Conditional Independence and the Inversion Theorem

Robert A. Miller

University of Tokyo 2019

October 2019

Recapitulation

A dynamic discrete choice model

- Each period t ∈ {1, 2, ..., T} for T ≤ ∞, an individual chooses among J mutually exclusive actions.
- Let d_{jt} equal one if action j ∈ {1,..., J} is taken at time t and zero otherwise:

$$d_{jt} \in \{0,1\}$$
 $\sum_{j=1}^J d_{jt} = 1$

- Suppose that actions taken at time t can potentially depend on the state z_t ∈ Z.
- The current period payoff at time t from taking action j is $u_{it}^*(z_t)$.
- Given choices (d_{1t},..., d_{Jt}) in each period t ∈ {1, 2, ..., T} the individual's expected utility is:

$$E\left\{\sum_{t=1}^{T}\sum_{j=1}^{J}\beta^{t-1}d_{jt}u_{jt}^{*}(z_{t})|z_{1}\right\}_{\mathcal{F}}$$

Recapitulation

Value function and optimization

Write the optimal decision rule as d^o_t (z_t) = (d^o_{1t}(z_t),..., d^o_{Jt}(z_t)).
Denote the value function by V^{*}_t(z_t):

$$V_t^*(z_t) \equiv E\left\{\sum_{s=t}^T \sum_{j=1}^J \beta^{t-1} d_{js}^o(z_s) u_{js}^*(z_s) | z_t\right\}$$

=
$$\sum_{j=1}^J d_{jt}^o \left[u_{jt}^*(z_t) + \beta \int_{z_{t+1}} V_{t+1}^*(z_{t+1}) dF_{jt}(z_{t+1} | z_t)\right]$$

 Let v_{jt}^{*}(z_t) denote the flow payoff of action j plus the expected future utility of behaving optimally from period t + 1 on:

$$v_{jt}^{*}(z_{t}) \equiv u_{jt}^{*}(z_{t}) + \beta \sum_{z_{t+1}=1}^{Z} V_{t+1}^{*}(z_{t+1}) dF_{jt}(z_{t+1} | z_{t})$$

• Bellman's principle implies:

$$d_{jt}^{o}\left(z_{t}\right)\equiv\prod_{k=1}^{K}I\left\{v_{jt}^{*}(z_{t})\geq v_{kt}^{*}(z_{t})\right\}$$

- Partition the states $z_t \equiv (x_t, \epsilon_t)$ into:
 - those which are observed, x_t
 - and those that are unobserved, ϵ_t .
- Without loss of generality we can express u^{*}_{jt}(z_t) as the sum of its conditional expectation on the observed variables plus a residual:

$$u_{jt}^{*}(x_{t},\epsilon_{t}) \equiv E\left[u_{jt}^{*}(x_{t},\epsilon_{t}) | x_{t}\right] + \epsilon_{jt} \equiv u_{jt}(x_{t}) + \epsilon_{jt}$$

- For identification and estimation purposes we typically treat β , $u_{jt}(z_t)$, $dF_{jt}(z_{t+1}|z_t)$ and $dG(\epsilon_1|x_1)$, the density/probability for ϵ_1 , as the primitives to our model.
- We often index the family of models we are considering (and limiting our search to), by say Θ.

Recapitulation

ML estimation

 The maximum likelihood (ML) estimator, θ_{ML} ∈ Θ selects θ to maximize the joint probability (density) of the observed occurrences:

$$\prod_{n=1}^{N} \int_{\epsilon_{T}} \dots \int_{\epsilon_{1}} \left[\begin{array}{c} \sum_{j=1}^{J} I \left\{ d_{njT} = 1 \right\} d_{jT}^{o} \left(x_{nT}, \epsilon_{T} \right) \times \\ \prod_{t=1}^{T-1} H_{nt} \left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t} \right) dG \left(\epsilon_{1} \mid x_{n1} \right) \end{array} \right]$$

where:

$$\begin{aligned} & H_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) \equiv \\ & \sum_{j=1}^{J} I\left\{d_{njt} = 1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}\right) dF_{jt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) \end{aligned}$$

is the probability (density) of the pair $(x_{n,t+1}, \epsilon_{t+1})$ conditional on (x_{nt}, ϵ_t) when the observed choices are optimal for $\theta \in \Theta$.

- What are the computational challenges to large state space?
 - Computing the value function;
 - Solving for equilibrium in a multiplayer setting;
 - Integrating over unobserved heterogeneity.
- These challenges suggest on several dimensions:
 - Keep the dimension of the state space small;
 - 2 Assume all choices and outcomes are observed;
 - Model unobserved states as a matter of computational convenience;
 - Onsider only one side of market to finesse equilibrium issues;
 - Adopt parameterizations based on convenient functional forms.

Separable Transitions in the Observed Variables A simplification

 Suppose the transition of the observed variables does not depend on the unobserved variables for all (j, t, x_t, c_t):

$$F_{jt}(x_{t+1}|x_t,\epsilon_t) = F_{jt}(x_{t+1}|x_t)$$

 Assuming x_{t+1} conveys all the information of x_t for the purposes of forming probability distributions at t + 1:

$$\begin{aligned} F_{jt}\left(x_{t+1}, \epsilon_{t+1} \mid x_t, \epsilon_t\right) &\equiv G_{j,t+1}\left(\epsilon_{t+1} \mid x_{t+1}, x_t, \epsilon_t\right) F_{jt}\left(x_{t+1} \mid x_t, \epsilon_t\right) \\ &\equiv G_{j,t+1}\left(\epsilon_{t+1} \mid x_{t+1}, \epsilon_t\right) F_{jt}\left(x_{t+1} \mid x_t\right) \end{aligned}$$

• The ML estimator maximizes the same criterion function but $H_{nt}(x_{n,t+1}, \epsilon_{t+1} | x_{nt}, \epsilon_t)$ simplifies to:

$$\begin{aligned} H_{nt} \left(x_{n,t+1}, \epsilon_{t+1} \, \big| \, x_{nt}, \epsilon_{t} \right) &= \\ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) dG_{j,t+1} \left(\epsilon_{t+1} \, \big| \, x_{n,t+1}, \epsilon_{t} \right) dF_{jt} \left(x_{n,t+1} \, \big| \, x_{nt} \right) dF_{jt} \left(x_{n,t+1} \,$$

Separable Transitions in the Observed Variables Exploiting separability in estimation

- Instead of estimating all the parameters at once, we could use a two stage estimator to reduce computation costs:
 - Setimate $F_{jt}(x_{t+1}|x_t)$ with a cell estimator (for x finite), a nonparametric estimator, or a parametric function;
 - 2 Define:

$$\begin{aligned} &\widehat{H}_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) \equiv \\ & \sum_{j=1}^{J} \begin{bmatrix} I\left\{d_{njt}=1\right\} d_{jt}^{o}\left(x_{nt}, \epsilon_{t}\right) \\ & \times dG_{j,t+1}\left(\epsilon_{t+1} \mid x_{n,t+1}, \epsilon_{t}; \theta\right) d\widehat{F}_{jt}\left(x_{n,t+1} \mid x_{nt}\right) \end{bmatrix} \end{aligned}$$

$$\prod_{n=1}^{N} \int_{\epsilon_{T}} \dots \int_{\epsilon_{1}} \left[\begin{array}{c} \sum_{j=1}^{J} I\left\{d_{njT}=1\right\} d_{jT}^{o}\left(x_{nT}, \epsilon_{T}\right) \times \\ \prod_{t=1}^{T-1} \widehat{H}_{nt}\left(x_{n,t+1}, \epsilon_{t+1} \mid x_{nt}, \epsilon_{t}\right) dG_{1}\left(\epsilon_{1} \mid x_{n1}\right) \end{array} \right]$$

Orrect standard errors from the first stage estimator to account for the loss in asymptotic efficiency.

Miller (University of Tokyo 2019)

Conditional independence defined

- Separable transitions do not, however, free us from:
 - the curse of multiple integration;
 - Inumerical optimization to obtain the value function.
- Suppose in addition, that conditional on x_{t+1} , the unobserved variable ϵ_{t+1} is independent of (x_t, ϵ_t, d_t) .
- Conditional independence embodies both assumptions:

$$dF_{jt}(x_{t+1} | x_t, \epsilon_t) = dF_{jt}(x_{t+1} | x_t) dG_{j,t+1}(\epsilon_{t+1} | x_{t+1}, x_t, \epsilon_t) = dG_{t+1}(\epsilon_{t+1} | x_{t+1})$$

• It implies:

$$dF_{jt}(x_{t+1}, \epsilon_{t+1} | x_t, \epsilon_t) = dF_{jt}(x_{t+1} | x_t) dG_{t+1}(\epsilon_{t+1} | x_{t+1})$$

Exante value functions and conditional value functions defined

 Given conditional independence, define the exante valuation function as:

$$V_t(x_t) \equiv E\left[V_t^*(x_t, \epsilon_t) | x_t\right]$$

and the conditional valuation function as:

$$v_{jt}(x_t) \equiv u_{jt}(x_t) + \beta \int_{x_{t+1}} V_{t+1}(x_{t+1}) dF_{jt}(x_{t+1} | x_t)$$

• Optimal behavior implies that $d_{it}^o(x_t, \epsilon) = 1$ if and only if:

$$\epsilon_{kt} - \epsilon_{jt} \leq v_{jt}(x_t) - v_{kt}(x_t)$$

for all $k \in \{1, ..., J\}$.

 Under conditional independence, the conditional choice probability (CCP) for action j is defined for each (t, xt, j) as the probability of observing the jth choice conditional on the values of the observed variables when behavior is optimal:

$$p_{jt}(x_{t}) \equiv E\left[d_{jt}^{o}(x_{t},\epsilon_{t})|x_{t}\right] = \int_{\epsilon_{t}} d_{jt}^{o}(x_{nt},\epsilon_{t}) g_{t}(\epsilon_{t}|x_{nt}) d\epsilon_{t}$$

where we now assume (following the literature) that $G_t(\epsilon_t | x_{nt})$ has probability density function $g_t(\epsilon_t | x_{nt})$.

• The previous slide now implies:

$$p_{jt}(x_t) = \int_{\epsilon_t} \prod_{k=1}^J I\left\{\epsilon_{kt} - \epsilon_{jt} \le v_{jt}(x_{nt}) - v_{kt}(x_{nt})\right\} g_t\left(\epsilon_t | x_t\right) d\epsilon_t$$

• Conditional independence simplifies $H_{nt}(x_{n,t+1}, \epsilon_{t+1} | x_{nt}, \epsilon_t)$ to:

$$H_{nt}(x_{n,t+1}, \epsilon_{t+1} | x_{nt}, \epsilon_{t}) = \\ \sum_{j=1}^{J} I\{d_{njt} = 1\} d_{jt}^{o}(x_{nt}, \epsilon_{t}) g_{t+1}(\epsilon_{t+1} | x_{n,t+1}) dF_{jt}(x_{n,t+1} | x_{nt})$$

Also note that:

$$\prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) dF_{jt} \left(x_{n,t+1} | x_{nt} \right) \right\}$$

$$= \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} dF_{jt} \left(x_{n,t+1} | x_{nt} \right) \right\}$$

$$\times \prod_{t=1}^{T} \left\{ \sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) \right\}$$

Conditional Independence

ML under conditional independence

• Hence the contribution of $n \in \{1, ..., N\}$ to the likelihood is the product of:

$$\prod_{t=1}^{T-1} \sum_{j=1}^{J} I \{ d_{njt} = 1 \} dF_{jt} (x_{n,t+1} | x_{nt})$$

and:

$$\int_{\epsilon_{T}} \dots \int_{\epsilon_{1}} \prod_{t=1}^{T-1} \sum_{j=1}^{J} \left[\begin{array}{c} I \left\{ d_{njt} = 1 \right\} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) \\ \times g_{t+1} \left(\epsilon_{t+1} \mid x_{n,t+1} \right) g_{1} \left(\epsilon_{1} \mid x_{n1} \right) d\epsilon_{1} \dots d\epsilon_{T} \end{array} \right]$$
$$= \prod_{t=1}^{T} \left[\sum_{j=1}^{J} I \left\{ d_{njt} = 1 \right\} \int_{\epsilon_{t}} d_{jt}^{o} \left(x_{nt}, \epsilon_{t} \right) g_{t} \left(\epsilon_{t} \mid x_{nt} \right) d\epsilon_{t} \right]$$

Conditional Independence

A compact expression for the ML criterion function

• Since:

$$p_{jt}(x_t) \equiv \int_{\epsilon_t} d_{jt}^o(x_{nt}, \epsilon_t) g_t(\epsilon_t | x_{nt}) d\epsilon_t = E\left[d_{jt}^o(x_t, \epsilon_t) | x_t\right]$$

the log likelihood can now be compactly expressed as:

$$\sum_{n=1}^{N} \sum_{t=1}^{T-1} \sum_{j=1}^{J} I \{ d_{njt} = 1 \} \ln \left[dF_{jt} \left(x_{n,t+1} \left| x_{nt} \right. \right) \right] \\ + \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} I \{ d_{njt} = 1 \} \ln p_{jt} \left(x_t \right)$$

Connection with static models

- Suppose we only had data on the last period *T*, and wished to estimate the preferences determining choices in *T*.
- By definition this is a static problem in which $v_{jT}(x_T) \equiv u_{jT}(x_T)$.
- For example to the probability of observing the J^{th} choice is:

$$p_{JT}(x_{T}) \equiv \int_{-\infty}^{\epsilon_{JT}+u_{JT}(x_{T})} \dots \int_{-\infty}^{\epsilon_{JT}+u_{JT}(x_{T})} \int_{-\infty}^{\infty} g_{T}(\epsilon_{T} | x_{T}) d\epsilon_{T}$$

• The only essential difference between a estimating a static discrete choice model using ML and a estimating a dynamic model satisfying conditional independence using ML is that parametrizations of $v_{jt}(x_t)$ based on $u_{jt}(x_t)$ do not have a closed form, but must be computed numerically.

• The starting point for our analysis is to define differences in the conditional valuation functions as:

$$\Delta \mathbf{v}_{jkt}\left(x\right) \equiv \mathbf{v}_{jt}\left(x\right) - \mathbf{v}_{kt}\left(x\right)$$

- Although there are J(J-1) differences all but (J-1) are linear combinations of the (J-1) basis functions.
- For example setting the basis functions as:

$$\Delta v_{jt}(x) \equiv v_{jt}(x) - v_{Jt}(x)$$

then clearly:

$$\Delta v_{jkt}(x) = \Delta v_{jt}(x) - \Delta v_{kt}(x)$$

• Without loss of generality we focus on this particular basis function.

Inversion

Each CCP is a mapping of differences in the conditional valuation functions

• Using the definition of $\Delta v_{jt}(x)$:

$$p_{jt}(x) \equiv \int d_{jt}^{o}(x,\epsilon) g_{t}(\epsilon | x) d\epsilon$$

= $\int I \{\epsilon_{k} \leq \epsilon_{j} + \Delta v_{jt}(x) - \Delta v_{kt}(x) \forall k \neq j\} g_{t}(\epsilon | x) d\epsilon$
= $\int_{-\infty}^{\epsilon_{j} + \Delta v_{jt}(x) - \Delta v_{1t}(x)} \int_{-\infty}^{\epsilon_{j} + \Delta v_{jt}(x) - \Delta v_{j-1,t}(x)} \int_{-\infty}^{\epsilon_{j} + \Delta v_{jt}(x)} g_{t}(\epsilon | x) d\epsilon$

- Noting $g_t(\epsilon | x) \equiv \partial^J G_t(\epsilon | x) / \partial \epsilon_1, \dots, \partial \epsilon_J$, integrate over $(\epsilon_1, \dots, \epsilon_{j-1}, \epsilon_{j+1}, \dots, \epsilon_J)$.
- Denoting $G_{jt}(\epsilon | x) \equiv \partial G_t(\epsilon | x) / \partial \epsilon_j$, yields:

$$p_{jt}(x) = \int_{-\infty}^{\infty} G_{jt} \left(\begin{array}{c} \epsilon_j + \Delta v_{jt}(x) - \Delta v_{1t}(x), \dots \\ \dots, \epsilon_j, \dots, \epsilon_j + \Delta v_{jt}(x) \end{array} \middle| x \right) d\epsilon_j$$

Inversion

There are as many CCPs as there are conditional valuation functions

• For any vector J - 1 dimensional vector $\delta \equiv (\delta_1, \dots, \delta_{J-1})$ define:

$$Q_{jt}(\delta, x) \equiv \int_{-\infty}^{\infty} G_{jt}(\epsilon_j + \delta_j - \delta_1, \dots, \epsilon_j, \dots, \epsilon_j + \delta_j | x) d\epsilon_j$$

- We interpret $Q_{jt}(\delta, x)$ as the probability taking action j in a static random utility model (RUM) where the payoffs are $\delta_j + \epsilon_j$ and the probability distribution of disturbances is given by $G_t(\epsilon | x)$.
- It follows from the definition of $Q_{jt}(\delta, x)$ that:

$$0 \leq Q_{jt}\left(\delta,x\right) \leq 1 \text{ for all } \left(j,t,\delta,x\right) \text{ and } \sum_{j=1}^{J-1} Q_{jt}\left(\delta,x\right) \leq 1$$

• In particular the previous slide implies that for any given (j, t, x):

$$p_{jt}(x) = \int_{-\infty}^{\infty} G_{jt} \left(\begin{array}{c} \epsilon_j + \Delta v_{jt}(x) - \Delta v_{1t}(x), \\ \dots, \epsilon_j, \dots, \epsilon_j + \Delta v_{jt}(x) \end{array} \middle| x \right) d\epsilon_j \equiv Q_{jt} \left(\Delta v_t(x), x \right)$$

Miller (University of Tokyo 2019)

Theorem (Inversion)

For each (t, δ, x) define:

$$Q_{t}(\delta, x) \equiv \left(Q_{1t}(\delta, x), \dots Q_{J-1,t}(\delta, x)\right)'$$

Then the vector function $Q_t(\delta, x)$ is invertible in δ for each (t, x).

- Note that $p_{Jt}(x) = Q_{Jt}(\Delta v_t, x)$ is a linear combination of the other equations in the system because $\sum_{k=1}^{J} p_k = 1$.
- Let $p \equiv (p_1, \ldots, p_{J-1})$ where $0 \le p_j \le 1$ for all $j \in \{1, \ldots, J-1\}$ and $\sum_{j=1}^{J-1} p_j \le 1$. Denote the inverse of $Q_{jt}(\Delta v_t, x)$ by $Q_{jt}^{-1}(p, x)$.
- The inversion theorem implies:

$$\begin{bmatrix} \Delta v_{1t}(x) \\ \vdots \\ \Delta v_{J-1,t}(x) \end{bmatrix} = \begin{bmatrix} Q_{1t}^{-1} \left[p_t(x), x \right] \\ \vdots \\ Q_{J-1,t}^{-1} \left[p_t(x), x \right] \end{bmatrix}$$

- In what sense does the inversion theorem help us to finesse optimization and integration by exploiting conditional independence?
- We use the Inversion Theorem to:
 - provide empirically tractable representations of the conditional value functions.
 - 2 analyze identification in dynamic discrete choice models.
 - provide convenient parametric forms for the density of ϵ_t that generalize the Type 1 Extreme Value distribution.
 - provide cheap estimators for dynamic discrete choice models and dynamic discrete choice games of incomplete information.
 - introduce new methods for incorporating unobserved state variables.

 From the definition of the optimal decision rule, and then appealing to the inversion theorem:

$$\begin{aligned} d_{jt}^{o}\left(x_{t}, \epsilon_{t}\right) &= \prod_{k=1}^{J} \mathbb{1}\left\{\epsilon_{kt} - \epsilon_{jt} \leq v_{jt}(x) - v_{kt}(x)\right\} \\ &= \prod_{k=1}^{J} \mathbb{1}\left\{\epsilon_{kt} - \epsilon_{jt} \leq \frac{v_{jt}(x) - v_{Jt}(x_{t})}{-\left[v_{kt}(x) - v_{Jt}(x_{t})\right]}\right\} \\ &= \prod_{k=1}^{J} \mathbb{1}\left\{\epsilon_{kt} - \epsilon_{jt} \leq \Delta v_{jt}(x) - \Delta v_{kt}(x)\right\} \\ &= \prod_{k=1}^{J} \mathbb{1}\left\{\epsilon_{kt} - \epsilon_{jt} \leq Q_{jt}^{-1}\left[p_{t}(x), x\right] - Q_{kt}^{-1}\left[p_{t}(x), x\right]\right\} \end{aligned}$$

• If $G_t(\epsilon | x)$ is known and the data generating process (DGP) is (x_t, d_t) , then $p_t(x)$ and hence $d_t^o(x_t, \epsilon_t)$ are identified.

Corollaries of the Inversion Theorem

Definition of the conditional value function correction

• Define the conditional value function correction as:

$$\psi_{jt}(x) \equiv V_t(x) - v_{jt}(x)$$

• In stationary settings, we drop the t subscript and write:

$$\psi_{j}(x) \equiv V(x) - v_{j}(x)$$

 Suppose that instead of taking the optimal action she committed to taking action j instead. Then the expected lifetime utility would be:

$$v_{jt}(x_t) + E_t \left[\epsilon_{jt} \left| x_t \right] \right]$$

so committing to j before ϵ_t is revealed entails a loss of:

$$V_{t}(x_{t}) - v_{jt}(x_{t}) - E_{t}\left[\epsilon_{jt} \left| x_{t} \right.\right] = \psi_{jt}\left(x\right) - E_{t}\left[\epsilon_{jt} \left| x_{t} \right.\right]$$

• For example if $E_t [\epsilon_t | x_t] = 0$, the loss simplifies to $\psi_{it} (x)$.

Corollaries of the Inversion Theorem

Identifying the conditional value function correction

• From their respective definitions:

$$V_t(x) - v_{it}(x)$$

$$= \sum_{j=1}^J \left\{ p_{jt}(x) \left[v_{jt}(x) - v_{it}(x) \right] + \int \epsilon_{jt} d_{jt}^o(x_t, \epsilon_t) g_t(\epsilon_t | x) d\epsilon_t \right\}$$

But:

$$v_{jt}(x) - v_{it}(x) = Q_{jt}^{-1}[p_t(x), x] - Q_{it}^{-1}[p_t(x), x]$$

and

$$\int \epsilon_{jt} d_{jt}^{o}(x, \epsilon_{t}) g(\epsilon_{t} | x) d\epsilon_{t}$$

$$= \int \prod_{k=1}^{J} 1 \left\{ \begin{array}{c} \epsilon_{kt} - \epsilon_{jt} \\ \leq Q_{jt}^{-1} \left[p_{t}(x), x \right] - Q_{kt}^{-1} \left[p_{t}(x), x \right] \end{array} \right\} \epsilon_{jt} g_{t}(\epsilon_{t} | x) d\epsilon_{t}$$

• Therefore $\psi_{it}(x) \equiv V_t(x) - v_{it}(x)$ is identified if $G_t(\epsilon | x)$ is known.

Conditional Valuation Function Representation

Telescoping one period forward

From its definition:

$$v_{jt}(x_t) = u_{jt}(x_t) + \beta \sum_{x=1}^{X} V_{t+1}(x) f_{jt}(x_{t+1}|x_t)$$

• Substituting for $V_{t+1}(x_{t+1})$ using conditional value function correction we obtain for any k:

$$v_{jt}(x_t) = u_{jt}(x_t) + \beta \sum_{x=1}^{X} \left[v_{k,t+1}(x) + \psi_{k,t+1}(x) \right] f_{jt}(x|x_t)$$

• We could repeat this procedure ad infinitum, substituting in for $v_{k,t+1}(x)$ by using the definition for $\psi_{kt}(x)$.

Conditional Valuation Function Representation

Recursively defining the distribution of future state variables

- To formalize this idea, consider a random sequence of weights from t to T which begins with ω_{jt}(x_t, j) = 1.
- For periods $\tau \in \{t + 1, ..., T\}$, the choice sequence maps x_{τ} and the initial choice j into

$$\omega_{\tau}(\mathbf{x}_{\tau}, j) \equiv \{\omega_{1\tau}(\mathbf{x}_{\tau}, j), \dots, \omega_{J\tau}(\mathbf{x}_{\tau}, j)\}$$

where $\omega_{k\tau}(x_{\tau}, j)$ may be negative or exceed one but:

$$\sum_{k=1}^{J} \omega_{k\tau}(x_{\tau}, j) = 1$$

• The weight of state $x_{\tau+1}$ conditional on following the choices in the sequence is recursively defined by $\kappa_t(x_{t+1}|x_t, j) \equiv f_{jt}(x_{t+1}|x_t)$ and for $\tau = t + 1, ..., T$:

$$\kappa_{\tau}(x_{\tau+1}|x_t,j) \equiv \sum_{x_{\tau}=1}^{X} \sum_{k=1}^{J} \omega_{k\tau}(x_{\tau},j) f_{k\tau}(x_{\tau+1}|x_{\tau}) \kappa_{\tau-1}(x_{\tau}|x_t,j)$$

Theorem (Representation)

For any state $x_t \in \{1, ..., X\}$, choice $j \in \{1, ..., J\}$ and weights $\omega_{\tau}(x_{\tau}, j)$ defined for periods $\tau \in \{t, ..., T\}$:

$$v_{jt}(x_t) = u_{jt}(x_t) + \sum_{\tau=t+1}^{T} \sum_{k=1}^{J} \sum_{x=1}^{X} \beta^{\tau-t} \left[u_{k\tau}(x) + \psi_k[p_{\tau}(x)] \right] \omega_{k\tau}(x,j) \kappa_{\tau-1}(x|x_t,j)$$

- The theorem yields an alternative expression for $v_{jt}(x_t)$ that dispenses with recursive maximization.
- Intuitively, the individuals have already solved their optimization problem, so their decisions, as reflected in their CCPs, are informative of their value functions.

Generalized Extreme Values Definition

- Can we exploit this representation in identification and estimation?
- To make the approach operational requires us to compute $\psi_k(p)$ for at least some k.
- Suppose ϵ is drawn from the GEV distribution function:

$$G(\epsilon_1, \epsilon_2, \dots, \epsilon_J) \equiv \exp\left[-\mathcal{H}\left(\exp[-\epsilon_1], \exp[-\epsilon_2], \dots, \exp[-\epsilon_J]\right)\right]$$

where $\mathcal{H}(Y_1, Y_2, \ldots, Y_J)$ satisfies the following properties:

- $\mathcal{H}(Y_1, Y_2, ..., Y_J)$ is nonnegative, real valued, and homogeneous of degree one;
- $@ \lim \mathcal{H}(Y_1, Y_2, \dots, Y_J) \to \infty \text{ as } Y_j \to \infty \text{ for all } j \in \{1, \dots, J\};$
- Solution for any distinct (i₁, i₂,..., i_r) the cross derivative ∂H (Y₁, Y₂,..., Y_J) /∂Y_{i1}, Y_{i2},..., Y_{ir} is nonnegative for r odd and nonpositive for r even.

- - Suppose $G(\epsilon)$ factors into two independent distributions, one a nested logit, and the other any GEV distribution.
 - Let J denote the set of choices in the nest and denote the other distribution by G₀ (Y₁, Y₂,..., Y_K) let K denote the number of choices that are outside the nest.
 - Then:

$$G(\epsilon) \equiv G_0(\epsilon_1, \dots, \epsilon_K) \exp\left[-\left(\sum_{j \in \mathcal{J}} \exp\left[-\epsilon_j/\sigma\right]\right)^{\sigma}\right]$$

• The correlation of the errors within the nest is given by $\sigma \in [0, 1]$ and errors within the nest are uncorrelated with errors outside the nest. When $\sigma = 1$, the errors are uncorrelated within the nest, and when $\sigma = 0$ they are perfectly correlated.

Generalized Extreme Values Lemma 2 of Arcidiacono and Miller (2011)

• Define $\phi_i(Y)$ as a mapping into the unit interval where

$$\phi_{j}(\mathbf{Y}) = Y_{j}\mathcal{H}_{j}(Y_{1},\ldots,Y_{J})/\mathcal{H}(Y_{1},\ldots,Y_{J})$$

• Since $\mathcal{H}_j(Y_1, \ldots, Y_J)$ and $\mathcal{H}(Y_1, \ldots, Y_J)$ are homogeneous of degree zero and one respectively, $\phi_j(Y)$ is a probability, because $\phi_j(Y) \ge 0$ and $\sum_{j=1}^J \phi_j(Y) = 1$.

Lemma (GEV correction factor)

When ϵ_t is drawn from a GEV distribution, the inverse function of $\phi(Y) \equiv (\phi_2(Y), \dots \phi_J(Y))$ exists, which we now denote by $\phi^{-1}(p)$, and:

$$\psi_j(p) = \ln \mathcal{H}\left[1, \phi_2^{-1}(p), \dots, \phi_J^{-1}(p)
ight] - \ln \phi_j^{-1}(p) + \gamma$$

(日) (同) (三) (三)

Generalized Extreme Values

Correction factor for extended nested logit

Lemma

For the nested logit $G(\epsilon_t)$ defined above:

$$\psi_{j}(p) = \gamma - \sigma \ln(p_{j}) - (1 - \sigma) \ln\left(\sum_{k \in \mathcal{J}} p_{k}\right)$$

- Note that $\psi_j(p)$ only depends on the conditional choice probabilities for choices that are in the nest: the expression is the same no matter how many choices are outside the nest or how those choices are correlated.
- Hence, $\psi_j(p)$ will only depend on $p_{j'}$ if ϵ_{jt} and $\epsilon_{j't}$ are correlated. When $\sigma = 1$, ϵ_{jt} is independent of all other errors and $\psi_j(p)$ only depends on p_j .

Adapting Dynamic Games to the CCP Framework Players and choices

- This framework naturally lends itself to studying equilibrium in games of incompete information.
- For example consider a dynamic infinite horizon game for finite *I* players.
- Thus $T = \infty$ and $I < \infty$.
- Each player $i \in I$ makes a choice $d_t^{(i)} \equiv \left(d_{1t}^{(i)}, \ldots, d_{Jt}^{(i)}\right)$ in period t.
- Denote the choices of all the players in period t by:

$$d_t \equiv \left(d_t^{(1)}, \ldots, d_t^{(I)}
ight)$$

and denote by:

$$d_t^{(-i)} \equiv \left(d_t^{(1)}, \dots, d_t^{(i-1)}, d_t^{(i+1)}, \dots, d_t^{(I)}\right)$$

the choices of $\{1, \ldots, i-1, i+1, \ldots, I\}$ in period t, that is all the players apart from i.

Adapting Dynamic Games to the CCP Framework State variables

- Denote by x_t the state variables of the game that are not *iid*.
- For example x_t includes the capital of every firm. Then:
 - firms would have the same state variables.
 - x_t would affect rivals in very different ways.
- We assume all the players observe x_t.
- Denote by $F(x_{t+1} | x_t, d_t)$ the probability of x_{t+1} occurs when the state variables are x_t and the players collectively choose d_t .
- Similarly let:

$$F_{j}\left(x_{t+1} \mid x_{t}, d_{t}^{(-i)}\right) \equiv F\left(x_{t+1} \mid x_{t}, d_{t}^{(-i)}, d_{jt}^{(i)} = 1\right)$$

denote the probability distribution determining x_{t+1} given x_t when $\{1, \ldots, i-1, i+1, \ldots, I\}$ choose $d_t^{(-i)}$ in t and i makes choice j.

Adapting Dynamic Games to the CCP Framework Payoffs and information

- Suppose \$\varepsilon_t^{(i)} \equiv (\varepsilon_{1t}^{(i)}, \ldots, \varepsilon_{jt}^{(i)})\$, identically and independently distributed with density \$\varepsilon (\varepsilon_{t}^{(i)})\$, affects the payoffs of \$i\$ in \$t\$.
 Also let \$\varepsilon_t^{(-i)} \equiv (\varepsilon_{t}^{(1)}, \ldots, \varepsilon_{t}^{(i-1)}, \varepsilon_{t}^{(i+1)}, \ldots, \varepsilon_{t}^{(l)})\$.
- The systematic component of current utility or payoff to player *i* in period *t* form taking choice *j* when everybody else chooses $d_t^{(-i)}$ and the state variables are z_t is denoted by $U_j^{(i)}\left(x_t, d_t^{(-i)}\right)$.
- Denoting by β ∈ (0, 1) the discount factor, the summed discounted payoff to player *i* throughout the course of the game is:

$$\sum_{t=1}^{T} \sum_{j=1}^{J} \beta^{t-1} d_{jt}^{(i)} \left[U_{j}^{(i)} \left(x_{t}, d_{t}^{(-i)} \right) + \epsilon_{jt}^{(i)} \right]$$

• Players noncooperatively maximize their expected utilities, moving simultaneously each period. Thus *i* does not condition on $d_t^{(-i)}$ when making his choice at date *t*, but only sees $(x_t, \epsilon_t^{(i)})$.

Adapting Dynamic Games to the CCP Framework Markov strategies

- This is a stationary environment and we focus on Markov decision rules, which can be expressed $d_j^{(i)}(x_t, \epsilon_t^{(i)})$.
- Let $d^{(-i)}\left(x_t, \epsilon_t^{(-i)}\right)$ denote the strategy of every player but *i*: $\begin{pmatrix} d^{(1)}\left(x_t, \epsilon_t^{(1)}\right), \dots, d^{(i-1)}\left(x_t, \epsilon_t^{(i-1)}\right), d^{(i+1)}\left(x_t, \epsilon_t^{(i+1)}\right), \\ d^{(i+2)}\left(x_t, \epsilon_t^{(i+2)}\right) \dots, d^{(l)}\left(x_t, \epsilon_t^{(l)}\right) \end{pmatrix}$
- Then the expected value of the game to *i* from playing $d_j^{(i)}\left(x_t, \epsilon_t^{(i)}\right)$ when everyone else plays $d\left(x_t, \epsilon_t^{(-i)}\right)$ is:

$$V^{(i)}(x_{1}) \equiv E\left\{\sum_{t=1}^{\infty}\sum_{j=1}^{J}\beta^{t-1}d_{j}^{(i)}\left(x_{t},\epsilon_{t}^{(i)}\right)\left[U_{j}^{(i)}\left(z_{t},d\left(x_{t},\epsilon_{t}^{(-i)}\right)\right)+\epsilon_{jt}^{(i)}\right]|x_{1}\right\}\right\}$$

Adapting Dynamic Games to the CCP Framework <u>Choice probabilities generated by Markov strategies</u>

• Integrating over $\epsilon_t^{(i)}$ we obtain the j^{th} conditional choice probability for the i^{th} player at t as $p_i^{(i)}(x_t)$:

$$p_j^{(i)}(x_t) = \int d_j^{(i)}\left(x_t, \epsilon_t^{(i)}\right) g\left(\epsilon_t^{(i)}\right) d\epsilon_t^{(i)}$$

Let P (d_t⁽⁻ⁱ⁾ |x_t) denote the joint probability firm i's competitors choose d_t⁽⁻ⁱ⁾ conditional on the state variables z_t.
Since ε_t⁽ⁱ⁾ is distributed independently across i ∈ {1,..., l}:

$$P\left(d_{t}^{(-i)}|x_{t}\right) = \prod_{\substack{i'=1\\i'\neq i}}^{l} \left(\sum_{j=1}^{J} d_{jt}^{(i')} p_{j}^{(i')}(x_{t})\right)$$

Adapting Dynamic Games to the CCP Framework Markov Perfect Bayesian Equilibrium

- The strategy $\left\{ d^{(i)}\left(x_t, \epsilon_t^{(i)}\right) \right\}_{i=1}^{l}$ is a Markov perfect equilibrium if, for all $\left(i, x_t, \epsilon_t^{(i)}\right)$, the best response of i to $d^{(-i)}\left(x_t, \epsilon_t^{(-i)}\right)$ is $d^{(i)}\left(x_t, \epsilon_t^{(i)}\right)$ when everybody uses the same strategy thereafter.
- That is, suppose the other players collectively use d⁽⁻ⁱ⁾ (x_t, e⁽⁻ⁱ⁾_t) in period t, and V⁽ⁱ⁾ (x_{t+1}) is formed from {d⁽ⁱ⁾ (x_t, e⁽ⁱ⁾_t)}^l_{i=1}.
 Then d⁽ⁱ⁾ (x_t, e⁽ⁱ⁾_t) solves for i choosing j to maximize:

$$\sum_{d_t^{(-i)}} P\left(d_t^{(-i)} | x_t\right) \left\{ \begin{array}{c} U_j^{(i)}\left(x_t, d_t^{(-i)}\right) \\ +\beta \sum_{z=1}^X V^{(i)}\left(x\right) F_j\left(x \left| x_t, d_t^{(-i)}\right.\right) \end{array} \right\} + \epsilon_{jt}^{(i)}$$

Adapting Dynamic Games to the CCP Framework Connection to Individual Optimization

 In equilibrium, the systematic component of the current utility of player *i* in period *t*, as a function of *x_t*, the state variables for game, and his own decision *j*, is:

$$u_{j}^{(i)}(x_{t}) = \sum_{d_{t}^{(-i)}} P\left(d_{t}^{(-i)} | x_{t}\right) U_{j}^{(i)}\left(x_{t}, d_{t}^{(-i)}\right)$$

• Similarly the probability transition from x_t to x_{t+1} given action j by firm i is given by:

$$f_{j}^{(i)}\left(x_{t+1} \left|x_{t}^{(i)}\right.\right) = \sum_{d_{t}^{(-i)}} P\left(d_{t}^{(-i)} \left|x_{t}^{(i)}\right.\right) F_{j}\left(x_{t+1} \left|x_{t}, d_{t}^{(-i)}\right.\right)$$

• The setup for player *i* is now identical to the optimization problem described in the second lecture for a stationary environment.

Adapting Dynamic Games to the CCP Framework Applying the Representation Theorem

- Both theorems apply to this multiagent setting with two critical differences, and both are relevant for studying identification:
 - **(**) $u_{jt}(x_t)$ is a primitive in single agent optimization problems, but $u_{it}^{(i)}(x_t)$ is a reduced form parameter found by integrating $U_{it}^{(i)}\left(x_{t}, d_{t}^{(\sim i)}\right)$ over the joint probability distribution $P_{t}\left(d_{t}^{(\sim i)} | x_{t}\right)$. 2 $f_{it}(x_{t+1} | x_t)$ is a primitive in single agent optimization problems, but $f_{it}^{(i)}\left(x_{t+1}\left|x_{t}\right.
 ight)$ depends on CCPs of the other players, $P_{t}\left(d_{t}^{(\sim i)}\left|x_{t}
 ight)$, as well as the primitive $F_{jt}\left(x_{t+1} \mid x_t, d_t^{(\sim i)}\right)$. It is easy to interpret restrictions placed directly on $f_{it}(x_{t+1} | x_t)$ but placing restrictions on $F_{jt}\left(x_{t+1} \left| x_t, d_t^{(\sim i)}\right.\right)$ complicates matters in dynamic games because of the endogenous effects arising from $P_t\left(d_t^{(\sim i)} | x_t\right)$ on $f_{jt}^{(i)}(x_{t+1} | x_t)$.