter ¢ is drawn from N (0, 1) and whose payoff net of
the general component is o2¢;.

@ D (-) can be numerically computed by solving for the fixed point of a
contraction mapping. (See Proposition 5 of Miller, 1984.):D (-) is a
deceasing function. Thus DALy, (Y, 0me) T as:

®© Yt Omt and 0 T
o o and CE2) dms |

o Given 7y,

e Occupations with high 6, and low o, are experimented with first;

e Matches with low o, are resolved for better or worse relatively quickly;
o Turnover declines with tenure.

Miller (University of Tokyo) Lecture 4 October 2019 8 /49



Empirical Application

Hazard rate for spell length

@ Define h; as the (discrete) hazard at t periods as the probability a
spell ends after t periods conditional on surviving that long.

@ In a one occupation mode and only keep track of the current job
match. (Why?)

he = Pr{7t+5t0[(g)2+t,ﬁ]§7+5D[<g)2.ﬁ”

(5) ] - 2o [(5) +ee])

= Pr{ptgle/2 (a, B) — (cx+t)_1/2D(zx+t,,B)}

where p, = (7, — ) /cand & = ¢ /6 which implies:

_ — _ -1/2
k) 572 4 tg2] 712 5\ 2 _
e [y 1
o o o
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Probability Distribution of Spell Lengths

Relating the hazard rate to the distribution of normalized match qualities

@ Define the probability distribution of transformed means of spells
surviving at least t periods as:

Y (o) =Prip, <p} =Pr{c ' (v,—7) <p} =Pr{y, <v+p0o}

@ To help fix ideas note that ¥y (p) = 0 for all p < 0 and ¥, (0) = 1.
e From the definition of h; and ¥, (p):

he = Pr{p, <a2D(wp)—(a+ )2 D(a+t.p)}

— ¥, [orm D(aB)—(a+t) "’ Da+t, ﬁ)]

@ To derive the discrete hazard, we recursively compute ¥; (p).
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Probability Distribution of Spell Lengths

Inequalities relating to normalized match qualities after one period

@ By definition every match survives at least one period, and hence:

Y1 (p) =Pr{y; <v+po}

@ From the Bayesian updating rule for 7y,:

1S vtpeo
- F%fj*@—¢0

0 “+o2
& 5y +0 % (E+oe) < (y+po) (67 +07?)
& ay+Ci+oe < (y+po)(a+1)
&
&

<7+poc

(E-y)+oe<c(a+1)p
51 (E =) +ae <al/? (a+1)p
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Probability Distribution of Spell Lengths

Computing the distribution of normalized match qualities after one period

@ By definition every match survives at least one period, and hence:

Y1 (p) =Pr{y; <v+po}

@ Appealing to the inequalities from the previous slide:

Yi(p) = Prin =v+po}
= P I (E ) + a2 <2V (a k1))
= Pr{e' +a'?e<a'? (x+1)p}
- Pr{(zx—i—l)l/ze”gle/2 (lx—i—l)p}
= @ o} (@+1)"7 p|

where €’ and €” are random variables both distributed independently
as standard normal.
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Probability Distribution of Spell Lengths

Solving for the one period hazard rate and the probability distribution of survivors

@ The spell ends if:
pr<a 2D (ap)—(a+1)"* D(a+1p)
@ Therefore the proportion of spells ending after one period is:
h o= ¥ [oc_l/zD(uc,[S) —(a+1)"V2D(a+ 1,5)]

[ (@ +1)"7?]

= o 1/2
x [a72D () — (e +1)72 D (a +1, )]

> 1/2
@ So the truncated distribution of p for survivors after one draw is:

¥y (p) = (1= h) "' [¥1(p) — h]
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Probability Distribution of Spell Lengths

Recursively computing the distribution of normalized match qualities

o To derive ¥, (p) from ¥, (o) the worker takes another draw, and
appealing to Bayes rule one more time:

4 —el(a+1)(a+2)]7Y?) dd () — h
) = = 1 (p [<+i<_h+l>1 ) d (e) —
al/2 (oc+1)1/2 X
(p—ella+1)(a+2)7)
1—m

Jo®

dd (e) — by

@ More generally (from page 1112 of Miller, 1984):

So e (p—ell@t o) (a+t+1)] ) dd(e) — he
Yir1 (o) = 1—h,
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Maximum Likelihood Estimation

Complete and incomplete spells

@ Suppose the sample comprises a cross section of spells
ne {1,..., N}, some of which are completed after T, periods, and
some of which are incomplete lasting at least T, periods. Let:

(n) = T, if spell is complete
P | {Th Ths1,...} if spell is incomplete

o Let p; (s, B,) denote the unconditional probability of individual n
with discount factor B, working T periods in a new job with
information factor «, before switching to another new job in the same
occupation:

pe (@, B,) = he (an ) [ 1oy [T — hs (2n, B,)]

@ Then the joint probability of spell duration times observed in the

sample is:
N
Hn:l Zrep(n) pr ([X”' an)
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Maximum Likelihood Estimation

The likelihood function and structural estimates

@ We could allow for an additional source of unobserved heterogeneity
by writing the likelihood as:

P ‘Xlny,B ))\
LN (Al. Bl. A2, BQ Hn 1 ZTG‘D ‘:pr (Déln,l,[gln) ( /\)

where we now assume that aj, = A; X, and B, = B;X, for i € {1,2}
and the parameter space is (A1, B1, A2, Bo, ).

@ Briefly, the structural estimates show that:

@ individuals care about the future and value on job experimentation;

@ the occupational dummy variables are significant, suggesting that the
choice of different occupations is not random;

@ educational groups have different beliefs and learning rates;

@ these three results are not sensitive to whether the additional
unobserved heterogeneity is incorporated or not.
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Motivating Example

Rust’s (1987) bus engine revisited

@ Is there an easier way?

@ An alternative approach is to combine the inversion theorem, to avoid
solving the dynamic optimization (equilibrium) problem, with a
variation on the EM (Expectation/Maximization) algorithm, to handle
the unobserved heterogeneity.

@ Recall Mr. Zurcher decides whether to replace the existing engine
(dit = 1), or keep it for at least one more period (do; = 1).

@ Bus mileage advances 1 unit (x;+1 = x¢ + 1) if Zurcher keeps the
engine (da; = 1) and is set to zero otherwise(x;+1 = 0 if dir = 1).

@ Transitory iid choice-specific shocks, €;; are Type 1 Extreme value.

@ Zurcher sequentially maximizes expected discounted sum of payoffs:

E { ‘Bt_l [dzt(elxt + 655 + €2t) + dltelt] }
t=1
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Motivating Example

ML Estimation when CCP’s are known (infeasible)

@ To show how the EM algorithm helps, consider the infeasible case
where s € {1,..., S} is unobserved but p(x,s) is known.

@ Let 715 denote population probability of being in unobserved state s.
@ Supposing B is known the ML estimator for this "easier" problem is:
. N S T
{0, 7t} = arg max Z In s H I(dnt|Xnt, s, p, 6)
O 31 |s=1 =1

where /(dnt|xnt, Sn, p, 0) takes the form:

dint + dant exp(01xnt + 025+ BIn[p(0,s)] — BIn[p(xnt + 1, 5)]
14 exp(01xnt + 025 + BIn [p(0,s)] — BIn[p(xne +1,5)])

and p = p(x, s) is the string of (assumed) known (x, s).
@ Maximizing over the sum of a log of summed products is
computationally burdensome.
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Motivating Example

Why EM is attractive (when CCP’s are known)

@ The EM algorithm is a computationally attractive alternative to
directly maximizing the likelihood.
@ Denote by d, = (dp1, .- -, dp7) and x, = (Xp1, ..., X7 ) the full

sequence of choices and mileages observed in the data for bus n.

@ At the mt" iteration:
gir ) = Pr{s

0m), ﬂﬁm),p}

gm) HtT 1 I(dnt|Xnt,S,p,9(m))
Z:s/ 17T Ht 1 /(d nt|Xnt,5/.p,9(m))

7t m+1) N1 Z m+1
N S T (m+1)
g(m+1) _ arg m@ax Z Z Z I(dnt|Xnt, s, p, 0)]
n=1s=1t=1
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Motivating Example

Steps in our algorithm when s is unobserved and CCP's are unknown

Our algorithm begins by setting initial values for 81), 77(1) and p(1) (+):

Step 1 Compute q,(1'5"+1) as:

ﬂgm) H;rzl / [dnt|Xnty S, p(m), G(m):|

(m+1)
an -
Zf/:]_ ﬂgm) HZ_:]_ / <dnt‘Xnt, S/, p(m)' Q(m))
Step 2 Compute ngmﬂ) according to:
n(mH) _ nN:l CIr(wran)
° N

Step 3 Update p(™+1)(x, s) using one of two rules below
Step 4 Obtain 0("*1) from:

e(m—i-l) _ L (m+1)| I (d | (m+1) 0
—argmé‘:lxzzzqns n[ (ntXntySnvP ' )
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Motivating Example

Updating the CCP's

o Take a weighted average of decisions to replace engine, conditional on
x, where weights are the conditional probabilities of being in
unobserved state s.

Step 3A Update CCP’s with:

nN:1 23—21 dlntqr(/?+1)l(xnt = X)

m+1)(
ZII‘YZI Zz—:l qr(72n+1)l(xnt = X)

X,s) =

p(

@ Or in a stationary infinite horizon model use identity from model that
likelihood returns CCP of replacing the engine:

Step 3B Update CCP’s with:

p(m+1)(Xnt, Sn) = /(dntl = 1|Xnt: Sn, p(m), G(m))
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First Monte Carlo

Finite horizon renewal problem

@ Suppose s € {0,1 } equally weighted.
@ There are two observed state variables
@ total accumulated mileage:

[ Acifdi=1
ML= s, + Apif dop = 1

@ permanent route characteristic for the bus, xp, that systematically
affects miles added each period.

o We assume A; € {0,0.125,...,24.875,25} is drawn from:
f(At|x2) = exp [—x2 (A — 25)] — exp [—x2 (A — 24.875)]

and x» is a multiple 0.01 drawn from a discrete equi-probability
distribution between 0.25 and 1.25.
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First Monte Carlo

Finite horizon renewal problem

o Let Hy; be an aggregate shock (denoting cost fluctuations say).

@ The difference in current payoff from retaining versus replacing the
engine is:

Uzt(X]_t, S) — ult(xlt, S) = 0o + 01 min {Xlt. 25} + 655

@ Denoting the observed state variables by x; = (x1¢, x2) , this
translates to:

vor(xe, s) — vie(xe,s) = 6Oor + 601 min{xi¢, 25} + 025

h Z {In [Plt(illtt(:)" Z)t,s)} } flacle)

AreA
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First Monte Carlo

Table 1 of Arcidiacono and Miller (2011)
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Second Monte Carlo

Structure

@ Entrants pay startup cost to compete in the market, but not
incumbents.

@ Paying startup cost now transforms entrant into incumbent next
period.

@ Declining to compete in any given period is tantamount to exit.

@ When a firm exits another firm potentially enters next period.
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Second Monte Carlo

Dynamics

@ There are two sources of dynamics in this model.
@ An entrant depreciates startup cost over its anticipated lifetime.

@ Since it is more costly for an entrant to start operations, than for an
incumbent to continue, the number of incumbents signals how much
competition the firm faces in the current period, and consequently
affects its own decision whether to exit the industry or not.
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Second Monte Carlo

Two observed state variables

@ Each market has a permanent market characteristic, denoted by xi,
common to each player within the market and constant over time, but
differing independently across markets, with equal probabilities on
support {1,...,10}.

@ The number of firm exits in the previous period is also common
knowledge to the market, and this variable is indicated by:

/
o= L d"

@ This variable is a useful predictor for the number of firms that will
compete in the current period.

@ Intuitively, the more players paying entry costs, the lower the expected
number of competitors.
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Second Monte Carlo

Unobserved (Markov chain state) variables, and price equation

@ The unobserved state variable s; € {1,...,5} follows a first order
Markov chain.

@ We assume that the probability of the unobserved variable remaining
unchanged in successive periods is fixed at some 7t € (0, 1), and that
if the state does change, any other state is equally likely to occur with
probability (1 — 1) /4.

@ We generated also price data on each market, denoted by w;, with
the equation:

/
we = g +a1x +apse +as ) dl(?) + 1,
h=1

where 77, is distributed as a standard normal disturbance
independently across markets and periods, revealed to each market
after the entry and exit decisions are made.
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Second Monte Carlo

Utility and number of firms and markets

The flow payoff of an active firm i in period t, net of private

(i)

information €5, is modeled as:

N (i ! i
Us (xt('), st('), dt( )) = 0o + 01x + Oas; + 03 hgl d1(?) + 94d1( 2—1

We normalize exit utility as U; (Xt(i)'sf(i)’ dt(_i)> =0

We assume ej(-ti)
The number of firms in each market in our experiment is 6.
We simulated data for 3,000 markets, and set § = 0.9.

Starting at an initial date with 6 entrants in the market, we ran the
simulations forward for twenty periods.

is distributed as Type 1 Extreme Value.
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Second Monte Carlo

Table 2 of Arcidiacono and Miller (2011)
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Defining Finite Dependence

Motivation

@ The property of finite dependence is motivated by two concerns, one
theoretical and one practical.

@ Theoretically our data may come from a short panel, where the
horizon of the agent extends beyond the length of the panel.

@ In practice the identifying equations maybe somewhat unwieldy:

@ In stationary Markov models identification is achieved by inverting a
matrix of dimension X, the number of states;

@ In finite horizon problems the equations telescope the CCPs out to the
last period T of the agent's life.

@ Simulation methods alleviate these problems, but Monte Carlo
integration is only a way of numerically approximating the
integration/inversion.

@ Can assumptions on the model eliminate this problem?

@ Such assumptions would be placed on the transition matrix, and
would therefore be testable.
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Defining Finite Dependence

Weighted distribution of state variables induced by weighted choices

o Let wjkrr(x, xr) denote the weight on the k' action at period
Te {t+1,t+2,...} when the state is xr, was x at t, and action j
was taken at t.

@ We assume wikr (X, xr) can be positive or negative, but require:

J

Z wjkt'r(XyX’r) =1

k=1
@ Recursively define a weight distribution by setting
Ko (Xt11/%) = fi(xes1]), and:
X J
Kjt,‘(ft(XT+l|X) = Z Z fkT(XT+1|XT)ijtT (X, XT) Kjt,rftfl(XT|X)
xr=1 k=1
o When wjier(x, x¢) > 0 for all (k, T, x¢) for given (t, x,j) we can
interpret w as a (nonoptimal) randomized decision rule, and
Kjt r—t—1(Xc|x) as the probability of reaching x; in period T from
t x) by taking choice j at t and then applying w:
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Defining Finite Dependence

Equalizing the weight distribution of state variables for a pair of paths

o Consider two sequences of decision weights beginning at date t in
state x, one with choice i and the other with choice j.

@ We say that the pair of choices (7, j) exhibits p-period dependence at
(t,x) if there exists an w from i and j for x such that for all x;1p41:

Kitp (Xep+1[X) = Kjeo (Xetp41|X) (1)
@ That is, the weights associated with each state are equalized across

the two paths after p periods.

o Finite dependence trivially holds in all finite horizon problems, but
p-period dependence only merits attention when p < T — t.

@ For this reason we ignore the trivial case of p = T — t.

@ Finite dependence is defined for a given player, say n, in an exactly
analogous manner, that is for a given date t in state x, and two
choices i and j.
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Why Finite Dependence Matters

An expression for differences in current payoffs

@ Adapting the proof of the representation theorem:

t+o (J.X)
Vie(x) — uje(x) = ZEJ Z B t{ (ke (x0) + ¢, ()] W

T=t+1 (ke X Wjktt (x,xt) Kjt,Tftfl(XT|X) )

+ 2 BT Vst (e Ko (Xerp411%)
Xt+p+1

o If p-period dependence holds at (7, , t, x) then for some w:
Kep (Xepr1X, 1) = Kepp(Xerpia [, ))

e Differencing the expression above with respect to i and j:

uje (x) = it (x) = ¥ (%) + (%)

t+p  (4,X) [UkT(XT) + ¢kT(XT)] X
= Z Z ;BT ! Wikt (X:XT) Kit.rftfl(XT|X>
T=t+1 (k,xr) —Wjket (X, X-c) Kjt,r—t—l(XT|X)
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Simple Examples of Finite Dependence

Terminal choices and stable utility

@ A terminal choice ends the evolution of the state variable with an
absorbing state that is independent of the current state.

o Thatis fi¢(xe11|x) = Ar(xe41) for all (¢, x).

@ Let the first choice denote a terminal choice. Then:

i , f1,t+1 (Xt+2)fjt(xt+1 |Xt) = fl,t+1 (Xt+2)
Xt4+1=
@ From the representation theorem:
un(xe) = uj(xe) = 1, (x) + 9 (x)
- ilﬁ [u1 (x) +¢1,t+1(X)] fie (x| xe)
Xt+1=

o If there is more than one period of data, and fi:(x|x;) varies with t,
then uj(x;) is typically (over) identified for all j € {1,...,J}.
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Simple Examples of Finite Dependence

Renewal choices and stable utility

@ Similarly a renewal choice yields a probability distribution of the state
variable next period that does not depend on the current state.
@ Letting the first choice denote a renewal choice:

X X
Yo fer(xeolxer)fie(xeralxe) = ) e (xer2) e (e lx)
xe+1=1 xe+1=1

= Ar41(Xe12)

@ From the representation theorem:
UJ'(X) —ui(x) — ll)jt<X) + 1,(x)
= Z B [“1 )+ ¥, t+1( )] [flt(x,’X) - Gt(X,’X)]

@ Notice that we obtain T equations for each x, which can be used in
identification.
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Estimation with Finite Dependence

The data

Suppose there are N observations of the state variables and decisions
denoted by {d,,tn,x,,tn,x,,,tnﬂ},’y:l sampled within a time frame of
ted{l,....,T}.

Say there are M separate instances of finite dependence as defined in
(1) within that time frame where, for the sake of exposition, each
pair of choices includes choice 1.

Label the M paths by (jm, Xm, tm.p,,) for me {1,..., M}.

Assume that for each t € {1,..., 7} the probability of the sample
selection mechanism drawing x € {1, . ,X} is strictly positive.
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Estimation with Finite Dependence

Standard assumptions

@ Assume the subjective discount factor B, and g (€¢), the joint
probability density function for the unobserved idiosyncratic taste
shock €;, are known.

@ Second, assume uj(x) can be parameterized by a finite dimensional
vector 0 = (01,...,0k) € ©, a closed convex set in RX.

o Normalize the first choice to zero, by writing uje(x) = U (x, 0),
where Uj(x, 0) is a known function with T (x,0) = 0 for all (t, x).

o Finally, assume that the M instances of finite dependence are
sufficient to identify 6.
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Estimation with Finite Dependence

First stage: unrestricted CCP and transition probabilities

e Forallte{l,..., 7} and x €{1,..., X}, define the cell estimators
of pjt(x) as:

R =t {d,,t(,,)j - 1} 1{ty = t}1 {Xnt(n) _ X}
Pit(x) = YV 1 {t, =t} 1 {Xnt(n) _ X}

and estimate the XJ7 CCP vector p = (p11(1), ..., py7(X))" with p
formed from pj(x).

o If the state transitions are unknown, estimate f;(x) with f;(x) in this
first stage, for example with a cell estimator (similar to the CCP
estimator).
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Estimation with Finite Dependence

Second stage: minimum distance estimator

@ For any is an M dimensional positive definite matrix W:

~

0= arggmin [y (ﬁ ?) -7 (ﬁ 2 9)}/ w [y (p)—Z (ﬁ/f\ 0)} (2)

where y (p, f) is an M dimensional vector with elements yn, (p, f) and
Z(p,f,0) is an M dimensional vector with elements Z,(p, f,0), with:

ym (p.f) = ¢’1[Pt ( m)] — Pitm [ (Xm)]

tm+0,, w Xr, L)Ke(Xe | Xm, 1) —
LYYy iy, Pf(xf”[wﬁigxf,}r:nf(x'Axm,l}m)}

T=tm+1 k=1 xr=1

Zm(p f 9) EE-( ) (m)(Xm 9)

S S 3 5 L e>[wm(xﬂ@)m(xaxm,l)_]

= I’m+1k 1X‘( 1 wkT(XTIJh)KT(XT|XmIJm)
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Estimation with Finite Dependence

Asymptotic properties

o At the true parameter values y; (x, p, ) = Z:(x, p, f,0).
@ Hence 6 is v/ N consistent and asymptotically normal.
@ Setting W = W, a consistent estimate of the inverse of the

N/
asymptotic covariance matrix of (ﬁ’, f’) , the asymptotic covariance
~ ~ ,\ ~ -1
matrix for 8 is [9Z (p.F.0) /00’ Waz (p.F.0) /o0| .
e When W is diagonal matrix, (2) is nonlinear least squares.
o When Tj;(x, 0) is linear in 6, (2) has a closed form. Setting W = W:

{ 92 (p7.6) /oe] ‘W 00z (57, 9,) /a6 }
x [az (,3,?, 9) /ae] Wy (ﬁ,?)

o Finally, the estimator carries over to the games case with minimal
notational changes.

-1

9=
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Examples of Finite Dependence

Establishing finite dependence in the labor supply example

@ How does finite dependence work when p > 17
@ Consider the following model of labor supply and human capital.

@ In each of T periods an individual chooses whether to work, do; = 1,
or stay home di; = 1. She acquires human capital, x;, by working,
with the payoff to working increasing in her human capital.

o If the individual works in period t, x;11 = x¢ + 2 with probability 0.5
and x;+1 = x; + 1 also with probability 0.5.

@ Every period after t, the human capital gain from working is fixed at
one additional unit.

@ When the individual does not work, her human capital remains the
same in the next period.
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Examples of Finite Dependence

Establishing finite dependence in the labor supply example

o First consider staying home at t and then work for the next two
periods. Set:

W1t,t41 (Xt Xe41) = Wioee42(Xe, Xeg2) =1
@ This sequence of choices (stay home, work, work) increases human
capital two units by t + 3.

@ Now consider working at t, staying home in period t + 2, and
depending on whether human capital increases by one or two units in
t, work in t 4+ 1. Set:

W21t t+1 (Xt, Xt + 2) = W21t t+2 (Xtv Xt + 2) =

Wt t+1(Xe, xe +1) = wiorr2(xe, x¢ +2) =

@ These weights also increase the total the human capital stock by two
units for sure.
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Examples of Finite Dependence

An alternative way of establishing finite dependence in the labor supply example

o Consider working in period t and then staying home for the next two
periods regardless of how much human capital is accumulated:

W21t e+1(Xe, Xe +2) = wWore o (Xe, xe +2) =

Wo1t,t+1 (Xt, Xt + 1) = W21t,t42 (Xt. Xt + 1)

1

1

@ Now consider staying home in t, working in t + 1, and with
probability one half working in period t + 2:

w12t,t+1(xtv Xt) =1
witt 2 (Xe xe +1) = wioter2(xe xe +1) =1/2
@ In both cases the exante distribution of human capital is the same:

1/2 ith+3:Xt+]_

K1t2 (Xt+3 |Xt> = K22 (Xt+3 |Xt) = { 1/2 if Xee3 = X¢ + 2
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Examples of Finite Dependence

Nonstationary search model

o Consider a simple search model in which all jobs are temporary, last
only one period.

e Each period t € {1,..., T} an individual may stay home by setting
di+ = 1, or apply for temporary employment setting do; = 1.

@ Job applicants are successful with probability A;

@ The current utility from employment depends on experience, denoted
by x € {1,..., X}.

@ Experience increases by one unit with each period of work, and does
not depreciate.

@ The preference primitives are given by the current utility from staying
home, denoted by Ui (x;), and the utility from working, Ua; (x¢) -

@ Thus the dynamics of the model come through experience.

o Nonstationarities arise through time varying offer arrival weights, A,
and wages (as indicated by t subscripts on current utilities).
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Examples of Finite Dependence

Finite dependence in the nonstationary search model

@ One period finite dependence is established by constructing two
paths; one starts with staying home, di; = 1, the other begins with
an employment application, dy; = 1.

Staying home is followed by applying for employment with weight
At //\t+11

Wi2t,t+1 (Xt,Xt) = At//\t+1 =1—witr,t+1 (Xt,Xt)

Applying for employment is followed by staying home:

Worte+1 (Xe, Xe) = worre+1 (xe, xe +1) =1

Both sequences generate the same distribution for x;47:

1-— )\t for Xt42 = Xt

Kltl(Xt+2|Xt) = K2t1(Xt+2|Xt) = { At for xesn = x¢ + 1

o Notice that if Ay > Asyq then wior 41 (X, x¢) > 1 and
W1lt,t+1 (Xt'Xt) =1—At/ A1 <O
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Determining whether Finite Dependence Exists

Intuition for establishing one period dependence in single agent settings

@ One period finite dependence holds if there are weights such that:

Kit,er1(Xet2|xe) = Zzw/kt t+1 (Xt X) fie,e1 (Xe 2| X) fir (x| x¢ )
= Zzwjkt,H—I (Xt,X) fk,t+1(Xt+2|X)f}t(X|Xt)
X k

= Kjt,t+1 (Xt+2 !Xt+2)

o Setting w41 =1— Zi;% Wjkt,t+1 We require for each x;yo:

J-1
Z Z [fie (x|xe) — fir (x|xe)] fi e1 (Xe2] %)

Y. Z Wikt,t+1 (Xt X) [fie1 (Xer2|X) — 141 (e ]x)] Fie (X[ %)

x k=1

J=
-Y 2 Wikt,e+1 (Xe, X) [fie o1 (Xer2]x) — £ 001 (o2 |x)] i (X[ x2)
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Determining whether Finite Dependence Exists

Checking the rank of a determinant

@ This is a linear system to be solved in the wikt r+1 (¢, x) and
Wikt t+1 (Xe, X) terms for each x;42 using linear algebra.
o Nominally there are:
@ X — 1 equations corresponding to the states in t + 2, since the
remaining equation would be automatically satisfied.

@ 2(J —1)X weights, for i and j, for the first J — 1 choices, and each of
the X states that the initial choice might lead to.

@ Nevertheless the system has some special features which complicate
matters. Some states might not be attainable in period:
@ t+ 1 from x; for a given choice i and/or j. That reduces the number
of w weights to choose.
@ t+ 2 from for a given choice i and/or j, regardless of how the weights
are chosen.
@ The system is identified if the determinant of the w coefficient vector
for the matrix representation of these equations is nonzero.
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Determining whether Finite Dependence Exists

How do we check for finite dependence beyond one period?

@ Dynamic games hardly ever support one period dependence:

o Intuitively different actions by one firm induce the other firms to take
different equilibrium actions the next period.

e Consequently the state space for the game players is mostly like to
have a different distribution two periods later

@ Many single agent problems also have finite dependence of more than
one period (such as housing paper presented at the conference).
o If p period dependence fails, we check for p + 1 period dependence.

@ Roughly speaking, to check for p period dependence we find the
attainable states for period t + p — 1. Note this is not a
combinatorial problem; we do it state-by-state.

@ Then we form different combinations of states.

@ For each combination we essentially go through the same exercise as
for the one period dependence case.
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