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Recapitulation
A dynamic discrete choice model

Each period t ∈ {1, 2, . . . ,T} for T ≤ ∞, an individual chooses
among J mutually exclusive actions.
Let djt equal one if action j ∈ {1, . . . , J} is taken at time t and zero
otherwise:

djt ∈ {0, 1}
J

∑
j=1
djt = 1

Suppose that actions taken at time t can potentially depend on the
state zt ∈ Z .
The current period payoff at time t from taking action j is u∗jt (zt ).
Given choices (d1t , . . . , dJt ) in each period t ∈ {1, 2, . . . ,T} the
individual’s expected utility is:

E

{
T

∑
t=1

J

∑
j=1

βt−1djtu∗jt (zt ) |z1

}
where β ∈ (0, 1) is the discount factor, and at each period t the
expectation is taken over z2, . . . , zT .
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Recapitulation
Value function and optimization

Write the optimal decision rule as dot (zt ) ≡ (do1t (zt ), . . . , doJt (zt )).
Denote the value function by V ∗t (zt ):

V ∗t (zt ) ≡ E

{
T

∑
s=t

J

∑
j=1

βt−1dojs (zs ) u
∗
js (zs ) |zt

}

=
J

∑
j=1
dojt

[
u∗jt (zt ) + β

∫
zt+1

V ∗t+1(zt+1)dFjt (zt+1 |zt )
]

Let v ∗jt (zt ) denote the flow payoff of action j plus the expected future
utility of behaving optimally from period t + 1 on:

v ∗jt (zt ) ≡ u∗jt (zt ) + β
Z

∑
zt+1=1

V ∗t+1(zt+1)dFjt (zt+1 |zt )

Bellman’s principle implies:

dojt (zt ) ≡∏K
k=1 I

{
v ∗jt (zt ) ≥ v ∗kt (zt )

}
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Recapitulation
Reformulating the primitives

Partition the states zt ≡ (xt , εt ) into:
those which are observed, xt
and those that are unobserved, εt .

Without loss of generality we can express u∗jt (zt ) as the sum of its
conditional expectation on the observed variables plus a residual:

u∗jt (xt , εt ) ≡ E
[
u∗jt (xt , εt ) |xt

]
+ εjt ≡ ujt (xt ) + εjt

For identification and estimation purposes we typically treat β,
ujt (zt ), dFjt (zt+1|zt ) and dG (ε1 |x1 ), the density/probability for ε1,
as the primititves to our model.

We often index the family of models we are considering (and limiting
our search to), by say Θ.
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Recapitulation
ML estimation

The maximum likelihood (ML) estimator, θML ∈ Θ selects θ to
maximize the joint probability (density) of the observed occurrences:

N

∏
n=1

∫
εT

. . .
∫

ε1

 ∑J
j=1 I {dnjT = 1} dojT (xnT , εT )×

T−1
∏
t=1

Hnt (xn,t+1, εt+1 |xnt , εt ) dG (ε1 |xn1 )


where:

Hnt (xn,t+1, εt+1 |xnt , εt ) ≡
J

∑
j=1
I {dnjt = 1} dojt (xnt , εt ) dFjt (xn,t+1, εt+1 |xnt , εt )

is the probability (density) of the pair (xn,t+1, εt+1) conditional on
(xnt , εt ) when the observed choices are optimal for θ ∈ Θ.
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Recapitulation
A computational challenge

What are the computational challenges to large state space?
1 Computing the value function;
2 Solving for equilibrium in a multiplayer setting;
3 Integrating over unobserved heterogeneity.

These challenges suggest on several dimensions:
1 Keep the dimension of the state space small;
2 Assume all choices and outcomes are observed;
3 Model unobserved states as a matter of computational convenience;
4 Consider only one side of market to finesse equilibrium issues;
5 Adopt parameterizations based on convenient functional forms.
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Separable Transitions in the Observed Variables
A simplification

Suppose the transition of the observed variables does not depend on
the unobserved variables for all (j , t, xt , εt ):

Fjt (xt+1 |xt , εt ) = Fjt (xt+1 |xt )
Assuming xt+1 conveys all the information of xt for the purposes of
forming probability distributions at t + 1:

Fjt (xt+1, εt+1 |xt , εt ) ≡ Gj ,t+1 (εt+1 |xt+1, xt , εt ) Fjt (xt+1 |xt , εt )
≡ Gj ,t+1 (εt+1 |xt+1, εt ) Fjt (xt+1 |xt )

The ML estimator maximizes the same criterion function but
Hnt (xn,t+1, εt+1 |xnt , εt ) simplifies to:

Hnt (xn,t+1, εt+1 |xnt , εt ) =
J

∑
j=1
I {dnjt = 1} dojt (xnt , εt ) dGj ,t+1 (εt+1 |xn,t+1, εt ) dFjt (xn,t+1 |xnt )

Miller (University of Tokyo 2019 ) Lecture 1 October 2019 7 / 38



Separable Transitions in the Observed Variables
Exploiting separability in estimation

Instead of estimating all the parameters at once, we could use a two
stage estimator to reduce computation costs:

1 Estimate Fjt (xt+1 |xt ) with a cell estimator (for x finite), a
nonparametric estimator, or a parametric function;

2 Define:

Ĥnt (xn,t+1, εt+1 |xnt , εt ) ≡
J
∑
j=1

[
I
{
dnjt = 1

}
dojt (xnt , εt )

×dGj ,t+1 (εt+1 |xn,t+1, εt ; θ ) dF̂jt (xn,t+1 |xnt )

]
3 Select the remaining (preference) parameters to maximize:

N

∏
n=1

∫
εT

. . .
∫

ε1

 ∑Jj=1 I
{
dnjT = 1

}
dojT (xnT , εT )×

T−1
∏
t=1

Ĥnt (xn,t+1, εt+1 |xnt , εt ) dG1 (ε1 |xn1 )


4 Correct standard errors from the first stage estimator to account for
the loss in asymptotic effi ciency.
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Conditional Independence
Conditional independence defined

Separable transitions do not, however, free us from:
1 the curse of multiple integration;
2 numerical optimization to obtain the value function.

Suppose in addition, that conditional on xt+1, the unobserved variable
εt+1 is independent of (xt , εt , dt ).

Conditional independence embodies both assumptions:

dFjt (xt+1 |xt , εt ) = dFjt (xt+1 |xt )
dGj ,t+1 (εt+1 |xt+1, xt , εt ) = dGt+1 (εt+1 |xt+1 )

It implies:

dFjt (xt+1, εt+1 |xt , εt ) = dFjt (xt+1 |xt ) dGt+1 (εt+1 |xt+1 )
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Conditional Independence
Exante value functions and conditional value functions defined

Given conditional independence, define the exante valuation function
as:

Vt (xt ) ≡ E [V ∗t (xt , εt ) |xt ]
and the conditional valuation function as:

vjt (xt ) ≡ ujt (xt ) + β
∫
xt+1

Vt+1(xt+1)dFjt (xt+1 |xt )

Optimal behavior implies that dojt (xt , ε) = 1 if and only if:

εkt − εjt ≤ vjt (xt )− vkt (xt )

for all k ∈ {1, . . . , J}.
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Conditional Independence
Conditional choice probabilities defined

Under conditional independence, the conditional choice probability
(CCP) for action j is defined for each (t, xt , j) as the probability of
observing the j th choice conditional on the values of the observed
variables when behavior is optimal:

pjt (xt ) ≡ E
[
dojt (xt , εt ) |xt

]
=
∫

εt
dojt (xnt , εt ) gt (εt |xnt ) dεt

where we now assume (following the literature) that Gt (εt |xnt ) has
probability density function gt (εt |xnt ).
The previous slide now implies:

pjt (xt ) =
∫

εt

J

∏
k=1

I {εkt − εjt ≤ vjt (xnt )− vkt (xnt )} gt (εt |xt ) dεt
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Conditional Independence
Simplifying expressions within the likelihood

Conditional independence simplifies Hnt (xn,t+1, εt+1 |xnt , εt ) to:

Hnt (xn,t+1, εt+1 |xnt , εt ) =
J

∑
j=1
I {dnjt = 1} dojt (xnt , εt ) gt+1 (εt+1 |xn,t+1 ) dFjt (xn,t+1 |xnt )

Also note that:

∏T
t=1

{
∑J
j=1 I {dnjt = 1} d

o
jt (xnt , εt ) dFjt (xn,t+1 |xnt )

}
= ∏T

t=1

{
∑J
j=1 I {dnjt = 1} dFjt (xn,t+1 |xnt )

}
×∏T

t=1

{
∑J
j=1 I {dnjt = 1} d

o
jt (xnt , εt )

}
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Conditional Independence
ML under conditional independence

Hence the contribution of n ∈ {1, . . . ,N} to the likelihood is the
product of:

T−1
∏
t=1

J

∑
j=1
I {dnjt = 1} dFjt (xn,t+1 |xnt )

and:

∫
εT

. . .
∫
ε1

T−1
∏
t=1

J

∑
j=1

[
I {dnjt = 1} dojt (xnt , εt )
×gt+1 (εt+1 |xn,t+1 ) g1 (ε1 |xn1 ) dε1 . . . dεT

]

=
T

∏
t=1

[
J

∑
j=1
I {dnjt = 1}

∫
εt
dojt (xnt , εt ) gt (εt |xnt ) dεt

]
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Conditional Independence
A compact expression for the ML criterion function

Since:

pjt (xt ) ≡
∫

εt
dojt (xnt , εt ) gt (εt |xnt ) dεt = E

[
dojt (xt , εt ) |xt

]
the log likelihood can now be compactly expressed as:

N

∑
n=1

T−1
∑
t=1

J

∑
j=1
I {dnjt = 1} ln [dFjt (xn,t+1 |xnt )]

+
N

∑
n=1

T

∑
t=1

J

∑
j=1
I {dnjt = 1} ln pjt (xt )
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Conditional Independence
Connection with static models

Suppose we only had data on the last period T , and wished to
estimate the preferences determining choices in T .

By definition this is a static problem in which vjT (xT ) ≡ ujT (xT ).
For example to the probability of observing the J th choice is:

pJT (xT ) ≡
∫ εJT+uJT (xT )
−u1T (xT )

−∞
. . .
∫ εJT+uJT (xT )
−uJ−1,T (xT )
−∞

∫ ∞

−∞
gT (εT |xT ) dεT

The only essential difference between a estimating a static discrete
choice model using ML and a estimating a dynamic model satisfying
conditional independence using ML is that parametrizations of vjt (xt )
based on ujt (xt ) do not have a closed form, but must be computed
numerically.
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Inversion
Differences in conditional valuation functions

The starting point for our analysis is to define differences in the
conditional valuation functions as:

∆vjkt (x) ≡ vjt (x)− vkt (x)

Although there are J (J − 1) differences all but (J − 1) are linear
combinations of the (J − 1) basis functions.
For example setting the basis functions as:

∆vjt (x) ≡ vjt (x)− vJt (x)

then clearly:
∆vjkt (x) = ∆vjt (x)− ∆vkt (x)

Without loss of generality we focus on this particular basis function.
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Inversion
Each CCP is a mapping of differences in the conditional valuation functions

Using the definition of ∆vjt (x):

pjt (x) ≡
∫
dojt (x , ε) gt (ε |x ) dε

=
∫
I {εk ≤ εj + ∆vjt (x)− ∆vkt (x)∀ k 6= j} gt (ε |x ) dε

=

εj+∆vjt (x )−∆v1t (x )∫
−∞

. . .

εj+∆vjt (x )−∆vJ−1,t (x )∫
−∞

εj+∆vjt (x )∫
−∞

gt (ε |x ) dε

Noting gt (ε |x ) ≡ ∂JGt (ε |x )
/

∂ε1, . . . , ∂εJ , integrate over
(ε1, . . . , , εj−1, εj+1 . . . , εJ ).
Denoting Gjt (ε |x ) ≡ ∂Gt (ε |x )

/
∂εj , yields:

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x), . . .

. . . , εj , . . . , εj + ∆vjt (x)
|x
)
dεj
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Inversion
There are as many CCPs as there are conditional valuation functions

For any vector J − 1 dimensional vector δ ≡ (δ1, . . . , δJ−1) define:

Qjt (δ, x) ≡
∞∫
−∞

Gjt (εj + δj − δ1, . . . , εj , . . . , εj + δj |x ) dεj

We interpret Qjt (δ, x) as the probability taking action j in a static
random utility model (RUM) where the payoffs are δj + εj and the
probability distribution of disturbances is given by Gt (ε |x ).
It follows from the definition of Qjt (δ, x) that:

0 ≤ Qjt (δ, x) ≤ 1 for all (j , t, δ, x) and
J−1
∑
j=1

Qjt (δ, x) ≤ 1

In particular the previous slide implies that for any given (j , t, x):

pjt (x) =

∞∫
−∞

Gjt

(
εj + ∆vjt (x)− ∆v1t (x),
. . . , εj , . . . , εj + ∆vjt (x)

|x
)
dεj ≡ Qjt (∆vt (x), x)
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Inversion
Proposition 1 of Hotz and Miller (1993)

Theorem (Inversion)

For each (t, δ, x) define:

Qt (δ, x) ≡ (Q1t (δ, x) , . . .QJ−1,t (δ, x))
′

Then the vector function Qt (δ, x) is invertible in δ for each (t, x).

Note that pJt (x) = QJt (∆vt , x) is a linear combination of the other
equations in the system because ∑J

k=1 pk = 1.
Let p ≡ (p1, . . . , pJ−1) where 0 ≤ pj ≤ 1 for all j ∈ {1, . . . , J − 1}
and ∑J−1

j=1 pj ≤ 1. Denote the inverse of Qjt (∆vt , x) by Q−1jt (p, x) .
The inversion theorem implies: ∆v1t (x)

...
∆vJ−1,t (x)

 =
 Q−11t [pt (x), x ]

...
Q−1J−1,t [pt (x), x ]
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Inversion
Using the inversion theorem

In what sense does the inversion theorem help us to finesse
optimization and integration by exploiting conditional independence?

We use the Inversion Theorem to:
1 provide empirically tractable representations of the conditional value
functions.

2 analyze identification in dynamic discrete choice models.
3 provide convenient parametric forms for the density of εt that
generalize the Type 1 Extreme Value distribution.

4 provide cheap estimators for dynamic discrete choice models and
dynamic discrete choice games of incomplete information.

5 introduce new methods for incorporating unobserved state variables.
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Corollaries of the Inversion Theorem
Identifying the policy function

From the definition of the optimal decision rule, and then appealing
to the inversion theorem:

dojt (xt , εt ) = ∏J
k=1 1 {εkt − εjt ≤ vjt (x)− vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤

vjt (x)− vJt (xt )
− [vkt (x)− vJt (xt )]

}
= ∏J

k=1 1 {εkt − εjt ≤ ∆vjt (x)− ∆vkt (x)}

= ∏J
k=1 1

{
εkt − εjt ≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
If Gt (ε |x ) is known and the data generating process (DGP) is
(xt , dt ), then pt (x) and hence dot (xt , εt ) are identified.
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Corollaries of the Inversion Theorem
Definition of the conditional value function correction

Define the conditional value function correction as:

ψjt (x) ≡ Vt (x)− vjt (x)

In stationary settings, we drop the t subscript and write:

ψj (x) ≡ V (x)− vj (x)

Suppose that instead of taking the optimal action she committed to
taking action j instead. Then the expected lifetime utility would be:

vjt (xt ) + Et [εjt |xt ]

so committing to j before εt is revealed entails a loss of:

Vt (xt )− vjt (xt )− Et [εjt |xt ] = ψjt (x)− Et [εjt |xt ]

For example if Et [εt |xt ] = 0, the loss simplifies to ψjt (x).

Miller (University of Tokyo 2019 ) Lecture 1 October 2019 22 / 38



Corollaries of the Inversion Theorem
Identifying the conditional value function correction

From their respective definitions:

Vt (x)− vit (x)

=
J

∑
j=1

{
pjt (x) [vjt (x)− vit (x)] +

∫
εjtdojt (xt , εt ) gt (εt |x ) dεt

}
But:

vjt (x)− vit (x) = Q−1jt [pt (x), x ]−Q−1it [pt (x), x ]
and ∫

εjtdojt (x , εt ) g (εt |x ) dεt

=
∫ J

∏
k=1

1
{

εkt − εjt
≤ Q−1jt [pt (x), x ]−Q−1kt [pt (x), x ]

}
εjtgt (εt |x ) dεt

Therefore ψit (x) ≡ Vt (x)− vit (x) is identified if Gt (ε |x ) is known.
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Conditional Valuation Function Representation
Telescoping one period forward

From its definition:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

Vt+1(x)fjt (xt+1|xt )

Substituting for Vt+1(xt+1) using conditional value function
correction we obtain for any k:

vjt (xt ) = ujt (xt ) + β
X

∑
x=1

[
vk ,t+1(x) + ψk ,t+1(x)

]
fjt (x |xt )

We could repeat this procedure ad infinitum, substituting in for
vk ,t+1(x) by using the definition for ψkt (x).
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Conditional Valuation Function Representation
Recursively defining the distribution of future state variables

To formalize this idea, consider a random sequence of weights from t
to T which begins with ωjt (xt , j) = 1.
For periods τ ∈ {t + 1, . . . ,T}, the choice sequence maps xτ and the
initial choice j into

ωτ(xτ, j) ≡ {ω1τ(xτ, j), . . . ,ωJτ(xτ, j)}
where ωkτ(xτ, j) may be negative or exceed one but:

J

∑
k=1

ωkτ(xτ, j) = 1

.
The weight of state xτ+1 conditional on following the choices in the
sequence is recursively defined by κt (xt+1|xt , j) ≡ fjt (xt+1|xt ) and for
τ = t + 1, . . . ,T :

κτ(xτ+1|xt , j) ≡
X

∑
xτ=1

J

∑
k=1

ωkτ (xτ, j) fkτ(xτ+1|xτ)κτ−1(xτ|xt , j)
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Framework
Theorem 1 of Arcidiacono and Miller (2011)

Theorem (Representation)

For any state xt ∈ {1, . . . ,X}, choice j ∈ {1, . . . , J} and weights
ωτ(xτ, j) defined for periods τ ∈ {t, . . . ,T}:

vjt (xt ) = ujt (xt )

+
T

∑
τ=t+1

J

∑
k=1

X

∑
x=1

βτ−t [ukτ(x) + ψk [pτ(x)]]ωkτ(x , j)κτ−1(x |xt , j)

The theorem yields an alternative expression for vjt (xt ) that dispenses
with recursive maximization.

Intuitively, the individuals have already solved their optimization
problem, so their decisions, as reflected in their CCPs, are informative
of their value functions.
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Generalized Extreme Values
Definition

Can we exploit this representation in identification and estimation?

To make the approach operational requres us to compute ψk (p) for
at least some k.

Suppose ε is drawn from the GEV distribution function:

G (ε1, ε2, . . . , εJ ) ≡ exp [−H (exp[−ε1], exp[−ε2], . . . , exp[−εJ ])]

where H (Y1,Y2, . . . ,YJ ) satisfies the following properties:
1 H (Y1,Y2, . . . ,YJ ) is nonnegative, real valued, and homogeneous of
degree one;

2 limH (Y1,Y2, . . . ,YJ )→ ∞ as Yj → ∞ for all j ∈ {1, . . . , J};
3 for any distinct (i1, i2, . . . , ir ) the cross derivative

∂H (Y1,Y2, . . . ,YJ ) /∂Yi1 ,Yi2 , . . . ,Yir is nonnegative for r odd and
nonpositive for r even.
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Generalized Extreme Values
Extended Nested Logit Distributions

Suppose G (ε) factors into two independent distributions, one a
nested logit, and the other any GEV distribution.

Let J denote the set of choices in the nest and denote the other
distribution by G0 (Y1,Y2, . . . ,YK ) let K denote the number of
choices that are outside the nest.

Then:

G (ε) ≡ G0 (ε1, . . . , εK ) exp

[
−
(

∑
j∈J

exp [−εj/σ]

)σ]

The correlation of the errors within the nest is given by σ ∈ [0, 1] and
errors within the nest are uncorrelated with errors outside the nest.
When σ = 1, the errors are uncorrelated within the nest, and when
σ = 0 they are perfectly correlated.
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Generalized Extreme Values
Lemma 2 of Arcidiacono and Miller (2011)

Define φj (Y ) as a mapping into the unit interval where

φj (Y ) = YjHj (Y1, . . . ,YJ )
/
H (Y1, . . . ,YJ )

Since Hj (Y1, . . . ,YJ ) and H (Y1, . . . ,YJ ) are homogeneous of
degree zero and one respectively, φj (Y ) is a probability, because

φj (Y ) ≥ 0 and ∑J
j=1 φj (Y ) = 1.

Lemma (GEV correction factor)
When εt is drawn from a GEV distribution, the inverse function of
φ(Y ) ≡ (φ2(Y ), . . . φJ (Y )) exists, which we now denote by φ−1(p), and:

ψj (p) = lnH
[
1, φ−12 (p), . . . , φ−1J (p)

]
− ln φ−1j (p) + γ
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Generalized Extreme Values
Correction factor for extended nested logit

Lemma
For the nested logit G (εt ) defined above:

ψj (p) = γ− σ ln(pj )− (1− σ) ln

(
∑
k∈J

pk

)

Note that ψj (p) only depends on the conditional choice probabilities
for choices that are in the nest: the expression is the same no matter
how many choices are outside the nest or how those choices are
correlated.

Hence, ψj (p) will only depend on pj ′ if εjt and εj ′t are correlated.
When σ = 1, εjt is independent of all other errors and ψj (p) only
depends on pj .
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Adapting Dynamic Games to the CCP Framework
Players and choices

This framework naturally lends itself to studying equilibrium in games
of incompete information.
For example consider a dynamic infinite horizon game for finite I
players.
Thus T = ∞ and I < ∞.
Each player i ∈ I makes a choice d (i )t ≡

(
d (i )1t , . . . , d (i )Jt

)
in period t.

Denote the choices of all the players in period t by:

dt ≡
(
d (1)t , . . . , d (I )t

)
and denote by:

d (−i )t ≡
(
d (1)t , . . . , d (i−1)t , d (i+1)t , . . . , d (I )t

)
the choices of {1, . . . , i − 1, i + 1, . . . , I} in period t, that is all the
players apart from i .
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Adapting Dynamic Games to the CCP Framework
State variables

Denote by xt the state variables of the game that are not iid.

For example xt includes the capital of every firm. Then:

firms would have the same state variables.
xt would affect rivals in very different ways.

We assume all the players observe xt .

Denote by F (xt+1 |xt , dt ) the probability of xt+1 occurs when the
state variables are xt and the players collectively choose dt .

Similarly let:

Fj
(
xt+1

∣∣∣xt , d (−i )t

)
≡ F

(
xt+1

∣∣∣xt , d (−i )t , d (i )jt = 1
)

denote the probability distribution determining xt+1 given xt when
{1, . . . , i − 1, i + 1, . . . , I} choose d (−i )t in t and i makes choice j .
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Adapting Dynamic Games to the CCP Framework
Payoffs and information

Suppose ε
(i )
t ≡

(
ε
(i )
1t , . . . , ε(i )Jt

)
, identically and independently

distributed with density g
(

ε
(i )
t

)
, affects the payoffs of i in t.

Also let ε
(−i )
t ≡

(
ε
(1)
t , . . . , ε(i−1)t , ε

(i+1)
t , . . . , ε(I )t

)
.

The systematic component of current utility or payoff to player i in
period t form taking choice j when everybody else chooses d (−i )t and

the state variables are zt is denoted by U
(i )
j

(
xt , d

(−i )
t

)
.

Denoting by β ∈ (0, 1) the discount factor, the summed discounted
payoff to player i throughout the course of the game is:

∑T
t=1 ∑J

j=1 βt−1d (i )jt
[
U (i )j

(
xt , d

(−i )
t

)
+ ε

(i )
jt

]
Players noncooperatively maximize their expected utilities, moving
simultaneously each period. Thus i does not condition on d (−i )t when

making his choice at date t, but only sees
(
xt , ε

(i )
t

)
.
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Adapting Dynamic Games to the CCP Framework
Markov strategies

This is a stationary environment and we focus on Markov decision
rules, which can be expressed d (i )j

(
xt , ε

(i )
t

)
.

Let d (−i )
(
xt , ε

(−i )
t

)
denote the strategy of every player but i : d (1)

(
xt , ε

(1)
t

)
, . . . , d (i−1)

(
xt , ε

(i−1)
t

)
, d (i+1)

(
xt , ε

(i+1)
t

)
,

d (i+2)
(
xt , ε

(i+2)
t

)
. . . , d (I )

(
xt , ε

(I )
t

) 
Then the expected value of the game to i from playing d (i )j

(
xt , ε

(i )
t

)
when everyone else plays d

(
xt , ε

(−i )
t

)
is:

V (i ) (x1) ≡
E
{

∑∞
t=1 ∑J

j=1 βt−1d (i )j
(
xt , ε

(i )
t

) [
U (i )j

(
zt , d

(
xt , ε

(−i )
t

))
+ ε

(i )
jt

]
|x1
}
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Adapting Dynamic Games to the CCP Framework
Choice probabilities generated by Markov strategies

Integrating over ε
(i )
t we obtain the j th conditional choice probability

for the i th player at t as p(i )j (xt ):

p(i )j (xt ) =
∫
d (i )j

(
xt , ε

(i )
t

)
g
(

ε
(i )
t

)
dε
(i )
t

Let P
(
d (−i )t |xt

)
denote the joint probability firm i’s competitors

choose d (−i )t conditional on the state variables zt .

Since ε
(i )
t is distributed independently across i ∈ {1, . . . , I}:

P
(
d (−i )t |xt

)
=

I

∏
i ′=1
i ′ 6=i

(
J

∑
j=1
d (i

′)
jt p

(i ′)
j (xt )

)
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Adapting Dynamic Games to the CCP Framework
Markov Perfect Bayesian Equilibrium

The strategy
{
d (i )

(
xt , ε

(i )
t

)}I
i=1

is a Markov perfect equilibrium if,

for all
(
i , xt , ε

(i )
t

)
, the best response of i to d (−i )

(
xt , ε

(−i )
t

)
is

d (i )
(
xt , ε

(i )
t

)
when everybody uses the same strategy thereafter.

That is, suppose the other players collectively use d (−i )
(
xt , ε

(−i )
t

)
in

period t, and V (i ) (xt+1) is formed from
{
d (i )

(
xt , ε

(i )
t

)}I
i=1
.

Then d (i )
(
xt , ε

(i )
t

)
solves for i choosing j to maximize:

∑
d (−i )t

P
(
d (−i )t |xt

) U (i )j
(
xt , d

(−i )
t

)
+β ∑X

z=1 V
(i ) (x) Fj

(
x
∣∣∣xt , d (−i )t

) + ε
(i )
jt
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Adapting Dynamic Games to the CCP Framework
Connection to Individual Optimization

In equilibrium, the systematic component of the current utility of
player i in period t, as a function of xt , the state variables for game,
and his own decision j , is:

u(i )j (xt ) = ∑
d (−i )t

P
(
d (−i )t |xt

)
U (i )j

(
xt , d

(−i )
t

)
Similarly the probability transition from xt to xt+1 given action j by
firm i is given by:

f (i )j
(
xt+1

∣∣∣x (i )t )
= ∑

d (−i )t

P
(
d (−i )t

∣∣∣x (i )t )
Fj
(
xt+1

∣∣∣xt , d (−i )t

)
The setup for player i is now identical to the optimization problem
described in the second lecture for a stationary environment.
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Adapting Dynamic Games to the CCP Framework
Applying the Representation Theorem

Both theorems apply to this multiagent setting with two critical
differences, and both are relevant for studying identification:

1 ujt (xt ) is a primitive in single agent optimization problems, but

u(i )jt (xt ) is a reduced form parameter found by integrating

U(i )jt

(
xt , d

(∼i )
t

)
over the joint probability distribution Pt

(
d (∼i )t |xt

)
.

2 fjt (xt+1 |xt ) is a primitive in single agent optimization problems, but
f (i )jt (xt+1 |xt ) depends on CCPs of the other players, Pt

(
d (∼i )t |xt

)
,

as well as the primitive Fjt
(
xt+1

∣∣∣xt , d (∼i )t

)
. It is easy to interpret

restrictions placed directly on fjt (xt+1 |xt ) but placing restrictions on
Fjt
(
xt+1

∣∣∣xt , d (∼i )t

)
complicates matters in dynamic games because of

the endogenous effects arising from Pt
(
d (∼i )t |xt

)
on f (i )jt (xt+1 |xt ).
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