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Abstract 
 

Classroom peers presumably influence learning by teaching each other. 
Unfortunately, little is known about peer-to-peer teaching because it is never 
observed in field studies. The efficacy of this teaching likely depends on the ability 
of one’s peers. We investigate the mechanisms of peer effects experimentally to 
establish the importance of peer-to-peer teaching and how it is affected by ability 
tracking—grouping students of similar ability. While peer-to-peer teaching 
improves learning among low-ability subjects, the positive effects are offset by 
tracking. Tracking reduces peer-to-peer teaching, suggesting that low-ability 
subjects suffer from the absence of high-ability peers to teach them. 
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1. Introduction 

The effects of peers on educational outcomes have been studied widely, and a broad 
consensus exists that peers have non-trivial effects on students’ learning (see Epple and Romano 
[2011] and Sacerdote [2011] for recent reviews). How peers influence learning, however, has 
proven much more difficult to answer. One key channel for the observed peer effects is that 
students teach each other in and out of the classroom. Indeed, first among the possible means of 
peer influence listed in Sacerdote [2011] is direct learning from classmates—what we refer to as 
peer-to-peer teaching.5 Despite the self-evident preeminence of peer-to-peer teaching, there has 
been precious little research concerning this mechanism in economics.  

If peer-to-peer teaching is important for learning, then the composition of a classroom may 
determine its effectiveness. Ability tracking—grouping students of similar abilities in 
classrooms—is one such policy that affects classroom composition. While widely employed, 
ability tracking is a contentious practice in education (see Betts [2011] for a review). An 
important unresolved question is how ability tracking affects peer-to-peer teaching, and whether 
these effects on peer-to-peer teaching depend on a student’s place in the ability distribution. On 
the one hand, ability tracking may hurt low-ability students if these students benefit from 
interactions with high-ability peers that no longer occur under tracking, thereby exacerbating 
existing inequalities between high-ability and low-ability students (Epple et al. [2002]). On the 
other hand, tracking may encourage learning at all ability levels because students of more similar 
ability may be more effective in teaching one another (Schunk [1991]). 

The effects of peer-to-peer teaching, ability tracking, and their interaction on learning are 
difficult to identify in schools for at least three reasons. First, ability tracking is typically 
implemented alongside changes to other aspects of the classroom environment such as the 
curriculum. Second, ability tracking may influence teacher behavior if reducing the 
heterogeneity in a classroom enables teachers to better tailor the pace and content of instruction. 
Finally and most importantly, peer-to-peer teaching is rarely—if ever—observed in field data. 

Thus, to provide preliminary evidence to fill the gap and complement existing field studies, 
we conduct a laboratory experiment in which subjects learn to solve logic problems—in our case 
Sudoku problems—and examine how ability tracking affects learning in environments with and 
without peer-to-peer teaching. A laboratory experiment is useful for investigating the effects of 
                                                   
 
5 Other mechanisms listed include motivational effects, effects on the behaviors of teachers, classroom disruptions, 
and preference formation among others. 
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peer-to-peer teaching and tracking because we can exogenously vary subjects’ ability to interact 
with each other—which is impossible in schools—and peer group composition. Due to the well-
documented econometric challenges in estimating peer effects (notably Manski [1993], 
Sacerdote [2001], Zimmerman [2003]), many studies exploit plausibly exogenous variation in 
peer group composition to account for the non-random sorting of students at the classroom level, 
but we know of no field studies in which the possibility for student interaction varies 
exogenously.6 In addition, because there is no “real” teacher in our experiment, we can isolate 
the effects of ability tracking on peer-to-peer teaching and learning from the effects of teachers 
who may adapt their behavior and instruction to the classroom composition. Furthermore, we can 
directly measure the frequency of peer-to-peer teaching in the lab.  

Of course, the benefits in terms of control and measurement in a lab setting are not without 
some trade-offs. Our experiment is necessarily conducted in a short period of time, with a limited 
“curriculum,” in a simulated classroom that limits the scope of interaction and abstracts from 
many important contextual effects that likely operate in field settings. In our view, the benefits 
exceed these costs given the lack of existing evidence on this fundamental question. Moreover, 
we see opportunities to extend our laboratory method to field settings such as Massive Online 
Open Courses (MOOCs), where it may be possible to achieve similar degrees of control over 
peer interaction. In this sense, laboratory experiments in education can serve as a testbed for 
more costly implementation in the field. 

Our experiments proceeded as follows. Subjects first completed as many Sudoku problems 
as they could in a 10-minute “Ability” block (T=0), and we use this performance as a proxy for 
initial ability just as test scores proxy for the same in the education literature. Subjects were then 
split into two groups based on their measured ability. Half of subjects were assortatively matched 
into groups of subjects with similar ability (the “tracked” treatment), while the other half of 
subjects were assigned to groups in which subjects of different abilities were evenly distributed 
(the “untracked” treatment). All subjects were informed of their group assignment and rank 
within the group. Once placed into groups, subjects participated in a 10-minute “Practice” block 
in which they had a single Sudoku to solve. In the “teaching” treatment, subjects in a given 
group were allowed to chat with each other concerning this practice Sudoku problem. In the “no-
teaching” treatment, subjects worked on the practice Sudoku by themselves and could not chat 
                                                   
 
6 See, for example, Hoxby [2000], Zimmerman [2003], Angrist and Lang [2004], Lyle [2007], Carrell et al. [2009]), 
Ammermueller and Pischke [2009], Imberman et al. [2012], Lavy, Paserman, and Schlosser [2012], Burke and Sass 
[2013], and Feld and Zölitz [2017].  
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with other subjects. Following the Practice block, subjects solved (on their own) as many Sudoku 
as they could in a 15-minute “Evaluation” block (T=1). Our measure of learning is the change in 
the average time taken to correctly solve a Sudoku puzzle from the baseline “Ability” block 
(T=0) to the “Evaluation” block (T=1). 

Our objective in comparing the teaching and no-teaching treatments is to identify the 
impact of peer-to-peer teaching on learning. Prior studies of peer effects have been unable to 
identify the importance of this channel because the presence of peer-to-peer teaching is typically 
endogenous and—more problematically—unobserved. The tracked and untracked treatments 
allow us to further identify the importance of peer group composition to the effects of peer-to-
peer teaching.7  

We present three main findings. First, we find that subjects do indeed teach each other 
when teaching is possible, and this peer-to-peer teaching leads to substantial increases in 
learning. Allowing subjects to teach each other improves learning by 0.12 standard deviations 
(SD) of the average solving time in the Ability block (or a reduction in the raw average solving 
time by 11.6 sec) relative to the no-teaching treatment. This represents a 42 percent increase in 
learning compared to the mean 27.6 second reduction in average puzzle solving time in the no-
teaching treatment. Low-ability subjects (as identified in the Ability block) drive nearly all of the 
gain—likely because they have more room for improvement. Given that there are no incentives 
for subjects to teach each other (as we did not explicitly force them to chat and the payment is at 
the individual and not the group level), it is remarkable that only 10 minutes of working together 
on a single puzzle, as opposed to working on it alone, improves learning by as much as 0.12 SD. 
We are not aware of any studies in the economics of education that directly show the importance 
of peer-to-peer teaching to learning.8 

                                                   
 
7 We also varied the compensation scheme in the Evaluation block from piece-rate payments to tournament-style 
payments. This treatment manipulation, however, failed to influence observed behavior. Therefore, our analysis of 
this treatment is relegated to Appendix A. 
8 The importance of peer-to-peer teaching for learning has long been understood by educators (Johnson and Johnson 
[1975], Slavin [1983]). Earlier experimental studies of peer-to-peer teaching have shown that peers make excellent 
teachers (see Webb [1989] and Rohrbeck et al. [2003] for meta-analyses). These studies, however, typically 
compared students in pedagogical treatments in which students were either tasked with group work or offered 
guidance on how to help other students to students in control groups without these interventions. As such, these 
studies estimate the marginal contribution of the pedagogical intervention relative to a control group in which peer-
to-peer teaching may also have taken place. The lone study of peer-to-peer teaching in economics, Bettinger et al. 
[2016], focuses on the correlations between the characteristics of peer-to-peer teaching (such as the frequency) and 
performance in MOOCs. In a sense, their study examines the intensive margin of peer-to-peer teaching rather than 
the extensive margin as in our study.  
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Second, we find that tracking in the no-teaching treatment has little detrimental impact on 
learning compared to the untracked treatment, suggesting there are no direct effects of ability 
tracking in the absence of peer-to-peer teaching. More importantly, tracking has a large 
detrimental effect on learning in the teaching treatment—nearly eliminating the positive effects 
of teaching. This negative effect of tracking in the teaching treatment is primarily experienced 
by low-ability subjects, who again benefitted most from peer-to-peer teaching in the first place.  

Finally, we unpack this result by examining the number of instances of peer-to-peer 
teaching in the audio recordings of subjects’ chats during the teaching treatment. We find that 
ability tracking directly reduces the frequency of peer-to-peer teaching, shining light on the 
mechanism through which ability tracking adversely affects low-ability subjects. That is, ability 
tracking negatively affects low-ability subjects because peer-to-peer teaching is less common in 
the absence of higher-ability peers who can teach these subjects.  

Our findings have important implications regarding the amount of peer-to-peer teaching to 
encourage and the composition of student groups. Specifically, the findings suggest that 
grouping students by prior achievement may disadvantage low-ability students to the extent that 
these students benefit from being taught by higher-ability peers. Unless ability tracking results in 
benefits abstracted from in our setting (e.g., curricular customization by teachers), ability 
tracking alone may harm those students who stand to gain the most from peer-to-peer teaching.  

Our findings may also help to reconcile seemingly conflicting findings in the tracking 
literature. Specifically, Duflo et al. [2011] and Booij et al. [2017]—among others—exploit 
random assignment to classes to find that tracking has positive effects on low-ability students in 
Kenya and the Netherlands, respectively, while Garlick [2016] shows that low-ability South 
African university students perform substantially worse when grouped in dormitories with 
students of similar ability than when they are randomly assigned to dormitories.9 Because the 
treatment effects we identify are driven by changes in students’ behaviors alone and not 
contaminated by changes in teachers’ behavior or curriculum, our findings suggest that the non-
instructional (residential) tracking in Garlick [2016] may harm low-ability students because they 

                                                   
 
9 Most studies of tracking find positive or no effects of tracking on student achievement (e.g., Betts and Shkolnik 
[2000], Figlio and Page [2002], Zimmer [2003], Lefgren [2004], and Betts and Shkolnik [2010]). Cummins [2017] 
finds a negative effect of tracking on “high-ability” students assigned to a low-ability track when assigned to civil 
service teachers in Kenya. 



  

5 

no longer benefit from being taught by high-ability peers.10 On the other hand, our findings 
suggest that the benefits of ability tracking to low-ability students observed in field settings must 
stem from the positive effects of tracking on student motivation and student-teacher interactions 
(consistent with evidence in  Booij et al. [2017]) or the customization of instruction (consistent 
with evidence in Duflo et al. [2011]) that overcome any negative effects on low-ability students 
of losing out on interactions with higher-ability peers. 

Our findings are directly relevant for the optimal design of MOOCs, which often facilitate 
short-term interactions between peers (e.g., via peer grading and discussion forums as 
documented in Luo et al. [2014] and Anderson et al. [2014]). Enrollment in MOOCs has grown 
tremendously over the last decade (Deming et al. [2015]). Students in MOOCs interact in virtual 
environments similar to that in our experiment. While our study is designed to answer 
fundamental questions about the way classmates affect learning, the findings also shed light on 
how to best structure student interaction in virtual classrooms when instruction is not being 
customized for students. In particular, our findings suggest that learning in MOOCs could be 
enhanced if these courses encouraged interaction through assignments completed by groups that 
include students of varied ability. Indeed, the absence of peer-to-peer teaching in virtual 
classrooms may be one contributing factor behind the adverse effects on student outcomes of 
online courses relative to traditional in-person classes documented by Bettinger et al. [2017].  

Finally, this study is related to a small but recently growing literature in economics using 
experiments to understand classroom dynamics and education in general by answering questions 
that may be hard to study effectively in a field setting or using observational data. For example, 
Calsamiglia et al. [2013] study the effects of affirmative action on subject performance (also 
using Sudoku puzzles), while Andreoni and Brownback [2017] use all-pay auctions to 
understand the effects of grading on a curve and group size on student performance. Similar to 
our study, Eisenkopf [2010] and Ksoll and Lehrer [2013] use framed field experiments to 
examine the effects of group work on learning among high school students in Switzerland and 
Ghana, respectively. These studies, however, focus on the impact of peer motivation and peer 
distraction, and neither study examines the interaction between tracking and group work. 

 

                                                   
 
10 Studies focusing on tracking outside of the classroom (e.g., Carrell et al. [2009], Carrell et al. [2013], Lyle [2007], 
Sacerdote [2001], and Zimmerman [2003]) also identify tracking effects unexplained by changes in curriculum and 
teacher behavior, but none focus on the importance of peer-to-peer teaching as in our study. 
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2. Experimental Design 

2.1. Details of the Experimental Design 

To model a classroom setting while obtaining data on individual performance under our 
various treatments, each session followed a fixed time sequence with six stages (see Table 1-A). 
In stage 1, subjects provided demographic information. In stage 2, they completed self-paced 
instructions about the tasks, and in stage 3 they were shown a common video “lecture” 
explaining some techniques to improve performance in the tasks. In stage 4, we collected an 
incentivized measure of subjects’ performance individually to establish a baseline estimate of 
ability. In stage 5, we allowed them an opportunity to practice in an unpaid setting, and finally in 
stage 6, we collected a second incentivized measure of performance to quantify individual 
learning. By varying aspects of this environment holding constant stages 1–4, our design 
identifies the impact(s) of peer-to-peer teaching and ability tracking on learning. 

In order to study learning and peer-to-peer teaching in a controlled setting, the 
experimental task must satisfy a few criteria: 1) performance must be objectively measurable; 2) 
participants must be able to learn (and teach) a few basic principles that will improve 
performance; and 3) there must be ex ante reason to expect substantial performance/ability 
differences across individuals in order to facilitate teaching.  

Therefore we chose 6×6 Sudoku, logic puzzles in which the goal is to fill in numbers on a 
6×6 grid such that each row, column and (pre-defined) 2×3 sub-grid contains exactly one of 
each integer between 1 and 6. The grid is initially partially filled as in Figure 1, and a Sudoku is 
correctly filled only if all the constraints are satisfied. Moreover, online searches turned up a 
variety of Sudoku solving “strategies” that are straightforward to teach and learn, and existing 
experimental evidence on 9×9 Sudoku puzzles suggests sizable variation in performance across 
individuals (Calsamiglia et al. [2013]). Next we describe the stages of the experiment in detail. 

1. Elicitations: Each session contained 8 subjects. We collected demographic information 
and incentivized measures of risk attitudes and prosociality, which we include as controls in 
some analyses (see Appendices D & E for instructions and screenshots).11 Risk attitudes were 
elicited via a multiple price list design based on Holt and Laury [2002]. Subjects made nine 

                                                   
 
11 In our design phase, we hypothesized that there might be a correlation between these measures of preferences and 
individual teaching behavior in our various treatments. For example, prosocial subjects might be more willing to 
teach. However, our audio recordings of teaching behavior were not clear enough to distinguish individuals from 
one another with high probability. As such, our measures of teaching are at the group level, making such 
comparisons impossible. 
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binary choices between option A (a fixed lottery with a 50/50 chance of paying $1 and $3) and 
option B (a lottery between $0 and $3, where the probability of the higher payoff increases over 
the choice sequence from 0.1 to 0.9). Subjects were paid for one-randomly selected choice 
problem from the nine. Our risk measure is the number of times that a subject chose the risky 
option; higher scores (ranging from 0 to 9) indicate more risk-loving. Prosociality was measured 
using a $5 dictator game in which all subjects chose as if they were dictators and then were 
randomly paired, with one randomly selected subject’s choice in each pair determining final 
payments. Our prosociality measure is the dollar amount subjects chose to give to their partners 
out of $5; higher values reveal more prosociality. Payoffs for these tasks were not revealed until 
the end of the experiment to avoid any potential influence on behavior in the main experiment.  

2–3. Sudoku Instructions and Video: The simulated classroom began with instructions 
explaining the rules of Sudoku and a common “lecture” seen by all subjects in all treatments. For 
the lecture, we chose a video explaining some puzzle solving strategies and required all subjects 
to watch the video before starting the experiment.12 This ensured that each “student” got the 
same “lecture” and thereby controlled for the instructor’s influence. This is an important design 
feature because it has been difficult to disentangle the exogenous effect of tracking from the 
endogenous response of teachers in tracked classrooms. We chose this particular video because it 
highlights a set of strategies that subjects might also teach to (or reinforce in) one another. 

4. Ability Block (T=0): Next, subjects in all treatments were given 10 minutes to work 
alone on Sudoku puzzles and were paid $0.50 for each puzzle completed correctly in that time. 
We imposed no constraints on subjects’ inputs to the puzzles except that subjects could only 
enter whole numbers between 1 and 6. Subjects did not learn about their performance on any 
puzzle until the end of the Block. At that time, they learned only the total number of correctly 
completed puzzles and received no feedback about which puzzles (if any) were incorrectly 
completed or the source of such errors. We call this the “Ability Block,” and it provides a 
measure of individual performance (ability), free from peer-influence and measured under an 
incentive scheme that ensures non-satiation in performance. Prior to the Ability Block, subjects 
only know that there will be more parts to the experiment, but they have no further information 
about those parts or about how the Ability Block might influence those parts. For example, 
subjects do not know that Ability Block performance will be used to assign them to groups. 

                                                   
 
12 A link to the video is available here: https://www.dropbox.com/s/hmynir2fhva43z4/VideoInstructions.mp4?dl=0. 

https://www.dropbox.com/s/hmynir2fhva43z4/VideoInstructions.mp4?dl=0
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After the Ability Block, subjects were told that they had been placed in a group of 4 
subjects. An individual’s performance (ability) is measured by the number of Sudoku puzzles 
solved during the Ability Block (T=0).13 In half of the sessions, subjects were placed into groups 
in which subjects of different abilities were evenly distributed (untracked), and in the other half 
were placed into groups with subjects of similar ability (tracked). This means that in tracked 
sessions the bottom half of performers are all in one group, while in the untracked sessions they 
are divided across both groups. We explicitly balanced ability levels across groups in the 
untracked treatments in an attempt to mimic randomly assigned classes (which are balanced in 
expectation) to reduce the impact of sampling variation that might arise because of our small 
group size.14 See Figure 2 for details. Subjects were told the rules governing the formation of 
groups in their treatment in the instructions. Importantly, assignment to either group in the 
tracked treatment necessarily gives subjects information about the ability of others in the group. 
Thus, we displayed information about all group members’ performance in both the untracked 
and tracked treatments to hold constant the information subjects’ received about their peer group.  

Next, subjects were told that they would have a chance to practice Sudoku for 10 minutes 
and that they would then have 15 minutes to solve another block of puzzles for which they would 
again be paid based on performance. Half of the sessions were told that they would be paid at the 
same piece-rate as in the Ability Block, and half of the sessions were told that they would be 
paid based on their relative performance in their group (where performance equalled the number 
of correctly solved puzzles with ties broken by average time spent on each correctly solved 
puzzle). In the tournament sessions, subjects were told that 1st place would earn $20, 2nd place 
would earn $10, 3rd place $5 and 4th place $0; these payments were chosen to roughly equalize 
expected earnings across treatments based on pilot data measuring Sudoku performance.  

Thus subjects were informed about both the matching scheme and the incentive system 
operating during the “Evaluation Block” prior to starting the “Practice Block.” Thus, knowledge 
of the matching and incentive schemes could in principle influence decisions to practice, teach 
and/or learn from others when doing so was possible (i.e., the teaching treatments). 

 5. Practice Block: In the Practice Block, subjects had 10 minutes to work on a single 
Sudoku puzzle (for which they were not paid). In the no-teaching sessions, this was time for 

                                                   
 
13 The average solving time on correctly solved puzzles was the tiebreaker when ranking subjects but was not shown 
to subjects. 
14 One cost of this approach is that all groups are non-randomly constructed, making it difficult to look for the 
impacts of “bad apples” and “shining stars” explored in other settings (e.g., Lavy, Silva, and Weinhardt [2012]). 
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individual practice. The no-teaching sessions allowed us to measure both the learning that 
naturally takes place through individual practice and the effects of the tracking and tournament 
treatments in the absence of peer-to-peer teaching. 

In the teaching sessions, the Practice Block also consisted of 10 minutes working on a 
single puzzle, but here all four group members worked simultaneously on the same shared puzzle, 
which could be edited by each group member and updated in real time on all group members’ 
screens (Figure 1). Subjects were connected via audio chat and represented on screen by a 
numbered mouse cursor (from 1–4). All were told that the numbers corresponded to that 
subject’s within-group performance rank in the Ability Block. At the start of the Practice Block 
they were asked by the proctor to introduce themselves to one another using their number.15 The 
purpose of the Practice Block was described in the instructions for the teaching treatment as 
follows (See Appendix D for details and Appendix E for screenshots): 

You can complete this puzzle working with the people in your group. During this 
period, your microphone will be enabled and a voice chat room will be available in 
which you can discuss the puzzle you are working on. You may discuss any aspects 
of the experiment in the chat room, but you may not reveal your identity, make 
threats, or use inappropriate language (including shorthand like WTF). Other 
participants will be identified by a number next to their mouse cursor. This is their 
rank within the group. Please only speak English.  

Thus, teaching sessions introduced the possibility of peer-to-peer teaching and allowed us to 
measure its presence (or absence) and its effect on performance in the Evaluation Block. The 
instructions state that this is an opportunity for group work—which we intended to encourage 
peer-to-peer teaching—but subjects in teaching sessions were not provided with any direct 
incentives (or disincentives) to teach each other (i.e., payment is at the individual level rather 
than the group level). In tournament sessions, there are indirect dis-incentives for teaching: if 
someone is too effective as a teacher, their “student” may surpass their performance in the next 
stage, lowering their payoff; however, as we note below we find no evidence for such an effect.  

Given these considerations, observed teaching likely results from some combination of 
intrinsic motivation and an experimenter demand effect, with the added possibility that subjects 
import norms of peer-helping with them to the lab setting. We adopted this approach because 

                                                   
 
15 To limit possible contamination from verbal communication outside of the group audio chat, in all treatments 
subjects were seated at desks that maximized their physical distance from one another in the lab.  
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actual classrooms are also usually devoid of explicit incentives for students to teach each other, 
but we note that we may be observing an upper bound on non-incentivized teaching behavior 
since subjects do not face much opportunity cost of teaching in the lab setting.  

6. Evaluation Block (T=1): The final stage was a 15-minute Evaluation Block in which 
subjects in all sessions again worked independently to solve Sudoku puzzles. Before starting this 
Block, subjects were reminded briefly of the incentive scheme (piece-rate or tournament 
treatments) and also that they would learn their within-group rank at the end of the experiment 
(to hold information constant across incentive schemes).16 The difference in performance in the 
Ability (T=0) and Evaluation (T=1) Blocks provides our main data on learning in our virtual 
classroom. After the Evaluation Block ended, subjects were informed about their earnings from 
the Elicitations and the Ability and Evaluation Blocks and then were called one-by-one to be 
paid in cash. In addition to their salient earnings from the elicitations and performance pay in the 
Sudoku tasks, subjects received a $7 payment for arriving to the experiment on time. Average 
earnings including this show-up payment were approximately $22 for a 70-minute session. 

As noted above, we have three binary treatment variables: teaching (no-teaching/teaching), 
tracking (tracked/untracked), and incentives (piece-rate/tournament). Together these generate a 
2×2×2 factorial experimental design, which we applied between subjects. Table 1-B summarizes 
the design. For each session, a randomly chosen subset of students registered in our database at 
Simon Fraser University were invited to attend, with restrictions excluding subjects from 
participating twice. In total we report data from 448 subjects in our Sudoku experiments (56 
experimental sessions).17 We collected data from 6 sessions for each combination of tracking × 
incentives in the no-teaching treatment (24 sessions) and from 8 sessions for each combination 
of tracking × incentives in the teaching treatment (32 sessions).18  

 

2.2. Hypotheses 

                                                   
 
16 We did this in order to reduce causal ambiguity in our design–since it is impossible to pay according to rank 
without also introducing rank information, but it is possible that this induces non-monetary concerns about ranking, 
possibly muting the additional effects of introducing monetary rewards based on ranking in our tournament 
treatments. This could account for the lack of a treatment effect and is worthy of further research. 
17 We conducted but do not report data from one pilot session with slightly different parameters, our first three 
teaching sessions in which some subjects’ microphones were not working correctly for the audio chat, and one 
session which was lost when a subject’s computer reset during the middle of the experiment. 
18 We ran more teaching sessions (32 sessions) than no-teaching sessions (24 sessions) due to our interest in the 
interaction between teaching and tracking.  
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As we show in Appendix A, our tournament incentive scheme had a negligible effect on 
behaviour—we find neither main effects of the treatment nor interactions with the other 
treatments.19 As a result, our primary analysis pools data across incentive schemes and focuses 
on the effects of teaching, tracking, and their interaction—essentially reducing the study to a 2×2 
factorial experimental design. Thus, although we had hypotheses about the tournament and 
piece-rate treatments, in this section we focus on the three remaining hypotheses of interest, 
ignoring the negligible effects of the incentive treatments. 

Hypothesis 1 (Main Effect of Teaching): positive. Assuming that individuals are willing 
to engage in teaching (perhaps for prosocial reasons), peer-to-peer teaching will have a positive 
effect on performance as subjects help each other learn to solve puzzles. This effect should be 
largest among those who perform worst in the Ability Block because they have the most to gain.  

Hypothesis 2 (Effect of Tracked under No-teaching): ambiguous. Given the evidence in 
the literature of psychological encouragement/discouragement effects from information about 
relative standing in performance, subjects in the top (bottom) group may be encouraged 
(discouraged) when learning their relative ranking.20 The potential for offsetting effects makes 
the overall effect of tracking in the absence of teaching ambiguous. 

Hypothesis 3 (Effect of Tracked under Teaching): ambiguous. Under the teaching 
treatment, subjects in the tracked treatment may have less to teach one another, as the difference 
between the best and worst students in the group is smaller on average than the difference in the 
untracked treatment. Moreover, tracking may especially hurt subjects in the bottom half of 
performers since they lose access to the higher-ability peers who could have taught them. In this 
sense, tracking may attenuate the positive effects of teaching. On the other hand, students of 
similar ability may be more effective in teaching one another if they find it easier to express 
difficulties to one another or to target suggestions to address those difficulties. Again, the 
potential for offsetting effects makes the effect of tracking in the presence of teaching unclear. 

 

                                                   
 
19 The detailed analysis is summarized in Appendix A. The means of our measure of learning (described in Section 
3.1 below) in the piece-rate and tournament treatments are very similar (0.306 vs. 0.331). In addition, the 
distributions of our learning measure—not just the means—are nearly visually indistinguishable across the piece-
rate and tournament treatments (see Appendix Figure A1). We conclude that our incentive structure in the 
tournament treatment may have simply been too linear to induce treatment effects (i.e., changes in effort and 
teaching behavior) relative to the piece-rate treatment. 
20 See for example, Blanes i Vidal and Nossol [2011], Barankay [2012], and Gill et al. [2016]. 
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3. Data 

3.1.  Outcome Variable 

Our dependent variable capturing learning by subjects is the change in the average puzzle 
solving time per correctly solved Sudoku puzzle between the Ability Block (T=0) and the 
Evaluation Block (T=1).21 To ease interpretation, we standardize the average solving time in 
both periods by subtracting the mean and dividing by the standard deviation of average solving 
time at T=0 so that average solving time at T=0 has a mean of zero and a standard deviation of 
one. In this way, we can interpret the estimates in terms of standard deviations at T=0. Formally, 
our measure of learning for subject i is written as 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴0𝑖𝑖 −  𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖  –[1] 
where 𝐴𝐴𝐴𝐴𝐴𝐴0𝑖𝑖 and 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖 are the standardized average solving time for the Ability Block (T=0) 
and Evaluation Block (T=1), respectively. Note that our measure of learning is calculated by 
subtracting the average solving time at T=1 from the average solving time at T=0, so that 
positive values indicate improvement in solving time. Using a standardized measure of learning 
also facilitates comparisons across environments in which there are differences in ex ante 
(baseline) proficiency. We also conducted a replication with an alternative task, and using the 
standardized learning measure facilitates a pooled analysis of both experiments in Appendix C.22 

Another natural candidate for the outcome variable would be the change in the number of 
Sudoku puzzles solved from T=0 to T=1. However, due to the fixed length of our experiment, 
the observed variation in the change in the number of Sudoku puzzles solved is much smaller 
than that of changes in average solving time, making it difficult to use changes in the number of 
Sudoku solved to meaningfully identify the effects of treatments. In fact, the coefficients of 
variation (COV), which divide a variable’s standard deviation by its mean, are 2.36 (=73.5/31.1) 
and 0.55 (=2.8/5.1) for changes in raw average solving time and changes in the number of 

                                                   
 
21 Specifically, our software tracked the total time (in seconds) from initiation to completion spent on correctly 
solved Sudoku for each subject. Average solving time was recorded as this number of seconds divided by the 
number of correctly solved Sudoku.  
22 Because our learning measure is skewed to the right especially among subjects at the lower tail of the distribution, 
we also examine the change in logged learning as a robustness check in which we take the difference in the logs of 
(non-standardized) average solving time in the Ability Block (T=0) and the Evaluation Block (T=1). Estimates using 
the change in logged learning as our dependent variable can be interpreted in terms of percentage changes in average 
solving time.  
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Sudoku puzzles solved, respectively.23 Moreover, using the number of Sudoku puzzles correctly 
solved as an outcome measure makes no distinction between subjects who barely finish N 
puzzles and those who run out of time just before correctly completing the N+1th puzzle, while 
also implying a difference in performance between subjects who barely complete N puzzles and 
those who were about to finish the Nth puzzle when time expired. Using average solving time for 
correctly solved problems allows us to distinguish between these subjects.  

 

3.2.  Summary Statistics and Balance Checks 

Table 2-A reports summary statistics for the subject-level variables that we collected, while 
Table 2-B reports the results of balance tests examining whether our randomization of subjects to 
treatments was successful. Column (1) of Table 2-A presents the means of our control variables 
and the outcome variable. In total, 68 percent of the subjects had some prior experience with 
Sudoku. Raw average solving time in the Ability Block (𝐴𝐴𝐴𝐴𝐴𝐴0𝑖𝑖) is roughly two minutes (119 sec) 
per puzzle solved, while in the Evaluation Block (𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖) it is 88 sec, yielding average raw 
“learning” of 31 sec. To illustrate the learning by subjects, Figure 3 plots the relationship 
between standardized 𝐴𝐴𝐴𝐴𝐴𝐴0𝑖𝑖 and 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖 for each subject. We confirm that most of the subjects 
indeed learn. The solid line indicates the 45-degree line, and thus subjects below the 45-degree 
line exhibit improvement in their average solving time. Out of 448 subjects, 371 subjects (84 
percent) exhibit positive learning. In addition, only eight subjects (2 percent) could not solve any 
Sudoku at T=0.24 Finally, the mean of our main outcome—learning measured in standard 
deviations of 𝐴𝐴𝐴𝐴𝐴𝐴0𝑖𝑖—is 0.32.  

                                                   
 
23 We observe more variation in our learning measure than in the change in the number of problems 
solved for a straightforward reason. Consider the improvement in average solving time necessary to 
produce a one-puzzle improvement in the number solved for subjects with differing initial performance. 
Going from solving two puzzles to solving three puzzles in 15 minutes requires a much larger 
improvement in average solving time in both absolute terms and as a proportion of initial average solving 
time than going from solving 12 puzzles to 13. In other words, to observe an equivalent change in the 
number of puzzles solved requires much more learning for subjects in the lower end of the ability 
distribution. This in turn makes it much more likely that learning (improvement) among low-ability 
subjects would go undetected using the change in number of problems solved. 
24 We impute the raw average solving time for the 8 subjects who could not solve any Sudoku puzzles in the Ability 
Block (T=0) to be 600 seconds (= 10 minutes), the length of Ability Block. Only one subject also could not solve 
any Sudoku puzzles in the Evaluation Block (T=1) as well. We cap the raw average solving time for this subject at 
600 seconds, so that learning is equal to zero. We have also assigned this subject a value of 900 (= 15 minutes) for 
his/her raw average solving time, the length of Evaluation Block, so that raw learning is –300, but the estimates are 
almost identical given that there is only one such subject. As a robustness check, we exclude the 8 subjects who 
could not solve any Sudoku puzzles at T=0 from the sample and find quantitatively the same results. 
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As we are especially interested in the heterogeneity of learning by initial performance, 
Columns (2) and (3) report the means of the control and outcome variables for subjects in the top 
half and bottom half of their session’s ability distribution (as defined by performance in the 
Ability Block). Column (4) presents the differences between these two columns. As expected, 
subjects in the top half had more prior experience with Sudoku than subjects in the bottom half 
(88 percent vs. 48 percent). In addition, the subjects in the top half were slightly less prosocial 
insofar as they give less in the dictator game than subjects in bottom half. 

Importantly, the raw average solving time during the Ability Block (T=0) is much larger 
for subjects in the bottom half than those in the top half (168 vs. 71 sec), implying that there is 
more room for improvement among subjects in the bottom half. In fact, raw average learning 
(=𝐴𝐴𝐴𝐴𝐴𝐴0–𝐴𝐴𝐴𝐴𝐴𝐴1) is much larger for subjects in the bottom half than those in the top half (53 vs. 9 
sec). Also, the minimal raw learning (9 sec) by subjects in the top half suggests that high-ability 
subjects achieve near-peak performance even during the Ability Block (T=0), which may limit 
the scope for any treatment to affect their performance. We investigate this issue in Section 5 
using a game less familiar to subjects than Sudoku called Nonograms. Interestingly, while 
subjects in the bottom half “learn” much more than subjects in the top half, the raw average 
solving time for the bottom half during the Evaluation Block (𝐴𝐴𝐴𝐴𝐴𝐴1) is still larger than the raw 
average solving time for the top half during the Ability Block (𝐴𝐴𝐴𝐴𝐴𝐴0), suggesting that the 
subjects in the bottom half could only close about half of the initial performance gap. The bottom 
line is that we expect to see heterogeneous treatment effects across the ability distribution given 
that subjects in the top half already perform at a very high level at T=0, while subjects in the 
bottom half have far more room for improvement. 

Table 2-B reports the results of two types of balancing tests. Columns (1) and (2) report 
estimates from bivariate regressions that test how each variable in the far-left column is related 
to the teaching treatment (Column 1) and the tracking treatment (Column 2). Only one out of the 
14 estimates is statistically significant at the 10 percent level, suggesting that the random 
assignment of subjects to treatments was successful.  

As an alternative test of random assignment, Columns (3) and (4) reports p-values for F-
tests of the null hypothesis that the means across treatments are equal. Column (3) tests the null 
that the means across the eight treatments (2×2×2) are equal. Each cell reports the p-value for a 
separate test for each variable in the far-left column. We fail to reject the null hypotheses of no 
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differences across treatments for all of our controls.25 As mentioned earlier, we pool data across 
incentive schemes in our main analysis and focus on teaching (no-teaching/teaching), tracking 
(tracked/untracked) and their interaction, which essentially reduces our design to four treatments 
(2×2). Therefore, Column (4) tests the null that the means across these four treatments are equal. 
While we still fail to reject the null hypothesis for each variable, some of the p-values are less 
than 0.20. Furthermore, the potential lack of balance in covariates becomes more relevant when 
we replicate our design using another game due to the small sample in that robustness exercise 
(Section 5). As such, in much of the analysis we control for these subject characteristics. 

 

4. Main Results 

As noted above, our incentive treatments had no perceptible impact on behavior. Thus our 
main analysis pools the data over the incentive schemes and focuses on the impact of peer-to-
peer teaching on learning, as well as the interaction of teaching with ability tracking. 

4.1. Effects of the Teaching Treatment on Learning 

To test whether the peer-to-peer teaching has any positive impact on learning, we first 
simply compare the treatment means while controlling for individual characteristics. Because the 
assignment of subjects to each treatment is random, the estimation equation is straightforward:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖′ + 𝜀𝜀𝑖𝑖   –[2] 
where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a dummy equal to one for subjects in the teaching treatment and zero 
otherwise. 𝛽𝛽 is our coefficient of interest.26 The inclusion of individual controls 𝑋𝑋𝑖𝑖′ is, in 
principle, not necessary for estimation given that random assignment to treatment appears to 
have been successful as shown above, but we nonetheless include them to gain efficiency. 
Specifically, our controls are a dummy for male, a dummy for prior experience, the number of 
risky choices made in the risk preference elicitation, the amount offered in the dictator game, and 
a dummy for each of the eight subjects who could not solve any Sudoku puzzles during the 
Ability Block (T=0). For all of the regression results that we report, the standard errors are 
clustered at the group level, where each session consists of two groups, because all interaction 

                                                   
 
25 We also performed Kruskal-Wallis equality-of-populations tests as checks of our randomization and obtained 
similar results (results available upon request). We do not report them here because that test assumes the variables 
are measured on an ordinal or continuous scale, an assumption which does not apply for our binary variables. 
26 Note that any measured effect of the teaching treatment on performance is actually an intent-to-treat effect 
because some groups may not (and in fact did not) do much teaching. 
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among subjects (chatting in the teaching treatment and the revelation of subjects’ performance 
and rank information in all treatments) occurs at the group level. 

To evaluate whether learning is heterogeneous across the ability distribution, we estimate:  
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝛼𝛼0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖+𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖′ + 𝜀𝜀𝑖𝑖  –[3] 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is a dummy equal to one for subjects in the bottom half of their session’s ability 
distribution. The bottom half consists of the subjects who ranked 5–8 out of eight subjects in the 
Ability Block (T=0), while the top half consists of the subjects ranked 1–4. Because our interest 
is in the heterogeneous treatment effects by initial ability (i.e., which parts of the ability 
distribution are affected by peer-to-peer teaching) instead of the difference in treatment effects 
by initial ability, we report the treatment effects separately for subjects in top half and the bottom 
half using the outputs of estimating equation [3]. Specifically, 𝛽𝛽1 captures the effect of peer-to-
peer teaching on subjects in the top half, while the sum of 𝛽𝛽1 and 𝛽𝛽3 captures the effect of peer-
to-peer teaching on subjects in the bottom half. 

Testing Hypothesis 1 (Main Effect of Teaching):  
According to Hypothesis 1, teaching should have a positive impact on learning as subjects 

help each other figure out how to solve Sudoku puzzles. This effect might be larger for subjects 
in the bottom half of the ability distribution because they have more scope for improvement.  

Finding 1: The peer-to-peer teaching treatment significantly increases learning. 
Evidence: Table 3 summarizes the relevant statistics from the outputs of estimating 

equations [2] and [3]; the coefficient estimates themselves are reported in Appendix Table B1.27 
Note that all of the regressions include a dummy for the eight subjects who could not solve any 
Sudoku puzzles in the Ability Block (T=0)—even those labeled as including “no” controls. 
Columns (1) and (2) in Table 3 are based on the outputs from estimating equation [2]. Column 
(1) shows that teaching improves learning by 0.11 SD (p-value<0.05). The additional controls in 
Column (2) barely affect the estimate (0.12 SD), reconfirming that randomization was 
successful.28 This improvement by 0.12 SD corresponds to a reduction in raw average solving 

                                                   
 
27 As expected, the coefficient of experience is negative—suggesting that subjects with experience solving Sudoku 
puzzles had little (or less) room for improvement. Gender, risk attitudes and prosociality have no impact on learning. 
Once we add the dummy indicating whether subjects were in the bottom half (equation [3]), the coefficient of 
experience is substantially reduced and no longer statistically significant due to the high negative correlation 
between the dummies for being experienced and being in the bottom half. Finally, the large estimate for the constant 
term indicates that subjects learn even without peer-to-peer teaching. 
28 Note that this is an average treatment effect pooling the untracked and tracked treatments given that both types of 
environments (tracked and untracked) exist in practice. The estimated treatment effects of teaching can be separately 
derived for the tracked and untracked treatments from the estimates in Appendix Table B2. 
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time of 11.6 sec. Given that the mean learning in the no-teaching treatment is 27.6 sec, this 
translates into a 42 percent increase in learning.  

Importantly, the average effects reported in Columns (1) and (2) may not capture 
differences in the distributions of learning across treatments. Figure 4-A presents the kernel 
densities of learning for the no-teaching (solid line) and teaching (dashed line) treatments. The 
two-sample Kolmogorov-Smirnov test for equality of the distributions yields a p-value of 0.01, 
suggesting that the two distributions are quite different. This is further evidence that peer-to-peer 
teaching substantially reduces the average solving time.   

It is important to reiterate that although we did not explicitly ask the subjects to teach other 
or give them incentives to do so, we did suggest that the Practice Block could be used to work 
together on a puzzle. Subjects simultaneously edited the same puzzle on the screen, were 
equipped with headphones, and were allowed to chat for 10 minutes, so the design directly 
encourages teaching by (and learning from) peers. Indeed, as we show later in the analysis of the 
audio recordings (Section 4.3), substantial peer-to-peer teaching occurred during the Practice 
Block (with considerable variation across sessions). Further, it is remarkable that being given 
only 10 minutes to work together on a single Sudoku puzzle as opposed to working on it alone 
(as in the no-teaching treatment) increases learning by 0.12 SD or 42 percent. We are not aware 
of any past studies in the economics of education that directly document the importance of peer-
to-peer teaching to learning.29   

A significant caveat, however, applies to our estimates. The estimated effect of peer-to-
peer teaching on learning in our experiment is non-trivial relative to other treatment effects in the 
education literature, which likely reflects the scope for basic instruction from peers to resolve 
confusion and improve performance. In actual classrooms, however, teachers likely provide 
much of this instruction, and as such the effect of peer-to-peer teaching may smaller in practice 
than it is in our experiment. Of course, the potential for substitution between instruction from 
peers and instruction from teachers also implies that peers may attenuate the negative effects of 

                                                   
 
29 Li et al. (2014) find that low-performing students experience large gains between achievement tests when seated 
next to a high-performing peer who was being paid for improvements in the low-performing student’s test scores in 
Chinese middle schools. Significantly, the gains experienced by low-performing students were much larger than 
when seated next to a high-performing student who was not being paid for improvements in the low-performing 
student’s score. Their experiment, however, does not identify how the high-performing students influence the low-
performing students’ scores. Nonetheless, their findings suggest that even larger treatment effects may have 
emerged had we provided subjects with group incentives. 
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“bad” teachers. In any case, the large experimental estimate of the effect of peer-to-peer teaching 
highlights the need for further investigation of peer-to-peer teaching in other contexts. 

Finding 2: The positive effect of peer-to-peer teaching is primarily on those individuals in 
the bottom half of the ability distribution. 

Evidence: Columns (3) and (4) in Table 3 present the estimated treatment effects of peer-
to-peer teaching for subjects in the top and bottom halves, respectively, based on the outputs 
from estimating equation [3]. Columns (3) and (4) show that the positive effect of teaching on 
learning is driven entirely by subjects in the bottom half. In Column (4), which also controls for 
individual characteristics, the estimated teaching effect for subjects in top half is very small (–
0.02 SD) and far from statistically significant. On the other hand, the estimated teaching effect 
for subjects in the bottom half is 0.24 SD (p-value<0.01).30  

Figure 4-B presents kernel densities of the learning distribution for the no-teaching and 
teaching treatments in which we restrict the sample to subjects in the bottom half. The figure 
clearly shows that the distribution of learning is shifted to the right in the teaching treatment 
compared to the no-teaching treatment.  

 

4.2. Ability Tracking and Peer-to-peer Teaching 

In the previous subsection, we established that peer-to-peer teaching encourages learning 
in our experimental setting, though the effect of teaching is concentrated among subjects in the 
bottom half of the ability distribution who have more scope for improvement. In this section, we 
examine how ability tracking interacts with peer-to-peer teaching and hence learning.  

Testing Hypothesis 2 (Effect of Tracked under No-teaching) 
As a benchmark, we estimate the direct effect of tracking in the absence of teaching. High-

performing subjects may be encouraged when learning their relative ranking while low-
performing subjects may be discouraged.31 In addition, learning about the performance of other 

                                                   
 
30 To assess the robustness of our estimates to the influence of skewness, we estimate the same equations as [2] and 
[3] but replace the outcome by the difference in the logs of (non-standardized) average solving time in the Ability 
Block (T=0) and the Evaluation Block (T=1). Appendix Table B3 shows that the general message is the same as our 
baseline estimates in Table 3: the large gain in learning in the peer-to-peer teaching treatment is concentrated among 
subjects in the bottom half of the ability distribution. 
31 Note that subjects were informed of their relative rank in all treatments within their matched group of 4 (see 
screenshots in the Appendix E), but we did not tell them their overall rank among the 8 subjects of their session. 
Perhaps it was easier for low-performers to infer their overall rank due to the zero lower bound on performance. Our 
results are robust to including indicators for within-group rank.  
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subjects in their group may increase the pressure felt by subjects and affect their performance. 
The potential for these offsetting effects makes the effect of tracking ambiguous.32 We estimate  
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝛼𝛼0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖′ + 𝜀𝜀𝑖𝑖 –[4] 

where the reference group is the untracked and no-teaching treatment. 𝛽𝛽1 is the effect of tracking 
in the no-teaching treatment (Hypothesis 2), while the sum of 𝛽𝛽1 and 𝛽𝛽3 captures the effect of 
tracking in the teaching treatment (Hypothesis 3 as shown later).  

To examine heterogeneous effects by initial ability, we estimate 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝛼𝛼0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛽𝛽4𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ×
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛽𝛽6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛽𝛽7𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ×

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖′ + 𝜀𝜀𝑖𝑖 –[5] 
which adds to equation [4] a dummy indicating subjects ranked in the bottom half of their 
session in the Ability Block and interactions between this dummy and the treatment indicators. 
In the no-teaching treatment, 𝛽𝛽1 captures the effect of tracking for subjects in the top half and the 
sum of 𝛽𝛽1 and 𝛽𝛽5 captures the effect of tracking for subjects in the bottom half. We report the 
coefficient estimates themselves from equations [4] and [5] in the Appendix Table B2. 

Finding 3: We observe no significant impact of ability tracking in the absence of teaching. 
Evidence: Column (1) in Table 4 shows that tracking reduces learning by 0.04 SD on 

average in the absence of teaching, but the estimate is far from statistically significant and small 
in magnitude. Figure 5-A plots the kernel densities of learning in the no-teaching × untracked 
and no-teaching × tracked treatments. The p-value of a Kolmogorov-Smirnov test between the 
untracked and tracked treatments is 0.56, and thus we cannot reject the null that the two 
distributions are the same.  

This overall null result, however, might mask heterogeneity among subjects. Column (2) of 
Table 4 shows that ability tracking may reduce the improvement in average solving time by 
0.095 SD among the subjects in the bottom half, which is sizable and consistent with a 
discouragement effect from learning their relative ranks but far from statistically significant at 
conventional levels. We conclude that we do not find a direct negative effect of tracking per se. 

Testing Hypothesis 3 (Effect of Tracked under Teaching) 

                                                   
 
32 In education, Murphy and Weinhardt [2014] and Elsner and Isphording [2017] find that primary and secondary 
school rank has large effects on subsequent academic outcomes even after controlling for ability. They attribute their 
findings to the development of confidence and to the formation of expectations and perceptions about ability, 
respectively. These long-term effects of rank information are unlikely to be important in our short experiment. 
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On the one hand, subjects in the teaching treatment who are tracked may have less to teach 
one another as the difference between the best and worst performer in a given group is smaller 
on average than in the untracked treatment. In fact, the standard deviations of raw average 
solving time in the Ability Block (𝐴𝐴𝑆𝑆𝑆𝑆0) at the group level are 0.85 and 0.48 SD (82.6 and 46.1 
sec) in the untracked and tracked sessions, respectively.33 In addition, tracking may especially 
hurt subjects in the bottom half as they lose access to high-ability peers who could have taught 
them in the untracked sessions. In this sense, ability tracking may attenuate the positive effects 
of teaching. On the other hand, subjects of more similar ability may be more effective in teaching 
one another. The potential for offsetting effects makes the effect of ability tracking in the 
teaching treatment ambiguous. Columns (3) and (4) in Table 4 present the estimated treatment 
effects of tracking in the teaching treatment from equations [4] and [5]. 

Finding 4: Tracked groups exhibit less learning than untracked groups in the teaching 
treatment.  

Evidence: Figure 5-B plots the kernel densities of learning in the teaching × untracked 
and teaching × tracked treatments. The figure shows that distribution of learning in the tracked 
treatment is shifted to the left compared to the untracked treatment, suggesting that tracked 
group exhibit less learning than untracked groups in the teaching treatment. A two-sample 
Kolmogorov-Smirnov test yields a p-value of 0.015. Another way to visualize this shift is 
presented in Figure 6, which displays the empirical CDFs of learning by treatment. When peer-
to-peer teaching is allowed, Figure 6-B shows that learning in the tracked treatment is 
stochastically dominated by learning in the untracked treatment. 

Column (3) in Table 4 shows that tracking reduces learning by 0.15 SD (p-value<0.10) on 
average in the teaching treatment, substantially offsetting the positive effects of teaching (0.17 
SD in the untracked treatment from Appendix Table B2). This offsetting effect of tracking is 
driven mainly by subjects in the bottom half—the subjects who benefitted most from teaching in 
the first place—while having little effect on subjects in the top half.34 For subjects in the bottom 
half, the estimates in Column (4) indicate that as tracking reduces learning by as much as 0.28 

                                                   
 
33 In the teaching treatment, there are 32 groups each in the untracked and tracked sessions.  
34 The sum of 𝛽𝛽1 and 𝛽𝛽4 from equation [5] captures the effect of tracking on subjects in the top half in the teaching 
treatment, while the sum of 𝛽𝛽1, 𝛽𝛽4, 𝛽𝛽5, and 𝛽𝛽7 captures the effect on the subjects in the bottom half. The original 
estimates from equation [5] are reported in Appendix Table B2. 
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SD (p-value<0.10) relative to the estimated effect of teaching on learning among these subjects 
of 0.33 SD in the untracked treatment.35,36  

In summary, while tracking does not have large negative effects on learning for subjects in 
the bottom half without teaching, it has large detrimental effects on them in the teaching 
treatment—probably because they lose access to high-ability peers who could have taught them. 
In Section 4.3, we examine the frequency of teaching to test this conjecture. 

 

4.3. Mechanism for the Negative Impact of Tracking under Teaching  

So far, we have documented that the positive effect of teaching on learning is offset by a 
negative effect of tracking on subjects in the bottom half of the ability distribution. In this 
section, we investigate the mechanism underlying this finding by analyzing actual instances of 
peer-to-peer teaching behavior in our experiments.  

Specifically, our software recorded subjects’ conversations with members of their group 
during the Practice Block. Two research assistants (who were unaware of our research question 
and the particulars of our experimental design) transcribed these conversations and then 
independently counted the number of teaching related statements and the number of non-teaching 
related statements for each group. A teaching statement is defined to be any utterance in which 
subjects are engaged in trying to teach each other how to do Sudoku such as “You can’t have a 
five there; there is already one in that column.” After each research assistant counted instances of 
teaching in each group independently, the two research assistants cross-checked their counts and 
resolved the few disagreements.37  

Figure 7 plots the frequency of “teaching related statements” (hereafter just “teaching”) at 
the group level. The graph on the left plots the number of groups with given teaching frequencies 
in the untracked treatment (N=32) as well as the same distribution for groups composed of the 

                                                   
 
35 Appendix Figure B1 reproduces the empirical CDFs in Figure 6-B for subjects in the top and bottom halves 
separately, recognizing the risk of splitting the sample on too many dimensions. The figure indicates that only 
subjects in the bottom half are negatively affected by tracking in the teaching treatment. 
36 Appendix Table B4 presents estimated treatment effects analogous to those presented in Table 4 using log 
learning as the dependent variable. Our findings that tracking negatively impacts learning only in the teaching 
treatment and only for subjects in the bottom half remain robust. Column (4) shows that in the teaching treatment, 
tracking reduces learning among the subjects in the bottom half by 15.2 percent (p-value<0.05), while tracking has a 
negligible impact on the subjects in the top half. 
37 See Appendix F for a description of the scheme used by the research assistants to categorize statements as 
“teaching.” 
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bottom half of Ability Block performers in the tracked treatment (N=16). The graph on the right 
plots (again) the number of groups with given teaching frequencies in the untracked treatment 
(N=32) along with the same distribution for groups composed of the top half of Ability Block 
performers in the tracked treatment (N=16).  

Table 5 reports the results of several regression specifications in which the outcome is the 
number of teaching statements exchanged by a group. The hypothesis is that the number of 
teaching statements will be consistent with the results for learning in Columns (3) and (4) of 
Table 4: namely that subjects in the bottom half experienced less peer-to-peer teaching in the 
tracked treatment than in the untracked treatment. 

Finding 5: Ability tracking reduces the frequency of instances of peer-to-peer teaching. 

Evidence: Table 5 presents our analysis of teaching frequency, which is by construction 
limited to 32 teaching sessions with 16 sessions each in the untracked and tracked treatments. 
The unit of analysis here is a group, and in each session there are two groups. Column (1) shows 
that on average we observe 4.8 instances of teaching per group in the untracked treatment. 
Columns (2) and (3) present the means for the tracked groups containing the bottom half of 
subjects in the Ability Block (ranks 5–8) and the top half (ranks 1–4), respectively. 

Columns (4) and (5) of Table 5 report the differences between Columns (1) and (2) 
estimated via different econometric models. Column (4) presents the estimates from OLS, and 
Column (5) estimates from a zero-inflated Poisson model in order to account for both the 
discrete nature of teaching frequencies and the fact that there are a number of groups without any 
teaching; the Vuong test of the zero-inflated versus the standard Poisson reported in the table 
indicates that the zero-inflated models are preferred in all specifications in Table 5. Columns (6) 
and (7) report corresponding estimates for the difference between Columns (1) and (3).  

This analysis provides evidence that ability tracking reduces the number of teaching 
statements in both the high- and low-ability groups. The reduction in teaching frequency due to 
ability tracking is much more substantial among subjects in the top half (Columns (6) and (7) of 
Table 5) than the reduction among subjects in the bottom half (Columns (4) and (5) of Table 5). 
We believe this is because high-ability subjects have no one to teach under ability tracking when 
they are surrounded by other high ability subjects who already know how to do Sudoku and do 
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not need to be taught by others. The histograms of teaching frequency by treatment in Figure 7 
provide further evidence to this effect.38   

To summarize, the tracked treatment, which assortatively groups subjects based on ability, 
reduces the frequency of peer-to-peer teaching compared to the untracked treatment. While we 
observe a reduction in the instances of teaching among subjects in both the top and bottom 
halves of the ability distribution, the reduction is much larger among subjects in the top half. The 
reduction in teaching frequency among subjects in the top half may reflect the fact that high 
ability subjects have little to teach each other. Subjects in the bottom half, however, still try to 
teach each other, but their peer-to-peer teaching is evidently ineffective.39  
 

5. Replication Exercise Using a Different Game: Nonograms 

So far, we have shown that most learning in our experiment occurs among low-ability 
subjects, while high-ability subjects are hardly affected by any treatment combination. The 
positive effect of teaching on learning is concentrated among subjects in the bottom half of the 
ability distribution, and the negative effect of tracking in the teaching treatment is also 
concentrated on the subjects in the bottom half. One possible reason for the absence of treatment 
effects among subjects in the top half is a “ceiling effect.” High-ability subjects may already 
achieve near-peak performance in solving Sudoku puzzles even during the baseline (T=0) and 

                                                   
 
38 One potential explanation for tracking’s effect on teaching frequencies is that tracking may reduce the variance of 
initial ability within a group. On the one hand, a more homogenous group may facilitate teaching if subjects of 
similar ability find it easier to express their difficulties to one another. On the other hand, it is also possible that 
some heterogeneity is necessary to generate a meaningful exchange of information in the form of questions and 
(correct) answers. Appendix Table B5 correlates the number of teaching statements with the group mean and group 
standard deviation (SD) of standardized average solving time at T=0. Because group mean is the group average of 
standardized average solving time, the higher the group mean is the worse the group’s performance in the Ability 
Block. To account for the discrete nature of teaching frequencies, we report the results from a zero-inflated Poisson 
model in Columns (1)–(4); the Vuong test reported in the table indicates that the zero-inflated model is preferred to 
the standard Poisson in all specifications. Throughout Columns (2)–(4), the most robust result is that the coefficient 
estimate on group SD is positive and statistically significant. Notably, Column (3), including both group mean and 
group SD, indicates that greater group heterogeneity is associated with more peer-to-peer teaching even when 
comparing groups with subjects of similar ability on average. Column (4) shows that, while imprecisely estimated, 
the coefficient estimate of the interaction between group mean and group SD is negative—suggesting that the 
positive effect of group SD on peer-to-peer teaching is larger in groups with better performing subjects on average 
(i.e., a lower group mean) than in groups with worse performing subjects. This result seems plausible if the positive 
effect of ability heterogeneity on teaching frequency is mitigated when a group consists of lower ability subjects 
with less to teach each other.  
39 That students in the bottom half of the ability distribution need higher ability students to teach them is consistent 
with Lavy, Silva, and Weinhardt’s [2012] finding that girls (although not boys) in the bottom half of the ability 
distribution benefit from the presence of very bright peers. 
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thus have no scope for improvement no matter what the treatment. Indeed, mean raw learning by 
subjects in the top half is only 9 sec per puzzle (vs. 53 sec per puzzle in the bottom half).  

To investigate this claim, we replicate our experiment substituting a less popular logical 
puzzle called a Nonogram. Nonograms are similar to Sudoku in the sense that subjects need to 
fill a 5 × 5 grid while satisfying a set of logical constraints as shown in Appendix Figure B2 (and 
detailed in the instructions in Appendix D). Moreover, there are a numerous puzzle solving 
“strategies” for Nonograms that are also straightforward to teach and learn, and an instructive 
video also exists as in the case of Sudoku.40 In fact, this game has been used in another study as 
an alternative to Sudoku (Charness et al. [2015]). The most important difference between Sudoku 
and Nonograms is that most of the subjects in our experiment have no prior experience solving 
Nonograms: unlike Sudoku with which 68 percent of subjects have some experience, only 2 
percent of our subjects have some experience with Nonograms. 

Table 6 summarizes the design of Nonograms experiments. We conducted 4 sessions for 
each combination of tracking × incentives in the no-teaching treatment (16 sessions) and the 
teaching treatment (16 sessions) with a total of 256 subjects (participants were restricted to those 
who had not previously participated in the Sudoku experiment). As a result, we often lack the 
statistical power to precisely detect treatment effects, and thus we view the results reported 
below as only complementary to our main findings using Sudoku. In fact, none of the 
Kolmogorov-Smirnov tests for equality of the distributions are statistically significant even 
though it is visually apparent that the distributions of learning are different. The procedures for 
the Nonogram experiments were identical to those for Sudoku as described in Table 1-A.  

Appendix Table B6 presents summary statistics from the Nonogram experiments. The 
mean of our main outcome—learning measured in standard deviations of 𝐴𝐴𝐴𝐴𝐴𝐴0—is 0.48. Out of 
256 subjects, 234 (91.4 percent) exhibited positive learning—in part because 20 percent of 
subjects could not solve any Nonograms at T=0. Thus unlike in the Sudoku experiments, even 
subjects in the top half may have some scope for improvement. The p-values for tests of the null 
hypothesis that the covariates are balanced across four treatments (2×2) (we again pool sessions 
from different incentive schemes) for several variables are just above conventional significance 
levels suggesting that some variables are not perfectly balanced across treatments due to the 

                                                   
 
40 A link to the video is available here: https://www.dropbox.com/s/vpsti0kpsepp0kh/NonogramTutorial.mp4?dl=0  

https://www.dropbox.com/s/vpsti0kpsepp0kh/NonogramTutorial.mp4?dl=0
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small sample.41 Thus, we estimate equations [4] and [5] using the data from the Nonograms 
sessions controlling for subject characteristics as we did for the Sudoku sessions.  

We first examine whether teaching has a positive effect on learning in Nonograms. Figure 
8-A presents the cumulative distributions of learning for the no-teaching (solid line) and 
teaching (dashed line) treatments, while Figure 8-B focuses on subjects in the bottom half. These 
figures show that subjects’ learning in the teaching treatment stochastically dominates subjects’ 
learning in the no-teaching treatment—especially among subjects in the bottom half. 

Table 7, which corresponds to Table 3 for Sudoku, confirms this visual inspection.42 
Column (2) shows that teaching increases subjects’ learning by 0.20 SD (p-value<0.01), which is 
larger than in Sudoku (0.12 SD). This estimate suggests that having subjects with a high degree 
of ex ante proficiency as in the Sudoku experiments is not a necessary condition for successful 
peer-to-peer teaching. Column (4) shows that most of the gains from teaching are again 
concentrated among subjects in the bottom half of their session (0.36 SD with p-value<0.01). 
Teaching does not seem to positively impact learning for subjects in the top half despite their 
lack of familiarity with Nonograms (0.02 with p-value of 0.29). Given that subjects in the top 
half improve by almost 27 sec on average as reported in Appendix Table B6 in the Nonogram 
experiments compared to 9 sec for top half subjects in the Sudoku experiments, “ceiling effects” 
are less likely to be an issue in the Nonogram experiments.43,44 As such, we conjecture that 
subjects in the top half may not be exposed to sufficiently many higher ability subjects who have 
something to teach them. In addition, the absence of improvements in performance among 
subjects in the top half suggests that the effects of teaching in the Sudoku experiments were 
unlikely to have been driven by peers motivating each other during the Practice Block. In the 
Nonogram experiments, top half subjects had room for improvement and would presumably be 

                                                   
 
41 Again, our tournament incentive scheme had a negligible effect on behavior (either through main effects of the 
treatment or interactions).  The means of learning in the piece-rate and tournament treatments are very similar 
(0.479 vs. 0.484 SD), and the p-value for the test of the equality of means is 0.956 (see Appendix Table A1). 
42 The original estimates from equation [5] are reported in Appendix Table B7.  
43 The only notable difference between Sudoku and Nonograms is that the estimate on “bottom half” for Sudoku in 
Column (4) of Appendix Table B1 is statistically significant and positive (0.17) while that for Nonograms in 
Column (4) of Appendix Table B7 is very small (–0.01). The Sudoku estimate suggests that subjects in the top half 
did not have room for improvement, and thus learning among these subjects is substantially less than the learning 
among subjects in the bottom half (ceiling effects). By contrast, the Nonogram estimate for subjects in the bottom 
half is close to zero, suggesting that subjects in the top and the bottom halves improve by similar amounts. 
Interestingly, peer-to-peer teaching does not additionally improve learning among subjects in the top half in 
Nonograms despite the fact that they have room for improvement. 
44 Following standardization, the gain for subjects in the top half is small compared to subjects in the bottom half, 
but these gains are large relative to initial solve times among top half subjects. 
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susceptible to positive motivational effects from the teaching treatment, but we observe no such 
improvement. 

Finally, we examine how ability tracking interacts with peer-to-peer teaching and hence 
learning. We first examine the effect of tracking in the no-teaching environment to see if 
tracking per se has any discouragement or encouragement effects when subjects learn their ranks 
within the group. Figure 9-A plots the empirical CDFs of learning in the no-teaching × 
untracked and no-teaching × tracked treatments. The distributions are almost identical 
suggesting that tracking per se does not seem to affect learning as in the Sudoku experiments. 

We now turn to the main effect of interest to us, the effect of tracking when peer-to-peer 
teaching is possible. Figure 9-B plots the empirical CDFs of learning in the teaching × 
untracked and teaching × tracked treatments. The figure shows that learning in the tracked 
treatment is nearly stochastically dominated by learning in the untracked treatment, suggesting 
that tracking when teaching is possible diminishes learning. This result is consistent with that in 
the Sudoku experiments.  

Table 8 summarizes the estimates based on the outputs of equations [4] and [5] to 
formalize the inference from the visual inspection of Figure 9.45 Columns (1) and (2) show that 
ability tracking had no significant impact on learning in the no-teaching treatment regardless of 
whether we consider the full sample or subjects in the top and bottom halves of their sessions. 
Unlike in the Sudoku experiment, the effect of tracking in the no-teaching treatment is positive 
in all of these samples, but the estimates are far from statistically significant.  

Column (3) in Table 8 shows that ability tracking reduces learning by 0.063 SD on average 
in the teaching treatment, but this effect is not statistically significant. Column (4), however, 
shows that ability tracking reduces the average solving time by 0.063 SD (p-value<0.05) among 
the subjects in top half. For subjects in the bottom half, the estimated treatment effect is similar 
in magnitude (–0.081) but imprecisely estimated. Thus we infer that tracking may reduce the 
learning of all subjects in the teaching treatment of the Nonogram experiment.46  

That tracking has a negative effect on learning for subjects in the top half is consistent with 
evidence from the education literature that students who teach their peers learn more as a result 

                                                   
 
45 The coefficient estimates themselves from equations [4] and [5] are reported in Appendix Table B8. 
46 Appendix Figure B3 reproduces Figure 9-B separately for subjects in the top and bottom halves. Despite the small 
sample, the figure clearly shows that both groups of subjects are negatively affected by tracking in the teaching 
environment in contrast to the corresponding figures for Sudoku in Appendix Figure B1 in which only subjects in 
the bottom half are negatively affected by tracking in the teaching treatment.  
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(Bargh and Schul [1980]). Tracking groups subjects with similar levels of understanding; as a 
consequence there may be fewer opportunities to engage in mutually beneficial teaching.47 Our 
failure to observe a similar effect in the Sudoku treatment may have resulted from the high levels 
of Sudoku proficiency already evident in the Evaluation Block. Indeed, the potential for such 
“ceiling effects” is precisely why we ran the Nonogram experiments. 

Exploring further this difference between the Sudoku and Nonogram experiments, 
Appendix Table B9 compares the number of “teaching related statements” in the tracked and 
untracked sessions. In contrast to the Sudoku experiment, we do not see meaningful differences 
in teaching intensity between the tracked and untracked treatments partly because of the small 
number of groups (we only have 32 data points).48 Subjects in the bottom half—regardless of 
whether they were in the tracked or untracked sessions—may ask more questions about this 
unfamiliar game. As such, the increase in teaching in the tracking treatment in the bottom half 
group may simply reflect a compositional effect. Regardless of the explanation, the means of 
teaching frequency in Appendix Table B9 cannot rationalize the negative effects of tracking on 
all subjects in the Nonogram experiments. One possibility is that the frequency of teaching 
abstracts from the quality or nature of the exchanges. Top half students may benefit from having 
bottom half students asking basic questions (the answers to which benefit all subjects), while 
bottom half subjects may benefit from having better peers with answers to these questions.49  

 

6. Discussion & Conclusion 

Our study provides the first estimates of the importance of peer-to-peer teaching: enabling 
this interaction for only 10 minutes leads to a 42 percent increase in our measure of learning—an 
increase predominantly driven by low-ability subjects. While highlighting the potentially sizable 
effect of peer-to-peer teaching, our study also suggests that the effects of these interactions are 
shaped by the composition of peer groups. We see that the positive effect of peer-to-peer 

                                                   
 
47 Song et al. [2017] similarly find that Chinese middle school students serving as tutors showed gains in 
achievement—even while the students being tutored enjoyed no achievement gains. 
48 For completeness, Columns (5)–(8) in Appendix Table B5 report the estimates from regressing teaching 
frequency on the group mean and SD of standardized average solving time at T=0. While group SD is always 
positive throughout the specifications as it was for Sudoku (except for Column (8)), the estimates are imprecise 
given the small sample size (N=30). 
49 Our use of a common, standardized learning measure also allows us to conduct an analysis of the pooled data 
from both the Sudoku and Nonogram treatments. Such an analysis maximizes the value of the replication exercise 
and provides increased statistical power—especially given that the results are similar across the treatments. In 
Appendix C, we report the pooled analysis, which confirms our main results. 
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teaching on low-ability subjects is substantially offset when subjects are tracked by ability. This 
implies that ability tracking based on prior achievement can potentially disadvantage low-ability 
students who may miss out on interactions with high-ability peers who can teach them. These 
insights into the role of peers as teachers come—like most estimates—with qualifying remarks.  

Like field studies of tracking exploiting random assignment to peer groups, we cannot rule 
out the possibility that ability tracking may have little effect on low-ability students relative to an 
untracked setting in practice if students in untracked settings segregate themselves by ability on 
their own accord as documented in Carrell et al. [2013]. Furthermore, a laboratory experiment 
such as ours necessarily misses some important features of classrooms (e.g., the fact that most 
classes go on for weeks rather than hours, interactions among peers outside of the classroom).  

Nevertheless, using a laboratory experiment allows us to estimate in a credible fashion the 
effect of peer-to-peer teaching—typically unmeasured in other settings. The virtue of the 
laboratory experiment is the extent of experimental control: our design allows us to exogenously 
vary both subjects’ ability to teach other and peer group composition while also shutting down 
potential competing channels through which tracking may influence learning. Our laboratory 
setting allows us to observe the counterfactual world in which students are completely unable to 
teach one another. It is possible to observe peer-to-peer teaching in the field, but no (ethical) 
design can eliminate the possibility that students engage in peer-to-peer teaching outside the 
classroom—making a study such of ours documenting the significance of peer-to-peer teaching 
for learning essential to the peer effects literature. 

Assessing the relevance of our findings for actual classrooms and academic disciplines, we 
note that learning Sudoku consists of learning rules and when to apply these rules. Likewise, 
learning addition, subtraction, calculus and even many languages similarly involves learning 
rules and when to apply them. Students stumbling over basic rules may benefit enormously from 
simple clarification to eliminate confusion as these basic rules form the building blocks for more 
challenging concepts. In our experiment, we suspect the large treatment effect from peer-to-peer 
teaching results from precisely this sort of elimination of confusion over basic rules among 
subjects with little familiarity with Sudoku. In classrooms, peers may have daily opportunities to 
resolve similar confusion when learning rule-based subjects, and thus we argue that the potential 
for significant learning gains from peer-to-peer teaching exists in many classrooms.  

Differences in contexts, measures of learning, and timeframes make comparisons between 
our study and others in the peer effects literature challenging, but two recent studies bear special 
mention as they provide additional insight into how our findings are likely to apply in other 
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settings. Booij et al. [2017] and Feld and Zolitz [2017] exploit random assignment to classroom 
peer groups in Dutch universities and find that low-achieving students benefit from being placed 
in groups with students of similar ability—the opposite of what our findings might suggest.  

Importantly, both studies also examine students’ responses to surveys to explore the 
channels through which peers influence each other. Feld and Zolitz [2017] find that having peers 
with higher average GPA is positively related to “group interaction” as measured by agreement 
with the statements “My tutorial group has functioned well” and “Working in tutorial groups 
with my fellow-students helped me to better understand the subject matters of this course.” 
Certainly the positive correlation between the latter statement and peer GPA is consistent with 
our inference that higher ability peers make better teachers for low-ability subjects.50 

Booij et al. [2017] find that while students benefit from better peers, low-ability students 
are negatively affected by peer heterogeneity. The dominance of the latter effect makes tracking 
students by ability optimal. Using student surveys, they show that tracking positively affects 
interactions (i.e., whether students study together or help each other) and involvement (i.e., 
whether students ask questions in the tutorial and whether classmates’ ability has an effect on 
students’ motivation) in the tutorial group. These effects of tracking, however, are surely absent 
in our design as subjects neither study together outside of the lab nor work together on 
homework. Likewise, inspection of the chat transcripts provides scant evidence of subjects 
motivating each other in our experiment. Booij et al. [2017] and Feld and Zolitz [2017] examine 
peer groups that were central to students’ studies over an extended period in which interactions 
outside of the classroom (e.g., studying together, homework collaboration) and the motivational 
effects of peers are likely to be far more important than in our experiment. By contrast, peers in 
our experiment influence each other exclusively through peer-to-peer teaching. 

This should not be taken to imply that our findings are unlikely to generalize as the 
positive social and motivational effects of tracking identified in Booij et al. [2017] may be less 
likely to dominate the negative effects of tracking on peer-to-peer teaching in other contexts. In 
many North American universities, students are exposed to more peer groups as they take, on 
average, more courses per year and are unlikely to take the same courses with a single group of 

                                                   
 
50 Feld and Zolitz [2017] find that low-ability students benefit from better peers as our findings would suggest, but 
they infer that low ability students benefit from being in groups with students of more similar ability because they 
find a negative coefficient on the fraction of one’s peers in the top-third of the ability distribution. Increasing the 
fraction of peers in the top-third comes at the expense of students in the middle third—students more similar to 
students in the bottom third of the ability distribution. 
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students. As such, the peer interactions outside of the classroom and motivational effects of any 
given peer group are likely to be much smaller, and the effects of direct instruction from peers in 
the classroom may be more significant than in these Dutch universities. Indeed, we would 
suggest that future research on the role of peers as teachers should focus on how to structure 
classrooms and student interactions so as to maximize the benefits from peer-to-peer teaching. 

To close, laboratory experiments such as ours—in spite of their limitations—have a role to 
play as “mechanism experiments” (Ludwig et al. [2011]) to investigate basic but fundamental 
issues such as the effects of peers. Given that lab experiments are smaller and less expensive than 
field experiments, such studies can be more easily replicated and the robustness of findings to 
differences in context and experimental design tested. Indeed, effects of the magnitude we report 
are so large as to demand replication and interest from education researchers. 

Furthermore, we view laboratory experiments as a natural complement to more 
burdensome and potentially disruptive field experiments—perhaps as a precursor to guide and 
inform the design of such interventions. For example, anecdotally it has been suggested to the 
authors that tracking is as prevalent within classrooms as it is across classrooms with teachers 
matching students for group work. The laboratory could be used to investigate whether “nearest 
neighbor” matching rules assigning similar students to work together lead to better outcomes 
than alternative assignment rules. Alternatively, Carrell et al. [2013] speculate that having 
middle-ability students in a classroom may be important for low-ability students if middle-ability 
students serve as mediators or bridges between low and high-ability students. The laboratory 
could be used to investigate the importance of peers who can serve as “bridges” between groups 
of students with different abilities. Experiments could also shed light on whether peer ability is a 
complement or substitute in the education production function. We leave intriguing questions 
such as these for future research. 
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Figure 1: Screenshot from the Teaching Treatment  
during the Practice Block (Sudoku) 

 
 

Notes: Shown from the perspective of the subject ranked 1 out of 4 in his group. Subjects are able to 
simultaneously edit a common 6×6 Sudoku puzzle during the Practice Block. Each other mouse arrow is 
labeled with the within-group performance rank of the person in the Ability Block (T=0). Performance is 
measured by the number of Sudoku puzzles solved with the average solving time serving as a tie-breaker. 
In the no-teaching treatment, the three arrows of other subjects would not have been visible, as each 
subject worked independently. 
 

Figure 2: Group Assignment Rules in Untracked vs. Tracked Treatment  

 
 

Notes: This figure describes the procedure for assigning subjects to groups in the untracked and tracked 
treatments. Rank is based on performance in the Ability Block (T=0). Performance is measured by the 
number of Sudoku puzzles solved with the average solving time serving as a tie-breaker. We define 
subjects ranked 5–8 in the Ability Block to be the bottom half and those ranked 1–4 to be the top half.   
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Figure 3: Standardized Average Solving Time  
in the Ability and Evaluation Blocks (Sudoku) 

 

 
 

Notes: Scatter plots of the standardized average solving times (AST) in the Ability Block (T=0) and the 
Evaluation Block (T=1) are displayed. Raw average solving times (in seconds) for both blocks are 
standardized by the mean and standard deviation of average solving time at T=0 so that standardized AST 
at T=0 has a mean of zero and standard deviation of 1. The mean, median, and standard deviation of raw 
AST at T=0 are 119.14, 93.33, and 97.39 sec, respectively. The solid line represents the 45-degree line. 
Subjects below the 45-degree line show improvement in their standardized average solving time for 
Sudoku puzzles. “Learning,” which is our main outcome, is calculated by subtracting the standardized 
AST at T=1 from standardized AST at T=0, so that higher values indicate improvement in average solving 
time. There are 448 subjects in total, and 371 subjects (84.4 percent) exhibited positive learning. 
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Figure 4: Kernel Densities of Learning  
in the No-teaching and Teaching Treatments (Sudoku) 

 

A. Full Sample 

 
 

B. Among Subjects in the Bottom Half 

 
 

Notes: Kernel density plots of learning in the no-teaching and teaching treatments are displayed. Panel A 
is for the full sample while Panel B is restricted to subjects in the bottom half who ranked 5–8 in the 
Ability Block (T=0). Learning is calculated by subtracting the standardized average solving time in the 
Evaluation Block (T=1) from that in the Ability Block (T=0), so that higher values indicate improvement 
in average solving time. For Panel A, the p-value for the two-sample Kolmogorov-Smirnov test for the 
equality of the distributions between the no-teaching and teaching treatments is 0.014, while that for 
Panel B is 0.004. There are a total of 448 subjects in Panel A and 224 subjects in Panel B.  
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Figure 5: Kernel Densities of Learning  
in the Tracked and Untracked Treatments (Sudoku) 

 
 

A. In the No-teaching Treatment 

 
 

B. In the Teaching Treatment 

 
 

Notes: Kernel density plots of learning for the untracked and tracked treatments are displayed. Learning 
is calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) from that 
in the Ability Block (T=0), so that higher values indicate improvement in average solving time. Panel A 
plots the kernel densities in the no-teaching treatment where the p-value for a two-sample Kolmogorov-
Smirnov test for equality of the distributions between the untracked and tracked treatments is 0.557. 
Panel B plots the kernel densities in the teaching treatment where the p-value for the Kolmogorov-
Smirnov test is 0.015. There are 24 no-teaching sessions with 192 subjects, and 32 teaching sessions with 
256 subjects.  
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Figure 6: Cumulative Distributions of Learning  
in the Tracked and Untracked Treatments (Sudoku) 

 

A. In the No-teaching Treatment 

 
 

B. In the Teaching Treatment 

 
 

Notes: Cumulative distributions of learning for the untracked and tracked treatments are displayed. 
Learning is calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) 
from that in the Ability Block (T=0), so that higher values indicate improvement in average solving time. 
Panel A plots the cumulative distributions in the no-teaching treatment where the p-value for a two-
sample Kolmogorov-Smirnov test for equality of the distributions between the untracked and tracked 
treatments is 0.557. Panel B plots the cumulative distributions in the teaching treatment where the p-value 
for the Kolmogorov-Smirnov test between the untracked and tracked treatments is 0.015. There are 24 
no-teaching sessions with 192 subjects, and 32 teaching sessions with 256 subjects (8 subjects per each 
session).   
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Figure 7: Frequency of Teaching (Sudoku) 
 
 

 
 

Notes: The unit of observation is a group. The sample is limited to the 32 teaching treatment sessions with 16 
sessions each for the untracked and tracked treatments. In the untracked treatment, there are total of 32 groups 
(two groups for each session), while for the tracked treatment there are 16 groups each for subjects in the bottom 
half (Group 2 in the tracked treatment in Figure 2 consisting of subjects ranked 5–8 in the Ability Block (T=0)) 
and for subjects in the top half (Group 1 in the tracked treatment in Figure 2 consisting of subjects ranked 1-4 in 
the Ability Block (T=0)). The left graph plots the number of groups on the vertical axis exhibiting a given 
frequency of teaching on the horizontal axis for groups in the untracked treatment (N=32) and for groups 
consisting of subjects in the bottom half in the tracked treatment (N=16). The right graph similarly plots the 
number of groups by teaching frequency for groups in the untracked treatment (N=32) again and groups 
consisting of subjects in the top half in the tracked treatment (N=16). A teaching statements is defined to be any 
utterance in which subjects are engaged in trying to teach each other how to do Sudoku such as “You can’t have a 
five there; there is already one in that column. 
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Figure 8: Cumulative Distributions of Learning 
 in the No-teaching and Teaching Treatments (Nonograms) 

 

A. Full Sample 

 

B. Among Subjects in the Bottom Half 

 
 

Notes: Cumulative distributions of learning in the no-teaching and teaching treatments are displayed. Panel A is 
for the full sample while Panel B is restricted to subjects in the bottom half who ranked 5–8 in the Ability Block 
(T=0). Learning is calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) 
from that in the Ability Block (T=0), so that higher values indicate improvement in average solving time. For 
Panel A, the p-value for the two-sample Kolmogorov-Smirnov test for the equality of the distributions between 
the no-teaching and teaching treatments is 0.629, while that for Panel B is 0.303. 
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Figure 9: Cumulative Distributions of Learning  
in the Tracked and Untracked Treatments (Nonograms) 

 

A. In the No-teaching Treatment 

 
 

B. In the Teaching Treatment 

 
 

 

Notes: Cumulative distributions of learning in the untracked and tracked treatments are displayed. Learning is 
calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) from that in the 
Ability Block (T=0), so that higher values indicate improvement in solving time. Panel A plots the cumulative 
distributions in the no-teaching treatment while Panel B plots the cumulative distributions in the teaching 
treatment. There are 16 sessions with 128 subjects (8 subjects per each session) in both the teaching and no-
teaching treatments. For Panel A, the p-value for the two-sample Kolmogorov-Smirnov test for the equality of the 
distributions between the untracked and tracked treatments is 0.704, while that for Panel B is 0.418.  
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Table 1: Structure of the Experiment 
 

A. Overview of an Experimental Session 
 

Elicitations Instructions Video Ability  
Block 
(T=0) 

Practice 
Block 

Evaluation 
Block 
(T=1) 

Elicit risk 
preferences via 
MPL and 
prosociality via 
a dictator game. 
Collect 
demographic 
data. 

Basic Sudoku 
instructions 
displayed on 
screen, self-
paced. 
 

Provides a 
common 
“lecture” 
including a set 
of puzzle 
solving 
strategies. (9 
min) 
 

10 minutes to 
solve 6×6 
Sudoku, paid at 
a piece-rate of 
$0.50 per 
correct puzzle. 
Performance 
used for 
tracking. 

10 minutes to 
work on a 
single 
Sudoku, w/ or 
w/out chat for 
peer-to-peer 
teaching.  
Sorted into 
groups. 
 

15 minutes to 
solve 6×6 
Sudoku with 
incentives 
varied. 
 

 

Notes: The table shows the time sequence for a single session. At the conclusion of each session, subjects are 
paid for their performance in both the Ability and Evaluation Blocks as well as for one of their choices in the 
risk elicitation task and, with equal probability, either their own or another person’s allocation in the dictator 
game. See Appendix D for the full instructions used in the experiment.  

 
 

B. 2×2×2 Factorial Experimental Design (Sudoku) 
 

  No-teaching  Teaching 

  Piece-rate Tournament  Piece-rate Tournament 

Untracked # Sessions 
# Subjects 

6 
48 

6 
48  8 

64 
8 
64 

Tracked # Sessions 
# Subjects 

6 
48 

6 
48  8 

64 
8 
64 

 

Notes: The total sample size is 448 subjects in 56 sessions, divided into 112 groups after the Ability Block. See 
Appendix D for the full instructions used in the experiment. As we show in Appendix A, our tournament 
incentive scheme (piece-rate vs. tournament) turned out to have a negligible effect on behavior (either through 
main effects of the treatment or interactions with the other treatments). As a result, our primary analysis pools 
data across incentive schemes and focuses on the effects of teaching, tracking, and their interaction—
essentially reducing the study to a 2×2 factorial experimental design (in boldface in the table). 
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Table 2: Descriptive Statistics (Sudoku) 
 

A. Summary Statistics 
 

 Overall  Heterogeneity 

 Mean  
Bottom  

half 
Top  
half Dif 

   (rank5-8) (rank1-4) (2)-(3) 
Variable (1)  (2) (3) (4) 
Male 0.47  0.52 0.42 0.10** 
 [0.50]  [0.50] [0.49] (0.05) 
Experienced 0.68  0.48 0.88 -0.39*** 
 [0.47]  [0.50] [0.33] (0.04) 
Risk Attitude (0–9) 3.35  3.31 3.40 -0.09 
 [1.64]  [1.71] [1.58] (0.15) 
Prosociality (0–5) 1.58  1.70 1.47 0.23** 
 [1.03]  [0.99] [1.05] (0.09) 
Solved None at T=0 0.02  0.04 0.00 0.04*** 
 [0.13]  [0.19] [0.00] (0.01) 
Solved None at T=1 0.00  0.00 0.00 0.00 
 [0.05]  [0.07] [0.00] 0.00 
Raw Average solve time at T=0 (sec) 119.14  167.60 70.69 96.91*** 
 [97.39]  [117.79] [20.54] (8.09) 
Raw Average solve time at T=1 (sec) 88.09  114.49 61.70 52.79*** 
 [51.16]  [58.69] [20.08] (3.93) 
Raw Learning (=AST0-AST1) (sec) 31.05  53.11 8.99 44.12*** 
 [73.49]  [98.48] [12.23] (6.45) 
Standardized average solve time at T=0 0.00  0.50 -0.50 1.00*** 
 [1.00]  [1.21] [0.21] (0.08) 
Standardized average solve time at T=1 -0.32  -0.05 -0.59 0.54*** 
 [0.53]  [0.60] [0.21] (0.04) 
Learning 0.32  0.55 0.09 0.45*** 
 [0.75]  [1.01] [0.13] (0.07) 
# of Sessions 56  56 56  
# of Groups 112  112 112  
# of Subjects 448  224 224  

 

Notes: Column (1) reports means for the full sample with standard deviations in brackets. Columns (2) and (3) 
report the means by ranks in the Ability Block (T=0). The bottom half consists of those subjects ranked 5–8, and 
the top half consists of those subjects ranked 1–4. Column (4) reports the difference in means between subjects in 
the top half and subjects in the bottom half with standard errors clustered at the group level in parentheses. 
Experienced takes a value of one if a subject reports having prior experience with Sudoku. Risk attitudes take on 
the values from 0 to 9 with higher numbers indicating more risk-loving subjects. Prosociality takes on the values 
from 0 to 5 with higher numbers indicating higher prosociality. See Appendix D for details on the elicitation of 
risk attitudes and prosociality and Appendix E for screenshots. Learning is calculated by subtracting the 
standardized AST in the Evaluation Block (T=1) from that in the Ability Block (T=0), so that higher values 
indicate improvement in solving time. Note that AST in both the Ability and Evaluation Blocks is standardized by 
the mean and standard deviation of raw AST at T=0 so that standardized AST at T=0 has a mean of zero and 
standard deviation of 1. There were 56 sessions with 448 subjects (8 subjects per session). Each session consisted 
of two groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10  
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B. Balance tests 
 

  Bivariate regression   Equality test  
  Teaching Tracking   2×2×2 2×2 
    (p-value) 
Variable (1) (2)   (3) (4) 
Male -0.02  0.01    0.77 0.96  
  (0.05) (0.05)       

Experienced 0.04  0.03    0.65 0.70  
  (0.05) (0.04)       

Risk Attitudes (0-9) 0.26* -0.01    0.35 0.17  
  (0.16) (0.16)       
Prosociality (0-5) 0.10  -0.13    0.39 0.27  
  (0.10) (0.10)       

Solved none at T=0 -0.01  0.00    0.23 0.11  
  (0.01) (0.01)       
[Raw] Average solve time at T=0 (sec) 6.32  -9.29    0.31 0.15  
  (9.24) (9.20)       

[Standardized] Average solve time at T=0 0.07  -0.10    0.31 0.15 
  (0.10) (0.09)       
            

# of Sessions 56 56   56 56 
# of Group 112 112   112 112 
# of Subjects 448 448   448 448 

 

Notes: Columns (1) and (2) report a set of bivariate regressions that test how each variable in the far-left column 
is related to the teaching treatment (Column 1) and to the tracking treatment (Column 2). Standard errors are 
reported in parenthesis. Columns (3) and (4) report the p-values for each variable in the far-left column of the null 
hypotheses that the means are equal across 8 treatment combinations (Column 3) and 4 treatment combinations 
pooling across the incentive treatments (Column 4). Experienced takes a value of one if a subject reports having 
prior experience with Sudoku. Risk attitudes take on the values from 0 to 9 with higher numbers indicating more 
risk-loving subjects. Prosociality takes on the values from 0 to 5 with higher numbers indicating higher 
prosociality. See Appendix D for details on the elicitation of risk attitudes and prosociality and Appendix E for 
screenshots. There were 56 sessions with 448 subjects (8 subjects per session). Each session consisted of two 
groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 3: Effect of Teaching on Learning (Sudoku) 
 

Outcome: Learning 
 
 

  (1) (2)   (3) (4) 
A. Overall           
    Teaching 0.113** 0.119**       
  (0.052) (0.052)       
B. Heterogeneity           

    Teaching for Top half       -0.018 -0.016 
        (0.017) (0.020) 
    Teaching for Bottom half       0.240*** 0.240*** 
        (0.096) (0.096) 
            

Controls No Yes   No Yes 
 

Notes: Each column reports the results from a different OLS regression. Columns (1) and (2) come from equation 
[2] with and without controls using the full sample. Columns (3) and (4) come from equation [3] with and without 
controls using full sample. Here, the control group is the no-teaching treatment. The estimated treatment effects 
and their standard errors reported in the table were computed using the lincom command in STATA. The 
coefficient estimates from equations [2] and [3] are reported in Appendix Table B1 for reference. Standard errors 
clustered at the group level are reported in parentheses. The outcome is learning, which is calculated by 
subtracting the average solving time (AST) in the Evaluation Block (T=1) from that in the Ability Block (T=0), so 
that higher values indicate improvement in solving time. Note that AST in the Evaluation Block (T=1) and in the 
Ability Block (T=0) is standardized by the mean and standard deviation of raw AST at T=0 before taking the 
difference so that standardized AST at T=0 has a mean of zero and standard deviation of 1. The bottom half 
consists of those subjects ranked 5–8 and the top half those subjects ranked 1–4 at T=0. All regressions—even 
those labeled as including “no” controls—include a dummy for the eight subjects who could not solve any 
Sudoku puzzles in T=0. The controls further include a dummy for being male, a dummy for being experienced 
with Sudoku, risk attitudes (0–9), and prosociality (0–5). See Table 2 for definitions of each control variable. See 
also Appendix Table B1 for coefficient estimates for all of the control variables. There were 56 sessions with 448 
subjects (8 subjects per session). Each session consisted of two groups (4 subjects per group), and thus there were 
112 groups. Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 4: Effects of Tracking on Learning 
in the No-teaching and Teaching Treatments (Sudoku) 

 

Outcome: Learning 
 

  
In the 

No-teaching  
Treatment  

In the 
Teaching 
Treatment 

 (1) (2)  (3) (4) 
A. Overall      

Tracked -0.039    -0.145*  
  (0.061)   (0.082)  

B. Heterogeneity      
Tracked for Top half  0.024    -0.032  

   (0.026)   (0.032) 

Tracked for Bottom half  -0.095    -0.283* 
   (0.108)   (0.154) 
       

Controls Yes Yes  Yes Yes 
 

Notes: The estimated treatment effects in Columns (1) and (3) come from equation [4], while the estimated 
treatment effects in Columns (2) and (4) come from equation [5]. The control treatment is the untracked 
treatment. The estimated treatment effects and their standard errors were computed using the lincom command in 
STATA. The coefficient estimates from equations [4] and [5] are reported in Appendix Table B2 for reference. 
Standard errors clustered at the group level are reported in parentheses. The outcome is learning, which is 
calculated by subtracting the average solving time (AST) in the Evaluation Block (T=1) from that in the Ability 
Block (T=0), so that higher values indicate improvement in solving time. Note that AST in the Evaluation Block 
(T=1) and in the Ability Block (T=0) is standardized by the mean and standard deviation of raw AST at T=0 
before taking the difference so that standardized AST at T=0 has a mean of zero and standard deviation of 1. The 
bottom half consists of those subjects ranked 5–8 in the Ability Block (T=0). See Figure 2 for details of the 
procedure used to assign subjects to groups in the untracked and tracked treatments. The controls include a 
dummy for being male, a dummy for being experienced with Sudoku, risk attitudes (0–9), prosociality (0–5), and 
a dummy for the eight subjects who could not solve any Sudoku puzzles in the Ability Block (T=0). There were 
24 no-teaching sessions with 192 subjects, and 32 teaching sessions with 256 subjects (8 subjects per session). 
Each session consisted of two groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 5: Frequency of Teaching in the Tracked vs. Untracked Treatments (Sudoku) 
Outcome: Frequency of Teaching 

 

 

Untracked 

Tracked  Difference (2)–(1)  Difference (3)–(1) 

  Bottom Half Top  
Half  OLS 

Zero-
Inflated 
Poisson  OLS 

Zero-
Inflated 
Poisson 

  (1) (2) (3)  (4) (5)  (6) (7) 

 4.78 3.13 0.94  -1.66 -1.66   -3.84** -3.84*** 
  [6.60] [4.76] [1.91]  (1.86) (1.02)   (1.69) (0.86) 
           
Vuong test of  
Zero-Inflated model 
vs. Standard Poisson 

     z= 3.13   z= 3.15 

     p= 0.0009   p= 0.0008 
# of Groups 32 16 16  48 48  48 48 
# of Sessions 16 16  32 32  32 32 
 

Notes: The unit of observation is a group. The sample is limited to the 32 teaching treatment sessions with 16 sessions each for the untracked and 
tracked treatments. In the untracked treatment, there are 32 groups (two groups per session), while in the tracked treatment there are 16 groups each 
for subjects in the bottom half (Group 2 in the tracked treatment in Figure 2) and for those in the top half (Group 1 in the tracked treatment in Figure 
2). Column (1) reports the mean number of teaching statements exhibited by groups in the untracked treatment, and Columns (2) and (3) report them 
for the tracked treatment for the bottom half group and the top half group, respectively. Standard deviations are reported in brackets. Columns (4) and 
(5) report the estimated difference between Columns (1) and (2) from OLS and zero-inflated Poisson (where the inflation equation includes just a 
dummy for tracked sessions) models, respectively, with standard errors in parentheses. Columns (6) and (7) report the corresponding estimated 
differences between Columns (1) and (3). A teaching statements is defined to be any utterance in which subjects are engaged in trying to teach each 
other how to do Sudoku such as “You can’t have a five there; there is already one in that column.” The Vuong tests of the zero-inflated Poisson 
models against the standard Poisson models are reported with the z-scores and corresponding p-values; these tests support the use of the Zero-Inflated 
model.  Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 6: Structure of the Experiment (Nonograms) 
2×2×2 Factorial Experimental Design 

 

  No-teaching  Teaching 

  Piece-rate Tournament  Piece-rate Tournament 

Untracked # Sessions 
# Subjects 

4 
32 

4 
32  4 

32 
4 
32 

Tracked # Sessions 
# Subjects 

4 
32 

4 
32  4 

32 
4 
32 

Notes: See Appendix D for the full instructions used in the experiment, which are identical to the instructions 
for Sudoku. As we show in Appendix A, our tournament incentive scheme (piece-rate vs. tournament) also 
turned out to have a negligible effect on behavior (either through main effects of the treatment or interactions 
with the other treatments) in the Nonogram experiment as well. As a result, our primary analysis pools data 
across incentive schemes and focuses on the effects of teaching, tracking, and their interaction—essentially 
reducing the study to a 2×2 factorial experimental design (in boldface in the table). 

 
Table 7: Effect of Teaching on Learning (Nonograms) 

 
 

Outcome: Learning 
 

  (1) (2)   (3) (4) 
A. Overall           
    Teaching 0.203*** 0.195***       
  (0.064) (0.064)       
B. Heterogeneity           

    Teaching for Top half       0.021 0.022 
        (0.022) (0.021) 
    Teaching for Bottom half       0.378*** 0.359*** 
        (0.121) (0.121) 
            

Controls No Yes   No Yes 
 

Notes: Each column reports the estimated treatment effects from a different OLS regression. Columns (1) and (2) 
come from equation [2] with and without controls using the full sample. Columns (3) and (4) come from equation 
[3] with and without controls using the full sample. The control treatment is the no-teaching treatment. The 
estimated treatment effects and their standard errors were computed using the lincom command in STATA. The 
coefficient estimates from equations [2] and [3] are reported in Appendix Table B7 for reference. Standard errors 
clustered at the group level are reported in parentheses. The outcome is learning, which is calculated by 
subtracting the average solving time (AST) in the Evaluation Block (T=1) from that in the Ability Block (T=0) so 
that higher values indicate improvement in solving time. Note that AST in the Evaluation Block (T=1) and in the 
Ability Block (T=0) is standardized by the mean and standard deviation of raw AST at T=0 before taking the 
difference so that standardized AST at T=0 has a mean of zero and standard deviation of 1. The bottom half 
consists of those subjects ranked 5–8 in T=0 and the top half consists of those subjects ranked 1–4. All 
regressions—including those labeled as including no controls—control for a dummy for the fifty subjects (19.4 
percent) who could not solve any Nonogram puzzles in T=0. The controls further include a dummy for being 
male, a dummy for being experienced with Nonograms, risk attitudes (0–9), and prosociality (0–5). See Table 2 
for definitions of each control variable. There were 32 sessions with 256 subjects (8 subjects per session). Each 
session consisted of two groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10  
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Table 8: Effect of Tracking on Learning  
in the No-teaching vs. Teaching Treatment (Nonograms) 

 

Outcome: Learning 
 

  
In the 

No-teaching  
Treatment  

In the 
Teaching 
Treatment 

 (1) (2)  (3) (4) 
A. Overall      

Tracked 0.067     -0.063   
  (0.095)     (0.093)  

B. Heterogeneity      
Tracked for Top half  0.024     -0.063** 

   (0.044)     (0.031) 

Tracked for Bottom half  0.095      -0.081  
   (0.181)     (0.167) 
       

Controls Yes Yes  Yes Yes 
 

Notes: The estimated treatment effects in Columns (1) and (3) come from estimating equation [4] on the 
Nonograms sample, while the estimated treatment effects in Columns (2) and (4) come from equation [5]. The 
control treatment is the untracked treatment. The estimated treatment effects and their standard errors were 
computed using the lincom command in STATA. The coefficient estimates from equations [4] and [5] are reported 
in Appendix Table B8 for reference. Standard errors clustered at the group level are reported in parentheses. The 
outcome is learning, which is calculated by subtracting the average solving time (AST) in the Evaluation Block 
(T=1) from that in the Ability Block (T=0) so that higher values indicate improvement in solving time. Note that 
AST in the Evaluation Block (T=1) and in the Ability Block (T=0) is standardized by the mean and standard 
deviation of raw AST at T=0 before taking the difference so that standardized AST at T=0 has a mean of zero and 
standard deviation of 1. The bottom half consists of those subjects ranked 5–8 in the Ability Block (T=0). See 
Figure 2 for details of the procedure used to assign subjects to groups in the untracked and tracked treatments. 
The controls include a dummy for being male, a dummy for being experienced with Nonograms, risk attitudes (0–
9), prosociality (0–5), and a dummy for the fifty subjects (19.4 percent) who could not solve any Nonogram 
puzzles in the Ability Block (T=0). There were 16 sessions with 128 subjects for both the no-teaching and 
teaching treatments (8 subjects per session). Each session consisted of two groups (4 subjects per group). 
Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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