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Unrestricted Maximum Likelihood Estimation
Data and outside knowledge

Suppose the data comes from a long panel (either stationary or
complete panel histories for finite lived agents).

Also assume we know:
1 the discount factor β
2 the distribution of disturbances Gt (ε |x )
3 u1t (x) (or more generally one of the payoffs for each state and time).
4 u1t (x) = 0 (for notational convenience)

Since the panel is long, pt (x) and hence ψjt (x) are identified.

There are, of course, alternative assumptions that deliver
identification, and the methods described below are generic.
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Unrestricted Maximum Likelihood Estimation
The likelihood

To simplify the notation, consider a sample of N independently drawn
observations on the whole history t ∈ {1, . . . ,T} of individuals
n ∈ {1, . . . ,N} , with data on their state variables decisions denoted
by xnt , and decisions denoted by dnjt .

The joint probability distribution of the decisions and outcomes is:

N

∏
n=1

T

∏
t=1

(
J

∑
j=1

X

∑
x ′=1

dnjt I
{
xn,t+1 = x ′

}
pjt (x)fjt (x ′|x)

)

Taking logs yields:

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log [pjt (xnt )] +

X

∑
x=1

I {xn,t+1 = x} log [fjt (x |xnt )]
}
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Unrestricted Maximum Likelihood Estimation
The reduced form

Note the choice probabilities are additively separable from the
transition probabilities in the formula for the joint distribution of
decisions and outcomes.
Hence the estimation of the joint likelihood splits into one piece
dealing with the choice probabilities conditional on the state, and
another dealing with the transition conditional on the choice and
state.
Maximizing each additive piece separately with respect to fj (x ′|x)
and pt (xnt ) we obtain the unrestricted ML estimators:

f̂jt
(
x ′ |x

)
=

∑N
n=1 I {xnt = x , dnjt = 1, xn,t+1 = x ′}

∑N
n=1 I {xnt = x , dnjt = 1}

and:

p̂jt (x) =
∑N
n=1 I {xnt = x , dnjt = 1}

∑N
n=1 I {xnt = x}
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Unrestricted Maximum Likelihood Estimation
Estimating an intermediate probability distribution

Let κjtτ(xt+τ+1|xt ) denote the probability of reaching xt+τ+1 at
t + τ + 1 from xt by following action j at t and then always choosing
the first action:

κjtτ(xt+τ+1|xt ) ≡
{
fjt (xt+1|xt ) τ = 0
∑X
x=1 f1,t+τ(xt+τ+1|x)κjt ,τ−1(x |xt ) τ = 1, . . .

Thus we can recursively estimate κjtτ(xt+τ+1|xt ) with:

κ̂jtτ(xt+τ+1|xt ) ≡
{
f̂jt (xt+1|xt ) τ = 0
∑X
x=1 f̂1,t+τ(xt+τ+1|x)κ̂jt ,τ−1(x |xt ) τ = t + 1, . . .

Similarly we estimate ψjt (xt ) with ψ̂jt (xt ) using the p̂jt (x) estimates
of the CCPs.

Miller (University of Tokyo) Lecture 3 October 2019 5 / 39



Unrestricted Maximum Likelihood Estimation
Estimating the primitives

From previous lectures:

ujt (xt ) = ψ1t (xt )− ψjt (xt )

+
T−t
∑
τ=1

X

∑
x=1

βτ−tψ1,t+τ(x) [κt1,τ−1(x |xt )− κtj ,τ−1(x |xt )]

Substituting κ̂τ−1(x |xt , j) for κτ−1(x |xt , j) and ψjt (xt ) with ψ̂jt (xt )
then yields:

ûjt (xt ) ≡ ψ̂1t (xt )− ψ̂jt (xt )

+
T−t
∑
τ=1

X

∑
x=1

βτ−t ψ̂1,t+τ(x) [κ̂t1,τ−1(x |xt )− κ̂tj ,τ−1(x |xt )]

The stationary case is similar (and has the matrix representation we
discussed in previous lectures).
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Large Sample or Asymptotic Properties
Asymptotic effi ciency of the unrestricted ML estimator

By the Law of Large Numbers f̂jt (x ′ |x ) converges to fjt (x ′ |x ) and
p̂jt (x) converges to pjt (x), both almost surely.

By the Central Limit Theorem both estimators converge at
√
N and

and have asymptotic normal distributions.

Both f̂jt (x ′ |x ) and p̂jt (x) are ML estimators for fjt (x ′ |x ) and pjt (x)
and obtain the Cramer-Rao lower bound asymptotically.

Since and ujt (x) is exactly identified, it follows by the invariance
principle that ûjt (x) is consistent and asymptotically effi cient for
ujt (xt ), also attaining its Cramer Rao lower bound.

The same properties apply to the stationary model.

Note that greater effi ciency can only be obtained by making
functional form assumptions about ujt (xt ) and fjt (x ′ |x ).
False restrictions, such as adopting convenient functional forms for
the payoffs, typically create misspecifications.
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Maximum Likelihood Estimation
Restricted ML estimates of the primitives

In practice applications further restrict the parameter space.

For example assume θ ≡
(

θ(1), θ(2)
)
∈ Θ is a closed convex subspace

of Euclidean space, and:

ujt (x) ≡ uj (x , θ(1))
fjt (x |xnt ) ≡ fjt (x |xnt , θ(2))

We now define the model by (T , β, θ, g).

Assume the DGP comes from (T , β, θ0, g) where θ0 ∈ Θ(interior ).

The ML estimator, denoted by θML, maximizes:

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
ln [pjt (xnt , θ)] +

X

∑
x=1

I {xn,t+1 = x} ln
[
fjt (x |xnt , θ(2))

]}

over θ ∈ Θ where pt (x , θ) are the CCPs for (T , β, θ, g).
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Maximum Likelihood Estimation
A common variation on the ML estimator

A common variation on the ML estimator is:
1 estimate fjt (x |xnt , θ(2)) from the state transitions.

2 obtain a limited information ML estimator θ
(2)
LIML.

3 estimate θ(1) by searching over pt (x , θ(1), θ
(2)
LIML).

More precisely we define:

θ
(2)
LIML ≡ argmax

θ2

N

∑
n=1

T

∑
t=1

J

∑
j=1

X

∑
x=1

I {xn,t+1 = x} dnjt log
[
fjt (x |xnt , θ(2))

]
θ̂
(1)
ML ≡ argmax

θ1

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log
[
pjt (xnt , θ

(1), θ
(2)
LIML)

]}
Note that:

when θ
(2)
0 , that is fjt (x |xnt ), is known, θ̂

(1)
ML = θ

(1)
ML;

otherwise θ̂
(1)
ML is less effi cient but computationally simpler than θ

(1)
ML;

nevertheless both estimators solve for the optimal rule many times.
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Quasi Maximum Likelihood Estimation
The steps (Hotz and Miller, 1993)

The essential difference between this estimator and ML is this
estimator substitutes an estimator of the continuation value into the
likelihood rather than computing it from the optimal policy function:

1 Estimate the reduced form p̂ and f̂ (or θ
(2)
LIML) as above;

2 Apply the Representation Theorem to obtain expressions for
vjt (xt )− vkt (xt );

3 Substitute the reduced form estimates into these differences to obtain
v̂jt
(
x , θ(1)

)
− v̂kt

(
x , θ(1)

)
for any given θ(1);

4 Replace vjt (xt ) with v̂jt
(
x , θ(1)

)
in the random utility model (RUM)

to obtain an estimate p̂jt
(
x , θ(1)

)
for any given θ(1);

5 Maximize the quasi-likelihood with respect to θ(1).

In effect we estimate a static RUM where differences in current
utilities uj

(
x , θ(1)

)
− uk

(
x , θ(1)

)
are augmented by a dynamic

correction factor estimated in the first stage off the reduced form.
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Quasi Maximum Likelihood Estimation
Notes on QML Estimation

In the second step, appealing to the Representation theorem, and the
slides above v̂jt

(
x , θ(1)

)
− v̂kt

(
x , θ(1)

)
=

uj
(
x , θ(1)

)
− uk

(
x , θ(1)

)
−
T−t
∑
τ=1

X

∑
x=1

βτψ̂1,t+τ(x)
[

κ̂kt ,τ−1(x |xt )
−κ̂jt ,τ−1(x |xt )

]
In the last two steps we define:

p̂jt
(
x , θ(1)

)
≡
∫
εt

J

∏
k=1

I

{
εkt − εjt

≤ v̂jt
(
x , θ(1)

)
− v̂kt

(
x , θ(1)

) } dGt (εt |xt )
and:

θ
(1)
QML ≡ argmax

θ1

N

∑
n=1

T

∑
t=1

J

∑
j=1
dnjt

{
log
[
p̂jt (xnt , θ

(1), θ
(2)
LIML)

]}
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Quasi Maximum Likelihood Estimation
Adjusting the asymptotic covariance for pre-estimation (Hotz and Miller, 1993)

Form P
(

θ(1), p, f
)
, a mapping from Θ(1) × P × F to P with:

κjtτ(xt+τ+1|xt ) ≡
{
fjt (xt+1|xt ) τ = 0
∑X
x=1 f1,t+τ(xt+τ+1|x)κjt ,τ−1(x |xt ) τ = t + 1, . . .

vjt
(
x , θ(1)

)
− vkt

(
x , θ(1)

)
= uj

(
x , θ(1)

)
− uk

(
x , θ(1)

)
−
T−t
∑
τ=1

X

∑
x=1

βτψ1,t+τ(x)
[

κkt ,τ−1(x |xt )
−κjt ,τ−1(x |xt )

]

pjt
(
x , θ(1)

)
≡
∫
εt

J

∏
k=1

I

{
εkt − εjt

≤ vjt
(
x , θ(1)

)
− vkt

(
x , θ(1)

) } gt (εt |xt ) dεt
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Quasi Maximum Likelihood Estimation
Adjusting the asymptotic covariance for pre-estimation

Let:

π1n
(

θ(1), p, f
)
= WN

{
zn ⊗

[
dn − P

(
θ(1), p, f

)]}
where WN is a weighting matrix and zn are instruments.

Define the CCP estimator for θ
(1)
CCP by solving:

∑N
n=1 π1n

(
θ(1), p̂, f̂

)
= 0
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Large Sample or Asymptotic Properties
The asymptotic covariance matrix (Newey, 1984)

Write the cell estimators as the solution to:

0 = ∑N
n=1 π2n

(
p̂, f̂
)
= ∑N

n=1

[
I dn (dn − p̂)
I fn
(
fn − f̂

) ]
where:

I dn is a (J − 1)XT dimensional row vector indicator function matching
the state variables of n to the relevant CCP component(s) in p;
I fn is a (J − 1)X 2T dimensional row vector indicator function
matching state variables and decision(s) of n to f components;
fn is the outcome from the n making a choice given her state variables.

For k ∈ {1, 2} and k ′ ∈ {1, 2} define:

Ωkk ′ ≡ E
[
πknπ′k ′n

]
Γ11 ≡ E

[
∂π1n

∂θ(1)

]
Γ12 ≡ E

[
∂π1n

∂p
,

∂π1n
∂f

]
Then the asymptotic covariance matrix for θ

(1)
CCP , denoted by Σ1, is:

Σ1 = Γ−111
[
Ω11 + Γ12 (Ω22 −Ω21 −Ω12) Γ′12

]
Γ−1′11
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Minimum Distance Estimators
Imposing restrictions on the unrestricted utility estimates (Altug and Miller, 1998)

Another approach is to match up the parametrization of ujt (xt ),
denoted by ujt (xt , θ

(1)), to its representation as closely as possible:
1 Form the vector function where Ψ (p, f ) by stacking:

Ψjt (xt , p, f ) ≡ ψ1t (xt )− ψjt (xt )

+
T−t
∑

τ=1

X

∑
x=1

βτψ1,t+τ(x)
[

κkt ,τ−1(x |xt )
−κjt ,τ−1(x |xt )

]
2 Estimate the reduced form p̂ and f̂ .
3 Minimize the quadratic form to obtain:

θ
(1)
MD = argmin

θ(1)∈Θ(1)

[
u(x , θ(1))−Ψ

(
p̂, f̂
)]′

W̃
[
u(x , θ(1))−Ψ

(
p̂, f̂
)]

= argmin
θ(1)∈Θ(1)

[
u(x , θ(1))′W̃ u(x , θ(1))− 2Ψ

(
p̂, f̂
)′
W̃ u(x , θ(1))

]
where W̃ , is a square (J − 1)TX weighting matrix.
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Minimum Distance Estimators
Notes on minimizing the difference between unrestricted and restricted payoffs

From the Representation theorem ujt (xt , θ
(1)
0 ) = Ψjt (xt , p, f0) if p are

the CCPs for (T , β, θ0, g).

Furthermore ujt (x) is exactly identified from Ψjt (x , p, f0) without
imposing any additional restrictions.

Therefore parameterizing u with θ
(1)
0 imposes overidentifying

restrictions so θ
(1)
MD is consistent if the restrictions are true.

Note θ
(1)
MD has a closed form if u(x ; θ(1)0 ) is linear in θ

(1)
0 .
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Simulated Moments Estimators
A simulated moments estimator (Hotz, Miller, Sanders and Smith, 1994)

We could form a Methods of Simulated Moments (MSM) estimator
from:

1 Simulate a lifetime path from xntn onwards for each j , using f̂ and p̂.
2 Obtain estimates of Ê

[
εjt

∣∣∣dojt = 1, xt ].
3 Stitch together a simulated lifetime utility outcome from the j th choice

at tn onwards for n, denoted v̂nj ≡ v̂jtn
(
xntn ; θ

(1), f̂ , p̂
)
.

4 Form the J − 1 dimensional vector hn
(
xntn ; θ

(1), f̂ , p̂
)
from:

hnj
(
xntn ; θ

(1), f̂ , p̂
)
≡ v̂jtn

(
xntn , θ

(1), f̂ , p̂
)
− v̂Jtn

(
xntn , θ

(1), f̂ , p̂
)

+ψ̂jt (xntn )− ψ̂Jt (xntn )

5 Given a weighting matrix WS and an instrument vector zn minimize:

N−1
[
∑N
n=1 znhn

(
xntn ; θ

(1), f̂ , p̂
)]′

WS

[
∑N
n=1 znhn

(
xntn ; θ

(1), f̂ , p̂
)]
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Simulated Moments Estimators
Notes on this MSM estimator

In the first step, given the state simulate a choice using p̂, and
simulate the next state using f̂ . In this way generate x̂ns and
d̂ns ≡

(
d̂n1s , . . . , d̂nJs

)
for all s ∈ {tn + 1, . . . ,T}.

Generating this path does not exploit knowledge of G , only the CCPs.

In the second step Ê
[
εjt

∣∣∣dojt = 1, xt ] ≡
p−1jt (xt )

∫
εt

J

∏
k=1

I
{

ψ̂jt (xt )− ψ̂kt (xt ) ≤ εjt − εkt

}
εjtg (εt ) dεt

In Step 4 v̂jt
(
xntn , θ

(1), f̂ , p̂
)
is stitched together as:

ujt (xntn , θ
(1))+

T

∑
s=t+1

J

∑
j=1

βt−11
{
d̂njs = 1

}{ ujs (x̂ns , θ
(1))

+Ê
[
εjs

∣∣∣x̂ns , d̂njs = 1]
}

The solution has a closed form if ujt (x , θ
(1)) is linear in θ(1).
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Simulated Moments Estimators
Another MSM estimator

Indeed εt could be simulated as well:
1 Draw a realization ε̂ from G (ε) for each s ∈ {tn , . . . ,T} and n.
2 Set:

d̂njs =
J

∏
k=1

I
{

ψ̂js (x̂ns )− ψ̂ks (x̂ns ) ≤ ε̂njs − ε̂nks

}
and stitch together:

ujt (xntn , θ
(1)) +

T

∑
s=t+1

J

∑
j=1

βt−11
{
d̂njs = 1

}{
ujs (x̂ns , θ

(1)) + ε̂js

}
3 Minimize an analogous quadratic form to obtain θ(1).

Bajari, Benkard and Levin (2007) estimate an approximate reduced
form of the policy function without exploiting the CCPs (pages
1341-1342, 2007), but acknowledge: "Our method requires that one
be able to consistently estimate each firm’s policy function, so this
may limit our ability to estimate certain models (page 1345, 2007)."
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Large Sample or Asymptotic Properties
Adjusting the asymptotic covariance for simulation as well (Pakes and Pollard, 1989)

Simulation adds an additional, independent source of variation to the
sample moments and hence the estimated asymptotic standard errors.

Following the definition given in Lecture 7 suppose θ̂
(1)
minimizes:

N−1
[
∑N
n=1 znhn

(
xntn , θ

(1), f̂ , p̂
)]′

WS

[
∑N
n=1 znhn

(
xntn , θ

(1), f̂ , p̂
)]

Then the additional component to the covariance matrix for θ̂
(1)
is:

ΣS1 ≡ S−1
(
Υ′WSΥ

)−1 Υ′WSE
[
znhnh′nz

′
n

]
WSΥ

(
Υ′WSΥ

)−1
where S is the number of simulations (per observation):

Υ = E

zn∂hn
(
xntn , θ

(1),
0 f0, p0

)
∂θ(1)


Note that ΣS1 → 0 as S → ∞.
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Asymptotic Effi ciency
The Newton-Raphson Algorithm

Recall that for any extremum estimator for a problem satisfying
standard regularity conditions that:

θ(i+1) = θ(i ) −
[
∂2QN

(
θ(i )
) /

∂θ∂θ′
]−1 [

∂QN
(

θ(i )
) /

∂θ
]

where N indicates the sample, θ is the parameter value, and QN (θ) is
the criterion function associated with the extremum estimator

This algorithm converges to the maximand if the criterion function is
strictly concave, and/or if θ(i ) is close enough to the maximum.

The algorithm is based on the quadratic approximation:

QN (θ) ' QN
(

θ(i )
)
+
[
∂QN

(
θ(i )
) /

∂θ
]′ (

θ − θ(i )
)

+
1
2

(
θ − θ(i )

)′ [
∂2QN

(
θ(i )
) /

∂θ∂θ′
] (

θ − θ(i )
)
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Asymptotic Effi ciency
Iterating one step (Amemiya, 1985, pp 137 - 139)

Suppose θ(1) is a
√
N consistent estimator for the (interior) true value

θ0 ∈ Θ, the parameter space. Then it is well known that θ(1) has the
same asymptotic properties as θ(∞), the limit of the sequence, namely:

√
N
(

θ(2) − θ0
)
∼
a.d .

p lim 1
N

∂2QN
(

θ(1)
)

∂θ∂θ′

−1 p lim 1√
N

∂QN
(

θ(1)
)

∂θ


Specializing QN (θ) = log LN (θ), the log likelihood, θ(2) is

asymptotically effi cient, and
√
N
(

θ(2) − θ0
)
is asymptotically normal

with mean zero and covariance:

−
{
limE

[
1
N

∂2 log LN (θ0)
∂θ∂θ′

]}−1
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Asymptotic Effi ciency
Achieving asymptotic effi ciency from a CCP estimator (Aguirregaberia and Miro, 2002)

This general principle can be applied to dynamic discrete choice
models:

1 Estimate the (unrestricted) CCPs.
2 Use a CCP estimator to obtain θ(1), the parameters characterizing the
primitives.

3 Solve for the CCPs as a mapping of θ(1) and the state variables.
4 Take one Newton-Raphson step to obtain θ(2).

Note that this procedure asmptotically guarantees the global
optimum is selected.

Starting out with a trial guess of a θ(0) and then updating, the
traditional way of implementing ML, reaches a local (not global)
optimum at best ("Overshooting" cannot be ruled out).
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Revisiting the Renewal Problem (Rust,1987)
Bus engines

Recall Mr. Zurcher decides whether to replace the existing engine
(d1t = 1), or keep it for at least one more period (d2t = 1).

Bus mileage advances 1 unit (xt+1 = xt + 1) if Zurcher keeps the
engine (d2t = 1) and is set to zero otherwise (xt+1 = 0 if d1t = 1).

Zurcher sequentially maximizes expected discounted sum of payoffs:

E

{
∞

∑
t=1

βt−1 [d2t (θ1xt + θ2s + ε2t ) + d1tε1t ]

}

where the iid choice-specific shocks, εjt are Type 1 extreme value.
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Revisiting the Renewal Problem
Value functions and replacement CCP

Let V (xt , s) denote the ex-ante value function at the beginning of
period t, the discounted sum of current and future payoffs just before
εt is realized and before the decision at t is made.

We also define the conditional value function for each choice as:

vj (x , s) =
{

βV (1, s) if j = 1
θ1x + θ2s + βV (x + 1, s) if j = 2

Letting p1(x , s) denote the conditional choice probability (CCP) of
replacing the engine given x and s:

p1(x , s) =
1

1+ exp [v2(x , s)− v1(x , s)]
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Revisiting the Renewal Problem
Exploiting the renewal property

From previous lectures when εjt is Type 1 extreme value, then for all
(x , s, ):

V (x , s) = vj (x , s)− β log [pj (x , s)] + 0.57 . . .

Therefore the conditional valuation function of not replacing is:

v2(x , s) = θ1x + θ2s + βV (x , s + 1)

= θ1x + θ2s + β {v1 (x + 1, s)− p1(x + 1, s) + 0.57 . . .}

Similarly:

v1(x , s) = βV (1, s) = β {v1(1, s)− ln [p1(1, s)] + 0.57} . . .

Because the miles on a bus engine is the only factor affecting the
value of the bus:

v1(x + 1, s) = v1(1, s)
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Revisiting the Renewal Problem
Using CCPs to represent differences in continuation values

Differencing the expressions:

v2(x , s)− v1(x , s) = θ1x + θ2s + β ln [p1(1, s)]− β ln [p1(x + 1, s)]

Therefore:

p1(x , s) =
1

1+ exp [v2(x , s)− v1(x , s)]

=
1

1+ exp
{

θ1x + θ2s + β ln
[

p1(1,s)
p1(x+1,s)

]}
Intuitively the CCP for current replacement is the CCP for a static
model with an offset term, to account for differences in continuation
values from their exante value functions, V (x , s + 1)− V (1, s).
The renewal property is a simple example of finite dependence.
In general, models with finite dependence have offset terms that only
depend on CCPs a finite number of periods into the future.
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Revisiting the Renewal Problem
CCP estimation

Consider the following CCP estimator.

Form first stage estimate for p1(x , s), called p̂1(x , s) from the relative
frequencies:

p̂1(x , s) =
∑N
n=1 d1nt I (xnt = x) I (sn = s)

∑N
n=1 I (xnt = x) I (sn = s)

In second stage substitute p̂1(x , s) into the likelihood as incidental
parameters and estimate θ1 and θ2 with a logit:

d1nt + d2nt exp(θ1xnt + θ2sn + β ln [p̂1(1, sn)]− β ln [p̂1(xnt + 1, sn)]
1+ exp(θ1xnt + θ2sn + β ln [p̂1(1, sn)]− β ln [p̂1(xnt + 1, sn)])
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Monte Carlo Study (Arcidiacono and Miller, 2011)
Modifying the bus engine problem

Suppose bus type s ∈ {0, 1 } is equally weighted.
There are two other state variables

1 total accumulated mileage:

x1t+1 =
{

∆t if d1t = 1
x1t + ∆t if d2t = 1

2 permanent route characteristic for the bus, x2, that systematically
affects miles added each period.

We assume ∆t ∈ {0, 0.125, . . . , 24.875, 25} is drawn from a truncated
exponential distribution:

f (∆t |x2) = exp [−x2(∆t − 25)]− exp [−x2(∆t − 24.875)]

and x2 is a multiple 0.01 drawn from a discrete equi-probability
distribution between 0.25 and 1.25.
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Monte Carlo Study
Including aggregate shocks in panel estimation

Let θ0t denote an aggregate shock (denoting fully anticipated cost
fluctuations). Then the difference in current payoff from retaining
versus replacing the engine is:

u2t (x1t , s)− u1t (x1t , s) ≡ θ0t + θ1min {x1t , 25}+ θ2s

Denoting xt ≡ (x1t , x2) , this implies:

v2t (xt , s)− v1t (xt , s) = θ0t + θ1min {x1t , 25}+ θ2s

+β ∑
∆t∈Λ

{
ln
[

p1t (1, s)
p1t (x1t + ∆t , s)

]}
f (∆t |x2)

In the first three columns of the next table each sample is on 1000
buses for 20 periods, while in the fourth column we assume 2000
buses are observed for 10 periods.
The mean and standard deviations are compiled from 50 simulations.
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Monte Carlo Study
Extract from Table 1 of Arcidiacono and Miller (2011)
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Entry Exit Game
Choice Variables

Suppose there is a finite maximum number of firms in a market at
any one time denoted by I .

If a firm exits, the next period an opening occurs to a potential
entrant, who may decide to exercise this one time option, or stay out.

At the beginning of each period every incumbent firm has the option
of quitting the market or staying one more period.

Let d (i )t ≡
(
d (i )1t , d

(i )
2t

)
, where d (i )1t = 1 means i exits or stays out of

the market in period t, and d (i )2t = 1 means i enters or does not exit.

If d (i )2t = 1 and d
(i )
1,t−1 = 1 then the firm in spot i at time t is an

entrant, and if d (i )2,t−1 = 1 the spot i at time t is an incumbent.
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Entry Exit Game
State Variables

In this application there are three components to the state variables
and xt = (x1, x2t , st ).
The first is a permanent market characteristic, denoted by x1, and is
common across firms in the market. Each market faces an equal
probability of drawing any of the possible values of x1 where
x1 ∈ {1, 2, . . . , 10}.
The second, x2t , is whether or not each firm is an incumbent,
x2t ≡ {d (1)2t−1, . . . , d (I )2t−1}. Entrants pay a start up cost, making it
more likely that stayers choose to fill a slot than an entrant.
A demand shock st ∈ {1, . . . , 5} follows a first order Markov chain.
In particular, the probability that st+1 = st is fixed at π ∈ (0, 1), and
probability of any other state occurring is equally likely:

Pr {st+1 |st } =
{

π if st+1 = st
(1− π) /4 if st+1 6= st
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Entry Exit Game
Price and Revenue

Each active firm produces one unit so revenue, denoted by yt , is just
price.

Price is determined by:

1 the supply of active firms in the market, ∑Ii=1 d
(i )
2t

2 a permanent market characteristic, x1
3 the Markov demand shock st
4 another temporary shock, denoted by ηt , distributed iid standard
normal distribution, revealed to each market after the entry and exit
decisions are made.

The price equation is:

yt = α0 + α1x1 + α2st + α3
I

∑
i=1
d (i )2t + ηt
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Entry Exit Game
Expected Profits conditional on competition

We assume costs comprise a choice specific disturbance ε
(i )
jt that is

privately observed, plus a linear function of zt .
Net current profits for exiting incumbent firms, and potential entrants
who do not enter, are ε

(i )
1t . Thus U

(i )
1

(
x (i )t , s

(i )
t , d

(−i )
t

)
≡ 0.

Current profits from being active are the sum of
(

ε
(i )
2t + ηt

)
and:

U (i )2
(
x (i )t , s

(i )
t , d

(−i )
t

)
≡ θ0 + θ1x1 + θ2st + θ3

I

∑
i ′=1
i ′ 6=i

d (i
′)

2t + θ4d
(i )
1,t−1

where θ4 is the startup cost that only entrants pay.
In equilibrium E (ηt ) = 0 so:

u(i )j (xt , st ) = θ0 + θ1x1 + θ2st + θ3
I

∑
i ′=1
i ′ 6=i

p(i
′)

2 (xt , st ) + θ4d
(i )
1,t−1
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Entry Exit Game
Terminal Choice Property

We assume ε
(i )
jt is distributed Type 1 extreme value.

The exit payoff is normalized to zero.

We can now show the conditional value function for being active is:

v (i )2 (xt , st ) = u(i )2 (xt , st )

−β ∑
x∈X

∑
s∈S

(
ln
[
p(i )1 (x , s)

])
f (i )2 (x , s |xt , st )

Note the future value term only depends on one-period-ahead CCPs
and the transition probabilities of the state variables.

Exiting is a terminal choice, another example of finite dependence.
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Entry Exit Game
Monte Carlo

The number of firms in each market is set to six and we simulated
data for 3,000 markets.

The discount factor is set at β = 0.9.

Starting at an initial date with six potential entrants in the market,
we solved the model, ran the simulations forward for twenty periods,
and used the last ten periods to estimate the model.

The key difference between this Monte Carlo and the renewal Monte
Carlo is that the conditional choice probabilities have an additional
effect on both current utility and the transitions on the state variables
due to the effect of the choices of the firm’s competitors on profits.
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Entry Exit Game
Extract from Table 2 of Arcidiacono and Miller (2011)

Miller (University of Tokyo) Lecture 3 October 2019 38 / 39



Summary
Factors to consider when selecting an esimator

There is a trade off between effi ciency and computational ease:
1 Asymptotic effi ciency

ML and the 2 step (CCP/Newton) estimators are the most effi cient.

2 Small sample properties

Simulation induces additional variation that may increase the number
of observations required to approximate the asymptotic distribution.

3 Computational ease

MD with linear utility in the parameters has a closed form.
ML is the most burdensome and typically requires numerical
approximations.

Finally there is an open question about how well these estimators
perform when the model is misspecified.
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