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Abstract

There is a growing literature on differential wages across college majors, but few studies focus

on skill growth by major. Differences in course taking by major will result in students accumulating

different types and amounts of skills, and this heterogeneous skill growth will lead to differences

in wage returns. This paper estimates skill growth during college by major using the NLSY97

and the O*NET. To capture both the type and quantity of accumulated skills, I assume that each

major increases a general cognitive skill and a major-specific skill. I further allow for individual

heterogeneity in skill growth. I take a task-based approach and use occupation choice to estimate

skill growth in general cognitive skill. To deal with noisy skill measurements and endogeneity, a

dynamic factor model is constructed. The results show substantial growth of general cognitive skill

in all majors, but with large differences across majors. I find different effects of pre-college skill

levels on skill growth by major, but the differences are not large. The contribution of major-specific

skill growth to wage growth is small compared to that of general cognitive skill growth.

1 Introduction

Wage inequality across college majors has recently been attracting attention. Carnevale et al. (2015)

report that the average difference in the lifetime earnings in the US between the highest-paying major,

engineering, and the lowest-paying major, education, is $3.4 million while the average difference between

college and high school graduates is $1 million. Inequality research has mostly focused on disparities
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between high school and college graduates, but given this earnings gap across majors, college majors

are an equally important determinant of future career prospects.

Since college majors are not randomly chosen by students, sorting may contribute to these large

income differences among majors. Students who choose a “high-paying” major might earn a lot even if

they chose a “low-paying” major.1 Many previous papers examine whether wages are different across

college majors even when controlling for sorting or self-selection into major (see, e.g., Arcidiacono

(2004); Hamermesh and Donald (2008); Arcidiacono et al. (2016), and Kirkeboen et al. (2016)). Their

consensus is that there exist differences in wage returns across college majors and that math-intensive

majors show high returns.

Wage is of course an important variable, but differences in the one-dimensional variable provides

us information only on differences in quantity. Focusing on differences in quantity may be appropriate

in studying differences between high school and college graduates because a crucial difference between

these two groups is years of education. Since college graduates spent more time on studying, they will

possess a larger amount of skill, which will contribute to wage differential between college and high

school graduates.

However, focusing on differences in quantity may not be enough in studying differences across majors.

Skill accumulation processes could be heterogeneous across college majors in both quantity and type.

Courses college students take vary significantly by their college major. For example, engineering majors

take more science courses than humanities courses, while the reverse occurs for education majors. These

course differences will result in students accumulating different types and amounts of skills. In addition,

college majors are different in how demanding they are in terms of course burden, the number of credits

required to graduate, and so on. This implies that, in some majors, students can accumulate skills more

than in other majors.

In this paper, I estimate skill growth during college by major in a multi-dimensional skill framework.

Each major represents a different skill production function; skills students start with will evolve differ-

ently depending on their major. In order to capture skill growth differences in both quantity and type,

I assume that each major increases two types of skills: a general cognitive skill and a major-specific

skill. General cognitive skill can increase in all college majors, but the amount of growth can vary by
1For example, the average SAT scores vary by college major. According to a report in 2015 by College Board (2015), the

average scores of individuals who intended to major in engineering are 526 (Critical Reading), 575 (Mathematics), and 509
(Writing) while those of individuals who intended to major in education are 481 (Critical Reading), 480 (Mathematics),
and 473 (Writing).
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major. In addition to general cognitive skill, each major can produce a specific skill.2 General cognitive

skill growth captures the similarity of skills produced in different college majors, while major-specific

skill growth captures the uniqueness. I allow for individual heterogeneity in the growth of both types of

skills. The growth in general cognitive skill can be affected by the pre-college level of general cognitive

skill.

Wage returns are closely related to skill growth. If every major increases a common single type of

skill and there is no heterogeneity in wage returns across occupations, then wage differences will directly

reflect skill growth differences across major. However, given that college majors may increase different

types of skills and that occupations matter to wage returns (see, e.g., Kinsler and Pavan (2015)), wage

return differences will not directly identify skill growth differences by major.

Studying skill growth in both quantity and type will be helpful to understand various important

phenomena. For example, high wage return to Science, Technology, Engineering, and Mathematics

(STEM) majors might come from that their major-specific skill is highly rewarded in the labour market.

If this is is the case, reducing wage difference between STEM majors and the others may not be easy.

In contrast, it is also possible that higher wages among STEM majors mainly come from that they

increase general cognitive skill more than the other majors. It is documented that STEM majors tend

to spend more time in studying and to earn more credits compared to the other majors. If growth in

general cognitive skill is the main cause, the wage differences may be able to reduce substantially by

making non-STEM students study more.

Another example is college major choice. Despite the fact that STEM majors tend to earn high

wages, many students avoid majoring in STEM. The governments in many countries are trying to create

policies to increase the number of students in STEM majors. Kinsler and Pavan (2015) argue that skill

specificity can play an important role in students’ major choice. If STEM majors mainly increase skills

that are specific to the major, some students might avoid STEM majors due to the risk of not working

in related fields in the future. If they do not have a job related to their major, the wage return to

the major might be much smaller. A multi-dimensional skills framework will explain students’ college

major choice better.

If there are test scores of each type of skill in both pre- and post-college periods, skill growth

by major could be easily measured. However, although students take cognitive tests before entering

college, such as high school graduation exams or college entrance exams, that are observed in various
2As described later, I aggregate majors into three types, hence, there are three types of major-specific skills in total.
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data sets, people usually do not take such tests after college. Hence, the approach of comparing test

scores at different periods, common in the literature on elementary schooling, cannot be applied in

this case. Instead, I use an approach that exploits post-education occupation choice, which reflects

post-education skill levels, in estimating general cognitive skill growth. On the other hand, although I

have measures of post-college major-specific skills, I do not have measures of pre-college major-specific

skills. Hence, I make some assumptions to specify pre-college major-specific skills.

I use the National Longitudinal Survey of Youth 1997 (NLSY97) for individual level data. The

NLSY97 provides data on Armed Service Vocational Aptitude Battery (ASVAB) test scores, college

majors, college Grade Point Average (GPA), wages, and occupations. Most respondents, including both

those who eventually went to college and those who did not, took the ASVAB test while in junior high

or high school. These test scores are assumed to reflect pre-college general cognitive skill levels. High

school graduates who do not take further education are assumed to enter the labour market with these

skill levels. The effects of general cognitive skill on occupation choice can therefore be estimated using

high school graduates. Using these estimated skill effects, growth in general cognitive skill is implied

by the differences in occupation choice of college graduates from high school graduates for each college

major.

Of course, high school graduates and college graduates tend to take different jobs. Furthermore, as

Ransom (2014) and Altonji et al. (2012) show, college majors and post-college occupations are closely

related. If occupation or industry categories are used to control for jobs, the categories can be very

coarse. Hence, I take a task-based approach using the Occupational Information Network (O*NET)

and characterize each occupation by a low-dimensional task portfolio. Following Acemoglu and Autor

(2011), I define task as a unit of work activity that produces output while skill is defined as a worker’s

endowment of capabilities for performing various tasks. Individuals possess skills and apply the skills

in tasks to produce outputs. The task-based approach enables me to relate occupations to each other.

ASVAB test scores and college GPA in the NLSY97 are used as pre-college general cognitive skill

measurements and post-college major-specific skill measurements, respectively.3 Since they will not

perfectly measure skills, I use a dynamic factor model to deal with the measurement errors.

The results show that all majors significantly increase a student’s general cognitive skill and that

there are also large differences in the growth across majors. This is reflected in the wage premium for

college graduates and the large wage differences across majors. For those having a population average
3GPA is allowed to be affected by general cognitive skill as well.
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level of pre-college skill, the skill growth in STEM majors is 16 points higher than that in Humanities

& Social Sciences majors using a log wage point metric. Although the skill growth varies somewhat

with pre-college general cognitive skill levels, STEM majors still have a larger production of skill and

associated wage returns in the labour market. Wage returns to a major-specific skill are allowed for

depending on whether the occupations are related to the corresponding major. The estimates suggest

that only Business & Economics and STEM majors have a positive wage benefit from major-specific

skill growth. The wage effect is the largest among STEM majors, but the effect is still only about one

quarter of that from general cognitive skill growth. Overall, growth in general cognitive skill is most

important during college and also plays an important role in wage differentials across majors.

Although there is a growing number of papers estimating wage returns to college majors, relatively

few papers in the previous literature examine skill growth across majors. Lemieux (2014) is the closest

to my study. He considers three channels to increase wages: general skill growth, occupation, and

match between college major and occupation. The major-occupation match matters because of major-

specific skill growth. He uses Canadian datasets and decomposes wage increases by major into the

three channels. However, there is no sorting into majors or into occupation, and there is no individual

heterogeneity in skill growth. My model allows for both sorting and individual heterogeneity. In

addition, my task-based approach avoids the relatively coarse occupation classification used in Lemieux

(2014), in which people classified in the same occupation category might be doing very different work.

The model developed by Kinsler and Pavan (2015) is similar to my model in that they assume

students bring low-dimensional skills into college and the skills change depending on their college major.

Unlike my model, their model assumes two types of general cognitive skills, verbal and math, and there

is no major-specific skill. In their model, different wage returns to the general cognitive skills represent

major specificity. Since their main interest is whether wage returns vary by job, they do not estimate

skill changes. Furthermore, since they classify jobs based on only one dimension, related or not related,

for each college major, and since related and unrelated jobs will be different depending on major, they

cannot compare wage differences across majors controlling for occupations. Arcidiacono et al. (2017)

use data on subjective expectations that were collected at Duke University and argue that there exist

sizable complementarities between some college majors and occupations.

My paper is also related to studies showing positive effects of schooling on cognitive test scores, such

as Gormley and Gayer (2005); Aaronson and Mazumder (2011), or Fitzpatrick et al. (2011). Hansen

5



et al. (2004) and Cascio and Lewis (2006) analyze the effects on ASVAB scores. Although their focus

is on an earlier level of schooling than post-secondary education, they show that schooling has positive

impacts on cognitive test scores. Aucejo and James (2016) examine math and verbal skills changes

during primary and secondary education using UK data.

The rest of this paper is organized as follows: section 2 describes my data. My model is explained

in section 3. Section 4 explains the identification of skill growth parameters. Section 5 discusses the

estimation. Results are reported in section 6. Section 7 concludes.

2 Data

I use two US datasets, the NLSY97 and the O*NET. The NLSY97 provides individual level data on

test scores, college majors, college GPA, wages, and occupations. The O*NET is used to characterize

occupations by task portfolios.

2.1 NLSY97

The NLSY97 is a panel survey conducted by the US Bureau of Labor Statistics. It started in 1997,

was conducted annually up to 2011, and has been conducted biannually since then. In the first round,

8,984 males and females, who were between 12 and 17 years old at that time, were interviewed.

Test scores

Most of the respondents of the NLSY97 took an ASVAB test during the first round, between summer

1997 and spring 1998, when they were between 12 and 18 years old. I use ASVAB scores as noisy

measurements of pre-college general cognitive skill instead of perfectly accurate measurements. Since

there may be an age effect, I adjust the test scores for age using the method of Altonji et al. (2012).4

The ASVAB test is composed of many sections, eight of which are used in this paper: Word Knowl-

edge, Paragraph Comprehension, Arithmetic Reasoning, Mathematics Knowledge, Numerical Oper-

ation, Mechanical Comprehension, Auto & Shop Information, and Electronics Information. Word

Knowledge and Paragraph Comprehension are considered as verbal tests and Arithmetic Reasoning,

Mathematics Knowledge, and Numerical Operation are considered as math tests. As Armed Forces
4In this method, ASVAB score at the qth percentile in the distribution of the taker’s age is assigned to the ASVAB

score at the qth percentile in the age 16 distribution. This method implicitly assumes that age effects do not change the
rank in ASVAB scores although age effects can be nonconstant.
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Qualification Test (AFQT) scores are calculated based on these five test scores, they are often used

to construct cognitive skill. Mechanical Comprehension, Auto & Shop Information, and Electronics

Information are used to construct mechanical skill (see Prada and Urzúa (2017) and Speer (2017)).

Education

Education levels are categorized into high school, some college, and college. High school includes GED.

Some college includes those with an Associate degree and those who went to college for two years or

more but who did not earn Bachelor’s degree. College is further categorized into three college majors.

The definition of college majors in this paper is explained below.

Education group is defined by the individual’s highest education with some exceptions. First,

college graduates are defined as those who obtained a Bachelor’s degree before 2010. This is because

of a large change in the college major classification recorded in the NLSY97. Second, since my focus

is on undergraduates, I drop those with a more advanced degree, although I keep those whose highest

degree is a Master’s if they have full-time work experience after their Bachelor’s degree but before their

Master’s degree.5 I restrict my sample to those who have at least a high school diploma.

College majors

In the NLSY97, students are asked to report their college major each term. Among the reported majors,

I take the final one as their college major. As mentioned above, the classification of college majors

changed substantially in 2010. Hence, I use Bachelor’s degree major earned before 2010. I aggregate

college majors into three majors based on the extent to which they are math intensive: Humanities &

Social Sciences, Business & Economics, and STEM majors.6 A similar classification is used in Kinsler

and Pavan (2015).

College GPA

College GPA is reported each term, and I calculate annual GPA as the average GPA across all semesters

in the year. I use the last two years of reported GPA as noisy measures of major-specific skill.7 I choose
5Those who are dropped account for only around 2% of people whose education is classified as high school or higher.
6STEM majors include Agriculture & natural resource sciences, Biological sciences, Architecture/environmental de-

sign, Computer/information science, Engineering, Mathematics, Physical sciences, and Nutrition/Dietics/Food science.
Business & Economics majors include Business management, Economics, and Hotel/Hospitality management. Humanities
& Social Sciences majors include all the other majors.

7I assume GPA is affected by evolved general cognitive skill as well. However, as seen in the estimation section later,
GPA is not used to identify the distribution of pre-college general cognitive skill.
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the last two years because major-specific skill will be acquired mainly in these years. American college

students typically take general academic subjects in their first two years and take specialized subjects

after that.

Occupation and wages

I consider only full-time jobs, which are defined as equal to or more than 35 hours worked per week.

Part-time jobs are not used because the wage structure may be different from that of full-time jobs.

I use the job information of the first year. I construct occupation variables on an annual basis. If a

worker had several jobs within a year, the one with the most weeks worked is taken as the occupation in

that year. Using the occupation codes, the NLSY97 and the O*NET are connected.8 In the following

analysis, I use hourly compensation rates as wages. The wages are adjusted to dollars in year 2000. I

restrict to the rates between $1 and $100 by assuming the others are misreported wages.

2.2 O*NET

I use the O*NET to construct task portfolios, which represent how intensely each type of skill is

required in work. The O*NET is sponsored by the US Department of Labor/Employment and Training

Administration and started as a successor to the Dictionary of Occupational Titles (DOT). Both the

O*NET and the DOT characterize occupations by standardized measures and have been used in many

papers taking a task-based approach (see, e.g., Poletaev and Robinson (2008) and Guvenen et al.

(2016)). The O*NET contains a number of standardized measures describing the day-to-day aspects of

the job and qualifications and interests of the typical workers in the occupations.9

The measures chosen from the O*NET are reported in Table 1. The selection of general cognitive

measures is mainly based on a technical report by the ASVAB Career Exploration Program (ASVAB

Career Exploration Program (2011)) and that of mechanical measures is based on Speer (2017). For

each type of element, I employ Principal Component Analysis (PCA) and take the first component as
8The occupation codes in the NLSY97 are based on Census 2002 occupation codes, while those in the O*NET I use

are based on Standard Occupation Classification (SOC) 2010. I use crosswalks to connect these two types codes. The
crosswalks between SOC 2010 and 2009, between SOC 2009 and 2006, and between SOC 2006 and 2000 are provided
by O*NET resource center. The crosswalk between SOC 2000 and Census 2002 occupation codes is distributed by the
National Crosswalk Service Center.

9For each element, Importance and Level are recorded. I use Level for general cognitive task and mechanical task,
which is recorded with a range of 0-7 based on ratings by analysts or job incumbents. I use Importance, which is recorded
with a range of 1 (Not important) to 5 (Extremely important), for major-specific task. I use Importance for major-specific
task because I want to capture the type of jobs, but, since Importance and Level are strongly correlated, using Importance
instead of Level will not change my results much.
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task intensity of that type. I assume that the constructed task intensity is an accurate measurement.10

Each type of task intensity is standardized to have mean 0 and standard deviation 1 over all full-time

job observations in the NLSY97.

Although many papers on the wage penalty of working in unrelated jobs use a worker’s self-assessed

relatedness measure, not many datasets include one and my dataset does not have one. Hence, I define

relatedness using O*NET measures. The selection of measures for major-specific task follows Freeman

and Hirsch (2008). In Freeman and Hirsch (2008), each college major is connected with one measure of

knowledge in the O*NET. Since college majors are aggregated into three types in my study, I construct

major-specific task intensity as follows. I select O*NET knowledge measures related to detailed majors

contained in each aggregated college major category. Then, I employ PCA to the selected measures

and take the first component as the major-specific task intensity.

Using the constructed task intensity, I categorize jobs into related jobs and unrelated jobs. I define

jobs as related or unrelated instead of using the constructed major-specific task intensity for two reasons.

One is comparability with the previous papers. Most of the previous papers use two or three relatedness

categories. Another reason is a comparison of major-specific skill growth between majors. Since major-

specific task intensity are measured differently by majors, they cannot really be compared between

majors directly and so the results are difficult to interpret.11 The histograms of the constructed task

intensity are shown in Figure 1. Each major-specific task intensity is standardized to have mean 0

and standard deviation 1 over all full-time job observations in the NLSY97. They show that college

graduates tend to take a higher task intensity corresponding to their college major. Since college

graduates are assumed not to increase major-specific skill other than that of their own major, I expect

that most of them take jobs unrelated to the other majors. Based on Figure 1, I consider jobs as related

jobs if the corresponding task intensity is equal to or higher than 1, while I consider jobs as unrelated

jobs if the corresponding task intensity is less than 1. For example, the major specific task intensities

of the job of Accountants are -0.65 (Humanities & Social Sciences), 1.46 (Business & Economics), and

-0.74 (STEM). Hence, the job of Accountants is related to Business & Economics majors, but unrelated

to Humanities & Social Sciences majors and to STEM majors.12

10If the constructed task intensity is a noisy measure of the “true” task intensity and if the measurement errors are
classical, my estimates of skill growth parameters are still consistent, because the effects of general cognitive skill on
occupation choice are consistently estimated.

11The O*NET measures and a worker’s self-assessed relatedness are positively correlated in the 1993 National Survey
of College Graduates.

12Jobs can be related to more than one major in the data. This might explain why some people are in jobs that are
related to another major as observed in Figure 1.
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Table 1: O*NET elements used to construct task intensities
General cognitive

Oral comprehension Oral expression
Written comprehension Written expression
English language Reading comprehension
Speaking Writing
Mathematical reasoning Number facility
Mathematics Mathematics skill
Deductive reasoning Inductive reasoning
Analyzing data or information

Mechanical
Handling and moving objects
Controlling machines and processes
Repairing and maintaining mechanical equipment
Repairing and maintaining electrical equipment
Inspecting equipment, structures, or material
Operating vehicles, mechanized devices, or equipment
Equipment maintenance skill
Mechanical knowledge

Humanities & Social Sciences
Communications and media English language
Sociology and anthropology Geography
Therapy and counseling Foreign language
Public safety and security Fine arts
History and archeology Psychology
Philosophy and theology Education and training

Business & Economics
Administration and management Sales and marketing
Economics and accounting Customer and personal service
Personnel and human resources

STEM
Computers and electronics Design
Engineering and technology Mathematics
Physics Chemistry
Biology
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Figure 1: Histograms of major-specific task intensity by college majors
Note: Each type of task intensity is standardized to have mean 0 and standard deviation 1 over all full-time job observations in the

NLSY97.
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I assume that high school and some college graduates take a job unrelated to any major. In addition,

I assume that college graduates can choose job relatedness only regarding their own major and have a

job unrelated to majors other than that. The first assumption is made because high school and some

college graduates do not have any “major”. The second assumption is made because papers on the

match quality between college majors and work only examine a student’s major. They do not consider

whether the work is related to outside of the student’s major. I could potentially make a model, in

which individuals can choose job relatedness regarding each major, but I do not do that for simplicity.

Although there are some individuals who have jobs that are defined as “related” in the data, I assume

that their employers do not care their major-specific skill levels because the skills are too low.

2.2.1 Mechanical skill and task

Mechanical skill is introduced to allow high school graduates to choose an occupation based not only

on cognitive skill. A recent paper by Prada and Urzúa (2017) shows that a higher level of mechanical

skill reduces the probability of attending college given cognitive skill and also shows that wage returns

to mechanical skill are large for high school graduates.13 Figure 2 shows histograms of mechanical

task intensity by education level. Remember that task intensity is standardized to have mean 0 and

standard deviation 1 over all full-time job observations in the NLSY97. High school shows two humps.

One is between -1 and 0, and another is between 1 and 2. In the case of some college, there is a second

hump between 1 and 2, but it is small and not as obvious as high school. College shows only one hump

between -1.5 and 0. This implies that the mechanical dimension is not important to college graduates.

Given these observations, I define jobs as mechanical if the mechanical task intensity is higher than 0.5

for high school and some college graduates. All other jobs are defined as cognitive type jobs. Mechanical

skill and task intensity do not matter in cognitive type jobs.14

An advantage of dividing jobs into mechanical and cognitive types is to make the model easy to

interpret since mechanical skill does not matter anymore given cognitive type jobs. This reduces the

computation burden as well. Furthermore, it makes explicit that the mechanical dimension is not
13 In earlier related research, Yamaguchi (2012) documents that less educated people tend to take a job involving

intense physical tasks. Physical task measures and mechanical task measures in the O*NET are highly correlated. Since
my dataset does not have a good measure of physical skill, I introduce mechanical skill instead of physical skill. Given
the close relatedness between physical and mechanical task measures, I expect that a selection between physical and
mechanical skills will not matter much.

14If log wages are regressed on test scores and task intensity of cognitive and mechanical, and other controls for high
school graduates in cognitive type jobs, the coefficient of mechanical test scores is negative and that of mechanical task
intensity is insignificant.
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Figure 2: Histograms of mechanical task intensity in first year by education level
Note: Each type of task intensity is standardized to have mean 0 and standard deviation 1 over all full-time job observations in the

NLSY97.

13



Table 2: Summary statistics
High school Some college Humanities&SS Business&Econ STEM

ASVAB test scores
Cognitive -0.3255 0.0524 0.5306 0.5794 0.7804

(0.8082) (0.7093) (0.6523) (0.5918) (0.5851)
Mechanical -0.1852 0.0437 0.2157 0.3253 0.6869

(0.8578) (0.8246) (0.6755) (0.6833) (0.7929)
Task intensity

Cognitive -0.4085 0.1906 0.6700 0.9107 1.1192
(0.7933) (0.8832) (0.8097) (0.8696) (1.0027)

Mechanical 0.0869 -0.1439 -0.6213 -0.6419 -0.0369
(0.9723) (0.9503) (0.5903) (0.6881) (0.8627)

Related job 0.5103 0.4809 0.4652
(0.5002) (0.5004) (0.4997)

Wages 8.8881 11.9696 12.4170 14.3962 15.4904
(4.8242) (7.4956) (6.8789) (7.0064) (7.9891)

N 3155 988 729 341 273
Notes: ASVAB test score is the average test score: Word Knowledge and Paragraph Comprehension,
Arithmetic Reasoning, Mathematics Knowledge, and Numerical Operation are for general cognitive,
and Mechanical Comprehension, Auto & Shop Information, and Electronics Information are for mechanical.

relevant for college graduates.

2.3 Summary statistics

Table 2 shows summary statistics. Both cognitive and mechanical test scores are standardized to have

mean 0 and standard deviation 1 over the population. High school shows the lowest and STEM majors

show the highest average score, and people with a higher level of education tend to have higher test

scores. Similarly, general cognitive task intensity is higher for a higher level of education, with high

school the lowest and STEM majors the highest. Interestingly, this is not the case for mechanical

task. In mechanical task intensity, high school shows the highest, while Humanities & Social Sciences

and Business & Economics majors show the lowest. Even STEM majors, who show much higher

mechanical test scores, show lower mechanical task intensity than high school graduates. This suggests

that mechanical skill is not important to them after college. About 50% of people took an occupation

related to their major. Wages are higher for higher levels of education, and as expected, STEM majors

show higher wages than the other majors.
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3 Model

I first present an outline of the model. Then, I explain details of the empirical implementation.

3.1 Two period model outline

The model has two periods. It starts at high school graduation and there are multiple decision stages.

The time frame is as follows.

1. Figure 3 shows the decision flow in period 1. In the beginning of period 1, high school graduates

are endowed with five-dimensional skills: general cognitive, mechanical, Humanities & Social

Sciences major specific, Business & Economics major specific, and STEM major specific skills.

In the beginning of this period, they choose one from work, some college, and college. If they

choose work, they first choose a job type, either cognitive or mechanical. In cognitive type jobs,

mechanical skill does not matter.15 After choosing a type, they choose task intensity corresponding

to their chosen type of jobs; if they choose a cognitive type, they choose cognitive task intensity.16

High school graduates are assumed to have a job unrelated to any major. Their wages depend on

their chosen job type, task intensity, and their skill levels. If they choose some college, they do

not have a choice anymore in this period. If students decide to go to college, they learn how much

major-specific skills they will have at college graduation for each major. I call them potential

post-college major-specific skills. Based on their skills and potential post-college major-specific

skills, they choose a college major from Humanities & Social Sciences, Business & Economics,

and STEM majors. Skills of students choosing post-secondary education will evolve depending

on their choice of education level and major.

2. Figure 4 presents the decision flow in period 2. In period 2, high school graduates continue

working. Those who took post-secondary education finish their education and enter the labour

market. Their skill levels change from pre-college skill levels depending on their education choice

in the previous period. Some college could increase general cognitive and mechanical skills. As

with high school graduates, those who went to some college first choose either a cognitive type or

mechanical type job and then choose task intensity. They are assumed to have a job unrelated
15Since I do not estimate the model part regarding mechanical type jobs, I do not assume which type of skill matters

in mechanical type jobs.
16Workers with higher general cognitive skill will choose higher cognitive task intensity because the wage return may

be higher or they may be able to do the task more easily than workers with lower skill.
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Figure 3: Decision flow; period 1

to any major. Their wages depend on their chosen job type, task intensity, and their skill levels.

Each college major increases general cognitive skill and its relevant major-specific skill. All college

graduates are assumed to choose a cognitive type job. Hence, they choose cognitive task intensity.

They are assumed to have a job unrelated to majors other than their own major, but they can

choose job relatedness to their major, either related or unrelated. Returns to major-specific

skill can depend on the relatedness. Their wages depend on their chosen general cognitive task

intensity, job relatedness to their major, and post-college skill levels.

It is well known that cognitive skill matters to whether people go to college or not. Furthermore,

students are significantly sorted into college major based on their cognitive skill levels. I assume that
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students accumulate cognitive skills in college. College students take courses, most of which require

cognitive skill. Course taking varies significantly by college major and so majors may differ in the

accumulation of cognitive skills may vary by college major.

I divide cognitive skill into two types of skills, general cognitive and major-specific skills. General

cognitive skill can increase in any major, while major-specific skill can increase only in its relevant

major. Hence, general cognitive skill captures the similarity of skills accumulated in different majors,

and major-specific skill reflects the uniqueness of the skill accumulated in each major. For example,

business majors will study business cases to learn business models of companies. They will increase

general cognitive skill through understanding and interpreting the cases. However, knowledge on the

business cases per se, such as when and what company introduced the business model or the business

history, is business major specific. In my model, further education represents a set of skill production

functions, each taking pre-college general cognitive and major-specific skills as an input and evolved

general cognitive and major-specific skills as outputs.

3.2 Empirical model

This subsection explains the details of my empirical model. In several decision stages, I assume a linear

latent utility form instead of fully specifying a dynamic discrete choice model. A linear latent utility

form is used in papers applying a factor model in a dynamic treatment effect model (see, e.g., Heckman

et al. (2016a,b), and Fruehwirth et al. (2016)). This specification is used mainly for simplicity, and

one cannot say anything about the full underlying decision model. However, it has other advantages

over fully specified dynamic discrete choice models. Fully specified dynamic discrete choice models

require strong assumptions on agent preferences, constraints, and information sets. On the other hand,

this simplified specification captures some essential features of dynamic discrete choice models without

imposing the strong assumptions.

3.2.1 General cognitive and mechanical skills

High school graduates are assumed to have five types of skills, general cognitive, mechanical, and

three types of major-specific skills. I here describe general cognitive and mechanical skills. Let s1i =

(sc1i, s
mech
1i ) denote individual i’s pre-college general cognitive and mechanical skill levels. The skills are
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modeled as follows:

sc1i = x′siα
c + θci (1)

smech1i = x′siα
mech + θmechi . (2)

This implies that the skills are the result of characteristics observed by the econometrician, xs, and

an unobserved component, θ = (θc, θmech). Unobserved components θ are orthogonal with observed

components xs. The vector xs contains a constant, a female dummy, race dummies, father’s education,

mother’s education, dummies for regions of residence in 1997, a dummy for living in an urban area

in 1997, a dummy for broken home in 1997, household income in 1997, and the number of siblings.

Parent’s education is categorized into high school, some college, college, or graduate degree. Household

income is divided into quartile groups. This skill specification is similar to Aucejo and James (2016).17

The unobserved components are joint normally distributed and may be correlated with each other

as in Prada and Urzúa (2017):

 θc

θmech

 ∼ N (0,Σ) .

Theoretically, the distributions of θ’s can be identified nonparametrically, and many previous papers

using a factor model assume a mixture of normals instead of a normal distribution. However, since

my model has five unobserved factors in total, including major-specific skills discussed below, and it is

already computationally intensive, I assume normality.

Skill measurement system

Pre-college skills s1 are not directly observed, but ASVAB test scores are assumed to be noisy measures of

skills. Word Knowledge, Paragraph Comprehension, Arithmetic Reasoning, Mathematics Knowledge,

and Numerical Operation are used to construct a single cognitive skill measure in many papers. I

assume that general cognitive skill affects all of the five test scores. Furthermore, I use Mechanical

Comprehension, Auto & Shop information, and Electronics Information as noisy measures of mechanical

skill. These three are also used as mechanical tests in Prada and Urzúa (2017) and Speer (2017). General
17They do not assume any structure on corerlation between θ’s. I allow θc and θmech to be correlated. The approach

is different, because I do not have many skill measurements.
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cognitive skill is assumed to have effects on Mechanical Comprehension and Electronics Information

test scores as well. Students need to read and understand questions, and many questions also require

basic knowledge on calculation.

I assume the following measurement system:

WordKnowledgei = sc1i + e1i (3)

ParagraphComprehensioni = δ12s
c
1i + e2i (4)

ArithmeticReasoningi = δ13s
c
1i + e3i (5)

MathematicsKnowledgei = δ14s
c
1i + e4i (6)

NumericalOperationi = δ15s
c
1i + e5i (7)

MechanicalComprehensioni = δ16s
c
1i + δ26s

mech
1i + e6i (8)

Auto&ShopInformationi = smech1i + e7i (9)

ElectronicsInformationi = δ18s
c
1i + δ28s

mech
1i + e8i, (10)

Each measure is standardized to have mean 0 and standard deviation 1, and measurement error es,

s = 1, 2, · · · , 8, is idiosyncratic with E(es) = 0, following a normal distribution. Hence, the population

average of each type of skill is normalized to 0. The factor loadings on sc1 in Word Knowledge and smech1

in Auto & Shop Information are normalized to one. This normalization is necessary for identification.

Moreover, one of the mechanical tests has to be assumed to be affected only by the mechanical skill

because θc and θmech may be correlated. I choose Auto & Shop Information following Prada and Urzúa

(2017). Details on the identification of the measurement system are described in the appendix.18

Skill changes through post-secondary education

Skills will change through post-secondary education. The increment to skills will vary by education

level and college major. As mentioned above, courses students have to take depend significantly on

their college majors. This means that the amount of time students invest on skill accumulation may

vary by their college major. Furthermore, I allow skill changes to depend on pre-college skill. For
18In order to make the skills intuitive, general cognitive and mechanical skills are defined to be affected by observed

characteristics xs in equations (1) and (2). Instead, general cognitive skill and mechanical skill could be defined as θc

and θmech, respectively, and each type of ASVAB test scores could be assumed to be affected by xs. The parameter
estimates will not change much. This is because θ and the observed characteristics in each decision stage are assumed to
be orthogonal.
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example, even if students take the same course, those with higher pre-college skill might be able to

understand the contents more deeply than those with lower pre-college skill. In addition, those who

understand the contents better might take advanced level courses further. In these cases, students with

higher pre-college skill accumulate more skills than those with lower pre-college skill. On the other

hand, if a curriculum focuses on making students achieve a certain common level, then students with

lower pre-college skill may have to study harder, and so their skill growth might be larger than those

with higher pre-college skill.

Let Some denote some college, H denote Humanities & Social Sciences majors, E denote Business

& Economics majors, and S denote STEM majors. For individual i from post-secondary education

group m+ = Some,H,E, S, I specify post-college general cognitive skill level as

sc2m+,i = λc0m+
+ λc1m+

sc1i. (11)

Since sc1 is normalized to have mean 0 over the population, parameter λc0m+
represents an average

growth in education m+. On the other hand, λc1m+
shows the effects of pre-college skill level on skill

growth.19 Skill growth from periods 1 to 2 is written as

sc2m+,i − s
c
1i = λc0m+

+ (λc1m+
− 1)sc1i.

Hence, if λc1m+
> 1, students with higher pre-college skill will accumulate more. On the other hand, if

λc1m+
< 1, students with lower pre-college skill will accumulate more.20

3.2.2 Major-specific skills

If they go to college, individuals can increase a major-specific skill. The increment to skill varies by

individuals. I assume that individuals are endowed with potential post-college major-specific skill re-

garding each major, which represents post-college major-specific skill level if they choose the relevant
19Although post-education mechanical skill will be specified as smech2i = λmech0,Some + λmech1,Somes

mech
1i for some college,

mechanical skill growth parameters are not estimated below to focus on general cognitive skill growth. I do not consider
mechanical skill for those who go to college graduates. As suggested above, the mechanical dimension does not seem
important to college graduates.

20Skill change equation (11) implies that there is no individual heterogeneity in skill changes after conditioning on
pre-college skill. Suppose instead that the skill change equation is given by sc2m+,i = λc0m+

+ λc1m+
sc1i + ωim+ , where

ωm+ is orthogonal with s1 and E(ωm+) = 0. As long as ωm+ is unknown to the individual in education choices, λc’s
are consistently estimated in my approach. As explained below, I use task intensity equation to identify λc’s and the
parameters in the equation can be estimated consistently.
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major. Potential post-college major-specific skills are assumed to be unknown to the individuals until

they decide to go to college. Although college students will be sorted in majors based on their po-

tential post-college major-specific skill levels, that sorting does not affect education level choice. This

assumption makes computation easier. At the same time, this assumption is reasonable given that

previous papers show that the sorting occurs as college students learn their ability through GPA (see,

e.g., Arcidiacono (2004) and Stinebrickner and Stinebrickner (2014)).

For major m = H,E, S, let sm2i denote individual i’s potential post-college major m specific skill,

that is, major m specific skill level in period 2 if they choose major m. I assume that post-college

major-specific skills are orthogonal to sc1. I further assume that they are orthogonal to each other and

normally distributed:


sH2

sE2

sS2

 ∼ N



0

0

0

 ,


σ2H 0 0

0 σ2E 0

0 0 σ2S


 .

The normality is assumed for simplicity. Each type of potential post-college major-specific skill is

standardized to have mean 0 over the population. Hence, smi2 = 0 denotes that individual i’s potential

post-college major m specific skill is the same as the population average. If individual i chooses major

m, their post-college major m specific skill is equal to sm2i, while the other types of major-specific skills

do not increase.

Skill measurement system

I assume that the last two years of college GPA are noisy measures of post-college major-specific skill.

Since around 10% of the college students in my data received the maximum GPA score in at least one

of the last two years, I allow for ceiling effects following Hansen et al. (2004), who examine the effects

of schooling on cognitive test scores. For college major m, let GPA∗m1i and GPA∗m2i denote individual

i’s latent college GPA in major m in their last year and their second last year. I assume that

GPA∗m1i = γm01 + γm11s
c
2mi + sm2i + x′giβ

m
g1 + em1i (12)

GPA∗m2i = γm02 + γm12s
c
2mi + γm22s

m
2i + x′giβ

m
g2 + em2i. (13)
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Measurement error emt , t = 1, 2, is idiosyncratic with E(emt ) = 0 and follows a normal distribution.21

The factor loading on sm2 in the last year of GPA is set to one for identification. Observed variables

xg include a female dummy and region dummies. A female dummy is added, because females tend to

earn better GPA than males. Region dummies are included, because college quality might be different

by regions and college GPA might be standardized within college. For each year t, observed GPA is

assumed to be

GPAmti = GPAmt if GPA∗mti ≥ GPAmt (14)

GPAmti = GPA∗mti if GPA∗mti < GPAmt . (15)

Each observed GPA is standardized to have mean 0 and standard deviation 1 over those who actually

chose major m and GPAmt is the upper limit of GPA.

College GPA GPAmt , t = 1, 2, are observed in the data only if students actually chose major m,

and the GPA equations provide only two noisy measures of each type of major-specific skill. Hence,

the GPA equations are not enough to identify the distribution of (sH2 , s
E
2 , s

S
2 ) . The distribution can

be identified by additionally using college major choice, which is described later, as another “noisy

measure” of major-specific skills. See Hansen et al. (2004) for details on the identification.

Pre-college major-specific skills

In the beginning of period 1, individual i is endowed with pre-college majors specific skills (sH1i , s
E
1i, s

S
1i).

For each major m, if they choose high school, some college, or major m′, m′ 6= m, then major m specific

skill in period 2 is sm1i. If they choose major m, then major m specific skill evolves from sm1i to s
m
2i. For

each major m, if there is a measure of pre-college major-specific skill sm1 , an approach of comparing

sm1i and s
m
2i to identify major m specific skill growth of individual i from major m would be relatively

straightforward. However, my data do not have good measures of pre-college major-specific skills. In

section 4.2, I discuss how I make some assumptions to specify sm1i in the absence of good direct measures.

However, for expositional purposes, I assume that I have a good measure of sm1i in the same scale as sm2i

in the rest of this section and describe the rest of my model.
21Students may increase the major-specific skill between these two periods. I assume that individual i’s majorm specific

skill in the second last year is expressed in the form of cm0 +cm1 s
m
2i, where cm0 and cm1 are constants. With regard to general

cognitive skill, I assume either a similar specification holds or the skill does not increase between these periods.
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3.2.3 Log wage equations

As mentioned above, skills and tasks are not the same in my model; workers possess skills and apply

them to tasks. Occupations involving more intense general cognitive tasks will ask workers to use

their cognitive skill intensely, and workers will produce more or higher quality goods in the occupation.

Hence, log wage equations include both general cognitive skill and task intensity. Cognitive jobs are

further divided into either related or unrelated to each major. The return to major-specific skill can

depend on whether the job is related to the relevant major. Let r denote related and nr denote not

related.

Let sci denote individual i’s general cognitive skill level in entering the labour market. That is,

sci = sc1i if individual i is a high school graduate, while sci = sc2m+,i,
if individual i is from post-secondary

education m+ = Some,H,E, S. Let τ c denote general cognitive task intensity. I assume the following

log wage function for individual i from education m− = HS, Some, who chooses a cognitive type job:

logwm−,i = π0 + π1s
c
i + π21τ

c
i + π22(τ

c
i )2 +

∑
m′∈{H,E,S}

πm
′

3,nrs
m′
1i + x′wiβm− , (16)

Remember that both high school and some college graduates are assumed to have jobs unrelated to any

college major.

College graduates can choose job relatedness regarding their college major. For job relatedness

R = r, nr, I assume the following log wage equation for college graduates from major m:

logwmRi = π0 + πm0r · 1(R = r) + π1s
c
2mi + π21τ

c
i + π22(τ

c
i )2 + (πm3,nr + π3mr · 1(R = r))sm2i

+
∑
m′ 6=m

πm
′

3,nrs
m′
1i + x′wiβm

= π0mR + π1s
c
2mi + π21τ

c
i + π22(τ

c
i )2 + πm3,Rs

m
2i +

∑
m′ 6=m

πm
′

3,nrs
m′
1i + x′wiβm, (17)

where π0mR = π0 + πm0r · 1(R = r), πm3R = πm3,nr + π3mr · 1(R = r), and 1(·) is an indicator function. Log

wages are observed with an additive idiosyncratic error εw, following a normal distribution. Control

variables, xw, include a female dummy, race dummies, region dummies, an urban dummy, and cohort

dummies.22 If πm3,nr < πm3r, the log wage return to major m specific skill is larger in related jobs than in

22I allow the coefficients of a female dummy and race dummies to be different across the education groups. I also
assume that the coefficients of cohort dummies are common across the college majors.
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unrelated jobs. Still, the major-specific skill is useful in unrelated jobs as long as πm3,nr > 0.

3.2.4 Job type choice, task intensity choice, and job relatedness choice

As mentioned above, high school graduates and some college graduates decide whether to take a cogni-

tive or mechanical type of job when they enter the labour market. For m− = HS, Some, individual i’s

latent utility of choosing a cognitive type job is

Icm−,i = ξc0 + ξc1s
c
i + ξc2s

mech
i +

∑
m′∈{H,E,S}

ξc3m′s
m′
1i + x′ciβ

c
m− + εcm−,i. (18)

Observed variables xc include a female dummy, race dummies, region dummies, an urban dummy,

household income at 17, and cohort dummies. The latent utility of choosing a mechanical type of job

is normalized to 0. I assume that εcm− follows a Type-I extreme value distribution for simplicity. This

assumption gives a standard logit model.

High school and some college graduates who decide to take a cognitive type of job choose cognitive

task intensity. College graduates who enter the labour market do so as well. As mentioned above, the

mechanical dimension does not matter in cognitive type jobs. Thus, they only choose cognitive task

intensity. Those with higher general cognitive skill will choose higher cognitive task intensity because

the wage return may be higher or they may be able to do the task more easily than those with lower

skill.

For individual i who possesses general cognitive skill sci and whose education ism++ = HS, Some,H,E, S,

optimal cognitive task intensity is assumed to be:

τ cm++,i = ζ0 + ζ1s
c
i + x′ciβτm++ + ετm++,i. (19)

In addition to the observed variables, there is an idiosyncratic shock, ετm++ , that follows a normal

distribution with mean of 0.23 This shock is unknown to the individual when they choose their education.

This linear specification can be considered as an approximation to a more general form. Or, although

I do not estimate the full model, this linear form can be derived from a utility maximization problem

(see the appendix).

College graduates choose job relatedness to their college major. Both major-specific and general
23The coefficients of region dummies, an urban dummy, and household income at 17 are assumed to be common across

the education groups and the coefficients of cohort dummies are assumed to be common across college majors.
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cognitive skills can affect the relatedness choice. Latent utility of choosing a related job for individual

i from major m is given by

Ir,m,i = ξ0,r,m + ξ1,r,ms
c
2mi + ξ2,r,ms

m
2i + x′wiβrm + εrmi, (20)

where εrm is an idiosyncratic shock and assumed for simplicity to follow a Type-I extreme value distri-

bution. The latent utility of choosing an unrelated job is normalized to 0.

In this specification, I cannot examine whether individuals are in an unrelated job because they

want it or because they cannot find a related job. This distinction however does not matter for skill

growth estimation.

3.2.5 Education level choice and major choice

High school graduates choose one of three options: work, some college, or college. If they choose to

work, they enter the labour market with skills (sc1, s
mech
1 , sH1 , s

E
1 , s

S
1 ). If they decide to go to college, they

then choose a college major. In this two-stage education choice framework, some information, such as

potential major-specific skill growth during college and exogenous shocks affecting college major choice,

is assumed to be revealed after students decide to go to college.

As suggested in the data section, there is sorting into education level and college major based on

pre-college general cognitive skill. The cognitive test scores imply that those with a more advanced

degree tend to have higher pre-college general cognitive skill; STEM majors tend to have high pre-

college general cognitive skill among college graduates. There are two channels that affect sorting. One

is that skill development might depend on pre-college skill level. For example, if the increment to the

skill in STEM majors increases with pre-college skills, then students with high pre-college skill will be

more likely to choose STEM majors. Another is something other than through skill, such as study cost.

Even if low-skilled students know that they will accumulate more skill in STEM majors, keeping up

with the classes or their peers may require them to work very hard. In this case, students with low

pre-college skill may prefer to choose an easier major with a smaller skill increase.
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Education level choice

High school graduates have three options: no further education, some college, or college. Let Col denote

college. Individual i’s latent utility of choosing education level l = HS, Some,Col, is

Ili = η0l + η1ls
c
1i + η2ls

mech
1i +

∑
m′∈{H,E,S}

η3,l,m′s
m′
1i + x′diβl + zdliϕdl + εdli. (21)

Observed variables xd include the same variables in xs and cohort dummies. In addition, a local

unemployment rate at age 17 enters as an exclusion variable, zdl.24 For simplicity, I assume that εdl

follows a Type-I extreme value distribution, which gives a standard multinomial logit model. The

probability of choosing education level l given the skills and the observed variables is given by

exp(η0l + η1ls
c
1i + η2ls

mech
1i +

∑
m′ η3,l,m′s

m′
1i + x′diβl + zdliϕdl)∑

L∈{HS,Some,Col} exp(η0L + η1Lsc1i + η2Lsmech1i +
∑

m′ η3,L,m′s
m′
1i + x′diβL + zdLiϕdL)

.

The base group is high school.

College major choice

If high school graduates choose to go to college, they then choose a college major. In addition to pre-

college general cognitive and major-specific skills, potential major-specific skill growth, which is revealed

after deciding to go to college, can affect college major choice. Since the mechanical dimension does

not matter to college graduates, mechanical skill does not appear in the college major choice equation.

As in education level choice, I assume linear latent utility with an idiosyncratic shock following a

Type-I extreme value distribution.25 Individual i’s latent utility of choosing major m is given by

Imi = η0m + η1ms
c
1i + η2ms

m
2i + η3ms

m
1i + x′diβm + z′miϕm + εmi. (22)

Exclusion variables zm include a foreign born parents dummy, math test score relative to cognitive test

score, and mechanical test score relative to cognitive test score.26 As shown in the summary statistics
24The local unemployment rates by education level are constructed from the CPS. The local unit is defined by the

combination of regions and MSA residency.
25I assume εrm in equation (20) and εm are orthogonal. They could be allowed to be correlated, but, in that case, I

want to reduce the number of majors to two because of the computation burden.
26A foreign born parents dummy is also used in Kinsler and Pavan (2015). The math test score relative to cognitive test

score is defined as residuals from regressing average math test scores on a constant and cognitive test scores among college
graduates. The constructed score is included in preferences. I assume that, given general cognitive skill, the composition
of the skill does not affect wages or skill growth. Similarly, the mechanical test score relative to cognitive test score is
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above, STEM majors tend to have higher pre-college mechanical test scores among college graduates.27

Also, if cognitive tests are divided into verbal tests and math tests, Humanities & Social Sciences

majors, on average, have high verbal scores compared to math scores.28 The probability of choosing

major m given the observed variables, pre-college skills, and potential post-college major-specific skills

is given by

exp(η0m + η1ms
c
1i + η2ms

m
2i + η3ms

m
1i + x′diβm + z′miϕm)∑

n∈{H,E,S} exp(η0n + η1nsc1i + η2nsn2i + η3nsn1i + x′diβn + z′niϕn)
.

The base group is Humanities & Social Sciences majors.

4 Identification of skill growth

4.1 General cognitive skill

As mentioned above, the distribution of sc1 can be identified from the skill measurement system, equa-

tions (3) to (10). The parameters of general cognitive skill growth are identified from general cognitive

task intensity choices. Task intensity choice equation (19) is written in terms of general cognitive skill

brought to the labour market. For high school graduates, the equation is

τ cHS,i = ζ0 + ζ1s
c
1i + x′ciβτ,HS + ετ,HS,i. (23)

Hence, ζ0, ζ1, and βτ,HS can be estimated from task intensity choice of high school graduates.

For those choosing some college or college, sc in task intensity choice equation (19) is different from

the pre-college skill level. Using the skill change equation (11), the equation can be rewritten in terms

of pre-college general cognitive skill sc1. For post-secondary education group m+ = Some,H,E, S, the

equation can be rewritten as

defined as residuals from regressing average mechanical test scores on a constant and cognitive test scores among college
graduates.

27One might think that mechanical skill increases in STEM majors. However, as shown above, the average mechanical
task intensity among STEM majors is smaller than that among high school graduates and it does not seem mechanical
skill is not important for STEM majors. Hence, pre-college mechanical skill is included in preferences here.

28Among Humanities & Social Sciences majors, the mean of the average score of the verbal tests is 0.64 and that of the
math tests is 0.53. The means are 0.51 and 0.68 among Business & Economics majors, and 0.73 and 0.89 among STEM
majors.
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τ cm+,i = (ζ0 + ζ1λ
c
0m+

) + ζ1λ
c
1m+

sc1i + x′ciβτm+ + ετm+,i

= ζ̃0m+ + ζ̃1m+s
c
1i + x′ciβτm+ + ετm+,i, (24)

Hence, ζ̃0m+ , ζ̃1m+ , and βτm+ can be identified. Since ζ̃0m+ = ζ0 + ζ1λ
c
0m+

and ζ̃1m+ = ζ1λ
c
1m+

, the

skill growth parameters are written as

λc0m+
=
ζ̃0m+ − ζ0

ζ1

λc1m+
=
ζ̃1m+

ζ1
.

Parameters ζ0, ζ1, ζ̃0m+ , and ζ̃1m+ are identified as mentioned above. Hence, λc0m+
and λc1m+

in the

skill change equation sc2m+,i
= λc0m+

+ λc1m+
sc1i can be identified.

Log wage point metric

Since there is no natural unit of skills, it is difficult to interpret the results without some reference

point. With regard to general cognitive skill, multiplying both sides of the skill change equation (11)

by π1, which is the coefficient of general cognitive skill in log wage equation (16), gives

π1s
c
2m+,i = π1λ

c
0m+

+ λc1m+
π1s

c
1i,

for m+ = Some,H,E, S. By construction, a one unit increase in π1sc1i will increase log wage by 1 point.

Skill growth from periods 1 to 2 is written as

π1(s
c
2m+,i − s

c
1i) = π1λ

c
0m+

+ (λc1m+
− 1)π1s

c
1i. (25)

In this form, skill growth is interpreted in terms of log wage points, that is, by how many points the

skill growth will increase log wages. Although general cognitive skill growth can be compared across

education groups without this transformation, this log wage point transformation makes interpretation

easier.
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4.2 Major-specific skills

The distributions of potential post-college major-specific skills are identified from the GPA equations

(12) to (15) and college major choice equation (22). If I had measures of pre-college major-specific skill

sm1 in the same metric as sm2 , major m specific skill growth could be measured by sm2 − sm1 . However,

as mentioned above, I do not have measures of sm1 , and I need to make some assumptions on sm1i.

I assume that pre-college major-specific skill levels are the same across individuals. That is, for

major m, sm1i = sm1 for individual i. Under this assumption, terms of pre-college major-specific skill are

absorbed in constant terms in the equations shown in the previous section. The log wage equation for

education groups m− = HS, Some (16) is rewritten as

logwm−,i =

π0 +
∑

m′∈{H,E,S}

πm
′

3,nrs
m′
1

 + π1s
c
i + π21τ

c
i + π22(τ

c
i )2 + x′wiβm−

= π̃0 + π1s
c
i + π21τ

c
i + π22(τ

c
i )2 + x′wiβm− (26)

Log wage equation for major m = H,E, S, (17), is rewritten as

logwmRi =

π0mR +
∑
m′ 6=m

πm
′

3,nrs
m′
1

 + π1s
c
2mi + π21τ

c
i + π22(τ

c
i )2 + πm3,Rs

m
2i + x′wiβm

= π̃0mR + π1s
c
2mi + π21τ

c
i + π22(τ

c
i )2 + πm3,Rs

m
2i + x′wiβm. (27)

Parameters πm3,nr, m = H,E, S, cannot be identified, but that does not matter to the identification of

the skill growth. Job type choice equation (18), education level choice equation (21), and college major

choice equation (22) can be rewritten in the same way. The rewritten equations are described in the

appendix.

Of course, sm1 cannot be identified from these equations. I approximate sm1 to the skill level, with

which male high school graduates living in Northeast region and whose pre-college general cognitive

skill level is the population average would receive zero GPA in the 0-4.0 scale for courses taken in last

year of college.29

29Using another group of people, such as females or people with high pre-college skill, does not change my results on
the contribution of major-specific skill growth on wage growth.
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Log wage point metric

Unlike general cognitive skill, major-specific skill growth cannot be directly compared across college

majors because each major increases its own type of skill, which is measured in its own scale. Major-

specific skill growth, of course, cannot be directly compared with general cognitive skill growth either.

As with general cognitive skill growth, I transform major-specific skill growth into a log wage point

metric. However, the coefficient of major-specific skill can be different by job relatedness to the major,

and which coefficient is used can significantly affect the result. I transform major-specific skill growth

into log wage point metric in three ways.

Since major-specific skill will be utilized better in related jobs, I calculate log wage contribution of

major-specific skill growth in related jobs, that is, πm3r(sm2 − sm1 ) for each major m. In order to see the

sensitivity with the assumption on pre-college major-specific skill level, I also calculate πm3r(sm2 −sm2m,10),

where sm2m,10 denotes the tenth percentile of sm2 of those who choose major m.

Although the return to a major-specific skill in related jobs will be larger than that in unrelated

jobs, the wage may be low if their major-specific skill level is not large enough. If their major-specific

skill level is not high, college graduates can choose an unrelated job to avoid low wage in a related

job. On the other side of the coin, evolved major-specific skill can be considered to provide college

graduates an option to earn higher wages in related jobs than in unrelated jobs if their skill is high.

Based on this perspective, I calculate the contribution of major-specific skill growth on log wage given

individuals choose a job relatedness that brings them higher wages. From the point of log wage value

of skill growth, this skill growth transformation will be appropriate to compare with general cognitive

skill growth.

I transform the skill growth into the log wage point metric as follows. Suppose πm3r > πm3,nr in log

wage equation (27). In this case, there is s̄m such that log wage in a related job is larger than that

in an unrelated job if and only if sm > s̄m. Major m specific skill growth in log wage point metric is

calculated as

0 if sm1 > sm2 (28)

πm3nr(s
m
2 − sm1 ) if sm1 ≤ sm2 ≤ s̄m (29)

πm3,nr(s̄
m − sm1 ) + πm3r(s

m
2 − s̄m) if sm1 ≤ s̄m < sm2 (30)

πm3r(s
m
2 − sm1 ) if s̄m < sm1 ≤ sm2 . (31)
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Equation (28) means that, if sm1 > sm2 , skill growth is calculated to be zero. Equation (29) indicates

a situation in which college graduates would take an unrelated job even after graduating from college.

Hence, the skill growth is calculated as log wage growth from major-specific skill growth in unrelated

jobs. In equation (30), college graduates with pre-college level of major-specific skill would take an

unrelated job, but, with post-college level of major-specific skill, they would take a related job. Hence,

the first term indicates the log wage increase from skill growth up to s̄m in an unrelated job, while the

second term indicates the log wage increase because of skill growth from s̄m to sm2 in a related job. In

equation (31), even college graduates with pre-college level major-specific skill would take a related job.

Hence, the skill growth is calculated as log wage increase from major-specific skill growth in related

jobs.

5 Estimation

I estimate my model via maximum likelihood. My model has five types of unobserved skills, general

cognitive skill, mechanical skill, and three types of major-specific skills. The unobserved skills need to

be integrated out in estimation. Post-secondary general cognitive skill sc2m+
, m+ = Some,H,E, S, is

unobserved, but can be rewritten in terms of sc1 by using skill growth equation (11). The equations I

estimate are written in terms of sc1 in stead of sc2m+
.

For college major m, latent GPA equations (12) and (13) can be rewritten as

GPA∗m1i = (γm01 + γm11λ
c
0m) + γm11λ

c
1ms

c
1i + sm2i + x′giβ

m
g1 + em1i

= γ̃m01 + γ̃m11s
c
1i + sm2i + x′giβ

m
g1 + em1i (32)

GPA∗m2i = (γm02 + γm12λ
c
0m) + γm12λ

c
1ms

c
1i + γm22s

m
2i + x′giβ

m
g2 + em2i

= γ̃m02 + γ̃m12s
c
1i + γm22s

m
2i + x′giβ

m
g2 + em2i. (33)

Log wage equation (26) for some college is given by

logwSome,i = (π̃0 + π1λ
c
0,Some) + π1λ

c
1,Somes

c
1i + π21τ

c
i + π22(τ

c
i )2 + x′wiβSome

= π̃0,Some + π1,Somes
c
1i + π21τ

c
i + π22(τ

c
i )2 + x′wiβSome, (34)

32



and, for major m, log wage equation (27) can be written as

logwmRi = (π̃0mR + π1λ
c
0m) + π1λ

c
1ms

c
1i + π21τ

c
i + π22(τ

c
i )2 + πm3,Rs

m
2i + x′wiβm

= π̇0mR + π1ms
c
1i + π21τ

c
i + π22(τ

c
i )2 + πm3,Rs

m
2i + x′wiβm. (35)

The other rewritten equations, job type choice equation for some college and job relatedness choice

equation, are described in the appendix.30 Therefore, the unobserved skills that need to be integrated

out are sc1, smech1 , sH2 , sE2 , and sS2 .31

I estimate the model in three stages.32 The first stage estimates the ASVAB equations, the education

level choice equation, and the job type choice equations. Hence, the distributions of sc1 and smech1 are

estimated in this stage. Using the parameter estimates in the first stage, the second stage estimates

the GPA equations and the college major choice equation. The distributions of sH2 , sE2 , and sS2 are

estimated in this stage. Given the parameter estimates in the first and second stages, the general

cognitive task intensity choice equations, job relatedness choice equation, and log wage equations are

estimated in the third stage. This three-stages approach is less efficient than a one-stage approach.

However, this approach not only makes computation easier but also makes the identification of the

skills more transparent.

6 Results

The parameter estimates that are not shown below are reported in the appendix.33

ASVAB test score equations

Figure 5 shows the variance decomposition of ASVAB test scores. Around 70% of the variance of Word

Knowledge scores, Paragraph Comprehension scores, Arithmetic Reasoning scores, and Math knowledge

scores is explained by the variance of general cognitive skill, which is the sum of the variances of observed
30In the latent GPA equations, parameters that can be identified are γ̃m01, γ̃m11, γ̃m02, and γ̃m12. Hence, λc0m and λc1m cannot

be identified from these equations. The latent GPA equations are not used to identify the skill growth parameters.
31I use Gauss-Hermeite quadrature to numerically evaluate the integral. The order of quadrature is 10.
32The appendix describes the estimated equations concretely.
33The brief summary of the job type choice and the job relatedness choice is the following: with regard to job type

choice, those who have high pre-college general cognitive skill and who have low pre-college mechanical skill tend to be
sorted into cognitive type jobs in both high school and some college graduates. This sorting is stronger among high school
graduates, which might suggest that, even though some college graduates work in a mechanical job, some college mainly
increases general cognitive skill and mechanical skill becomes less important to them compared to high school graduates.
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and unobserved general cognitive components. Numerical Operation scores are noisier compared to the

other cognitive test scores. Less than 40% of its variance can be explained by the variance of general

cognitive skill.

With regard to the mechanical test scores, 20% of the variance of Mechanical Comprehension scores

and of Electronics Information scores can be explained by the variance of general cognitive skill. The

variance of mechanical skill, which is the sum of the observed and unobserved mechanical components,

explains 20% to 30% of the variance of each type of test scores.

Figure 5: Variance decomposition of ASVAB test scores
Notes: Skill equations are sc1i = x′siα

c + θci and smech1i = x′siα
mech + θmechi and the ASVAB equations are equations (3) to (10).

WK: Word Knowledge; PC: Paragraph Comprehension; AR: Arithmetic Reasoning; MK: Mathematics Knowledge; NO: Numerical
Operation; MC: Mechanical Comprehension; AI: Auto & Shop Information; EI: Electronics Information. For s = 1, 2, · · · , 8, let
δ11 = 1, δ17 = 0, δ21 = δ22 = · · · = δ25 = 0, and δ27 = 1. ObsC: V ar(δ1sx′sαc); UnobsC: V ar(δ1sθc); ObsMech: V ar(δ2sx′sαmech);
UnobsMech: V ar(δ2sθmech); Cov(C,Mech): Cov(δ1ssc1, δ2ss

mech
1 ); Error: V ar(es).

GPA equations

The last two years of college GPA are used as noisy measures of major-specific skills. Figure 6 shows

the variance decomposition of the latent college GPA. The last year of latent GPA and the second last

year of latent GPA show somewhat different results. The variance of measurement errors is relatively

large in the second last year latent GPA of Humanities & Social Sciences and Business & Economics

majors. In STEM majors, the two measures are similar.
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Figure 6: Variance decomposition of latent college GPA
Notes: The latent GPA equations are equations (32) and (33). For t = 1, 2, sc1: V ar(γ

m
1ts

c
1); s

m
2 : V ar(γm2ts

m
2 ), where γm21 = 1; Obs:

V ar(x′gβ
m
gt), Error: V ar(e

m
t ).

In any major, a large part of the variance of GPA is explained by the variance of major-specific skill.

This implies that college students learn something that cannot be captured by general cognitive skill and

that the skills are heavily weighed in grading. Students with higher pre-college general cognitive skill

tend to earn higher GPA in any college major, but the impacts are smaller than those of major-specific

skill.

Sorting into education level and major by skills

Figure 7 shows average pre-college skill levels conditional on education level. Each type of skill is

standardized to have mean 0 and standard deviation 1 in this figure. Students who choose more

education tend to have higher pre-college cognitive and mechanical skill levels. However, given pre-

college general cognitive skill, those who have higher pre-college mechanical skill tend to choose high

school. This is consistent with Prada and Urzúa (2017).

Figure 8 shows average pre-college general cognitive skill levels and average levels of potential post-

college major-specific skills by college major. In this figure, each type of skill is standardized to have

mean 0 and standard deviation 1 over the population. STEM majors tend to have higher pre-college

general cognitive skill than the other two majors. With regard to potential post-college major-specific

skills, students are positively sorted into Humanities & Social Sciences and STEM majors based on

their respective major-specific skill. Especially, students choosing STEM majors tend to have much
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Figure 7: Sorting into education level by pre-college skills
Note: Each type of skill is standardized to have mean 0 and standard deviation 1 in this figure.

higher potential post-college STEM major specific skill than the average. In contrast, students are

negatively sorted into Business & Economics majors. They tend to be below average in all types of

potential post-college major-specific skills. This negative selection on major-specific skill into Business

& Economics majors seems counter intuitive. However, a counterfactual analysis in Kinsler and Pavan

(2015) shows that the average return to business major is smallest for those who choose business among

college graduates. My result appears consistent with that.

Task intensity choice

Table 3 reports parameter estimates of the general cognitive task intensity choice equations, (23) for

high school graduates and (24) for the other education groups. Constant terms represent the average

level of cognitive task intensity taken by those with the population average level of pre-college general

cognitive skill. The estimates of the constant are substantially different across the education groups.

People with a higher level of education tend to take a job involving more intense general cognitive tasks.

This suggests that a higher level of education will increase general cognitive skill more than a lower level

of education. Also, the largest constant for STEM majors implies that general cognitive skill increases

the most in STEM majors.

The estimate of ζ1 is positive. This means that general cognitive skill has positive effects on general
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Figure 8: Sorting into major by skills
Note: Each type of skill is standardized to have mean 0 and standard deviation 1 in this figure.

cognitive task choice. In every education group, the sign of pre-college general cognitive skill is positive.

This implies that those with higher pre-college general cognitive skill are more likely to end up in

an occupation involving more intense cognitive tasks. There are some differences in size across the

education groups and these differences reflect the differences in the effects of pre-college skill level on

skill growth.

Table 3: Cognitive task intensity choice parameter estimates
Const sc1

High school (ζ0) -0.5865 (ζ1) 0.1694

Some college (ζ̃0Some) -0.1024 (ζ̃1Some) 0.1664

Humanities&SS (ζ̃0H) 0.4507 (ζ̃1H) 0.0085

Business&Econ (ζ̃0E) 0.7450 (ζ̃1E) 0.1716

STEM (ζ̃0S) 1.1397 (ζ̃1S) 0.2614

Notes: Equation (23) for high school and equation (24) for the other education

groups. Other parameter estimates are omitted in this table.
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Log wage equations

The parameter estimates of log wage equations, (26) for high school graduates, (34) for some college

graduates, and (35) for college graduates, are reported in Table 4. Parameter π1 is estimated to be

positive, which means that general cognitive skill has a positive effect on log wages. The positive

coefficients of task intensity terms show that wages are higher in occupations involving more intense

cognitive tasks.

In all three majors, major-specific skills are unrewarded in jobs unrelated to their respective majors.

In Humanities & Social Sciences majors, major-specific skill does not have a positive effect on wages

even in jobs related to their majors. Skills that are specifically acquired in Humanities & Social Sciences

majors do not appear to be rewarded in the labour market. In Business & Economics and STEM majors,

major-specific skill has a positive effect on wages in related jobs.
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Table 4: Log wage equation estimates
τ c (π21) 0.0991

Business&Econ
(τ c)2 (π22) 0.0388 sc1 (π1E) 0.0148

High school Unrelated
Const (π̃0) 1.9211 Const (π̇0E,nr) 2.3333

sc1 (π1) 0.0396 sE2 (πE3,nr) -0.0178

Some college Related
Const (π̃0Some) 2.1844 Const (π̇0E,r) 2.2911

sc1 (π1Some) 0.0411 sE2 (πE3,r) 0.0369

Humanities&SS STEM
sc1 (π1H) 0.0025 sc1 (π1S) 0.0674

Unrelated Unrelated
Const (π̇0H,nr) 2.2768 Const (π̇0S,nr) 2.3343

sH2 (πH3,nr) -0.0019 sS2 (πS3,nr) -0.0186

Related Related
Const (π̇0H,r) 2.1494 Const (π̇0S,r) 2.2737

sH2 (πH3,r) -0.0099 sS2 (πS3,r) 0.1093

Notes: Equation (26) for high school, equation (34) for some

college, and equation (35) for major m = H,E, S.

Other parameter estimates are omitted in this table.

6.1 Skill growth

6.1.1 General cognitive skill growth

As explained in Section 5, the general cognitive task intensity choices are used to estimate the skill

growth parameters in equation (25). Figure 9 shows general cognitive skill growth across pre-college

skill levels. As can be expected, every major shows higher skill growth than some college. Among college

majors, STEM majors show substantially larger skill growth than the other two majors regardless of

pre-college skill levels. At the population average pre-college skill level, the difference between STEM

majors and Humanities & Social Sciences majors is 16 log wage points. There are some differences

in how much pre-college skill levels matter to skill growth. However, even though students with lower
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Figure 9: General cognitive skill growth by education group
Notes: Pre-college general cognitive skill in the x-axis is standardized to have mean 0 and standard deviation 1.

General cognitive skill growth of individual i from education groups m+, m+ = Some, H, E, S, is given by

π1(sc2m+,i
− sc1i) = π1λ0m+ + (λc1m+

− 1)π1sc1i.

Table 5: Average treatment effects; general cognitive skill growth
Treatment

Some college Humanities & SS Business & Econ STEM
High school 0.1138 0.2541 0.3119 0.3925
Some college 0.1136 0.2419 0.3122 0.3995
Humanities & SS 0.1132 0.2189 0.3126 0.4126
Business & Econ 0.1132 0.2189 0.3126 0.4126
STEM 0.1130 0.2083 0.3129 0.4187

pre-college skill levels have a weaker monetary incentive to choose STEM majors, majoring in STEM

will still bring them higher growth in general cognitive skill. Table 5 shows that, for any education

group of people, average general cognitive skill growth will be the highest in STEM majors.

Although I cannot identify this from my model, the observed strong sorting based on pre-college

general cognitive skill might be due to study cost differences by college major. Students may be able

to accumulate a larger amount of general cognitive skill in STEM majors. However, this might mean

that students have to study much harder than in the other college majors. Despite the fact that STEM

majors have higher pre-college cognitive test scores on average, they tend to spend more time in studying

than other majors (see, e.g., Brint et al. (2012) and Ahn et al. (2018)). Keeping up in classes and with

peers may be very difficult for those who do not have enough background or preparation.

40



Figure 10: Indirect effects of general cognitive skill growth on wages through task intensity choice
Note: Pre-college general cognitive skill in the x-axis is standardized to have mean 0 and standard deviation 1. The
effects for individual i from education groups m+, m+ = Some, H, E, S, is calculated by π̂1,τ (sc2m+,i

− sc1i)− π1(sc2m+,i
− sc1i),

where π̂1τ is the estimate of π1 in equation (26) excluding task intensity terms.

6.1.2 Occupation choice and wages

General cognitive skill growth in the log wage point metric indicates the direct contribution of general

cognitive skill growth on log wages. There is also an indirect contribution of skill growth through

occupation choice. As seen above, workers with higher general cognitive skill tend to choose a job

involving more intense general cognitive tasks. Also, wages in jobs involving more intense general

cognitive tasks tend to be higher.

In order to examine the size of the indirect effects, I estimate the log wage equations excluding

task intensity terms. The parameter estimates are reported in the appendix. Now the estimate of π1

in equation (26) without the task intensity terms, π̂1,−τ , means the effects of general cognitive skill,

including the indirect effects through task intensity choice. Since π̂1, which is the estimate of π1 in

equation (26) with the task intensity terms, only includes the direct effects of general cognitive skill,

(π̂1,−τ − π̂1)(sc2−sc1) measures the indirect effects of general cognitive skill. Figure 10 shows the indirect

effects of general cognitive skill growth on log wages. The indirect effects are smaller than the direct

effects. The direct effects are about three times larger. STEM majors show the largest indirect effects

among the majors.
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Table 6: Pre-college levels of major-specific skills
Humanities&SS Business&Econ STEM

sm1 -6.94 -7.50 -5.02
Note: sm1 = GPAm1 − γ̂m01, where GPA

m
1 corresponds to zero GPA

in major m in the 0-4.0 scale and γ̂m01 is the estimate of γm01.

6.1.3 Major-specific skill growth

Using the estimate of πm3,r and the estimated standard deviation of sm2 , the log wage effect of one

standard deviation increase in sm2 can be calculated for each major m. Since the estimate of πH3r is

almost zero, I set it to 0. Then, the effect is 0 for Humanities & Social Sciences majors, 0.0390 for

Business & Economics majors, and 0.1292 for STEM majors. The log wage effect of a major-specific

skill in related jobs is the largest for STEM majors. It is more than three times larger than for Business

and Economics majors.

In symmetry with general cognitive skill, I have measures of post-college major-specific skill levels,

but do not have a measure of pre-college skill levels. In the absence of such a measure, I approximate

pre-college major-specific skills to levels, with which an average male high school graduate living in

Northeast region who has the population average general cognitive skill would fail all courses taken in

the last year of college.34 Table 6 shows the calculated pre-college levels of each major-specific skill.

The metric of sm1 is the same as that of sm2 . For each major m, potential post-college major-specific

skill sm2 is standardized to have mean 0 and standard deviation 1 over the population.

Table 7 reports major-specific skill growth measured in related jobs. It is evaluated at the population

average level of potential post-college major-specific skill, that is, sm2 = 0 for each major m. As a

reference point, pre-college major-specific skill sm1 is used in the first row, while the tenth percentile of

post-college skill level among those who choose the major sm2m,10 is used in the second row. The skill

growth is calculated at the population mean of sm2 for each major m. Business & Economics and STEM

majors show huge differences between the two cases. With regard to STEM majors, the major-specific

skill growth is larger than that of general cognitive skill growth in the first case. On the other hand,

it is much smaller in the second case and is even smaller than that of Business & Economics majors.

This huge reduction is because, as seen in Figure 8, students who choose STEM majors tend to have

high potential post-college STEM major specific skill and sS2S,10 is much larger than sS1 .

34Using another groups of people, such as females, people with high pre-college skill, or different regions, does not
change my results on the contribution of major-specific skill growth on wage growth because the calculated pre-college
levels in any group are very small compared to post-college levels.
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Table 7: Major-specific skill growth at average; related jobs
Humanities&SS Business&Econ STEM

πm3r(0− sm1 ) 0 0.2762 0.5488
πm3r(0− sm2m,10) 0 0.0666 0.0295

Figure 11: Major-specific skill growth across post-college major specific skill
Note: Potential post-college major specific skill in the x-axis is standardized to have mean 0 and standard deviation 1. See

equations (28) to (31) for the definition of the skill growth.

I then calculate major-specific skill growth following equations (28) to (31). Although I call it

major-specific skill growth, this growth represents the contribution of major-specific skill growth on

log wage growth given individuals choose the higher-paying job relatedness. Hence, even if skill itself

increases, that is, sm2 > sm1 , the calculated skill growth measure can be zero if sm2 is not rewarded in

the chosen job. Figure 11 shows major-specific skill growth across potential post-college major-specific

skill levels. As shown in Table 4, the wage returns to major-specific skills are almost zero in unrelated

jobs for all majors and in related jobs for Humanities & Social Sciences majors. Hence, I set them to 0

for the figure. In order to make it easy to compare the growth across majors, the x-axis is standardized

to mean 0 and standard deviation 1. Since a large part of people would choose unrelated jobs, their

major-specific skill are not utilized and the contribution on wage growth is zero among them. Therefore,

the average major-specific skill growth is much smaller than general cognitive skill growth (see Table

8).
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Table 8: Average treatment effects; major-specific skill growth
Treatment

Humanities & SS Business & Econ STEM
Humanities & SS 0 0.0025 0.0091
Business & Econ 0 0.0008 0.0084
STEM 0 0.0024 0.0339

Major-specific skill growth has small positive effects on wages among Business & Economics majors.

STEM majors show larger effects. If the skill level is 1.5 standard deviations above the population mean,

then the growth in STEM major specific skill increases wages by about 10%. Although major-specific

skill growth brings positive wage returns to some people, the returns are small relative to those from

general cognitive skill growth. For example, even if STEM major specific skill is 1.5 standard deviations

above the population average, growth in general cognitive skill contributes three to four times more

than growth in major-specific skill. The skill growth estimates are robust with sm1 because they do not

change as long as sm1 ≤ s̄m and s̄m is more than 0.5 standard deviation above the average of sm2 in any

major m.

Since I take a different approach from Lemieux (2014), who takes a wage decomposition approach,

my results cannot be directly compared to his results. Still, my estimates on major-specific skill growth

are small compared to his. There are several reasons. Lemieux (2014) does not consider individual

heterogeneity in major-specific skill growth, but people with a high level of major-specific skill may have

a job related to their major. If this is true, major-specific skill growth is overestimated in his paper.

Another reason is the coarse occupation classification in his paper. Related and unrelated jobs may be

different in general cognitive task intensity even if they are both categorized in the same occupation

in his paper. If unrelated jobs tend to involve less intensive general cognitive task, his estimated

major-specific skill growth may partially reflect general cognitive skill growth and task intensity choice

effects.35

Major-specific skill growth in log wage point metric depends on their estimated wage returns. Since

skill price and skill quantity cannot be separately identified, I cannot conclude whether Humanities &

Social Sciences majors learn something that is not rewarded in the labour market or that they learn

little other than general cognitive skill. However, given that the variance decomposition of GPA is

not much different across college majors, I suspect that Humanities & Social Sciences majors learn
35Other reasons are the different countries, Canada and US, and the different types of job relatedness measures, worker’s

self-assessed measure and job analysis measure.
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something other than general cognitive skill as the other majors.36 If students mainly develop general

cognitive skill in Humanities & Social Sciences majors, a large part of their GPA variances should be

explained by the variance of general cognitive skill.

7 Conclusion

Large income differences across college majors are attracting a lot of attention, and many studies

examine whether there exist wage differentials across majors even when controlling for ability or skill

selection into majors. College students may accumulate different types and amounts of skills by college

major, and examining the similarity and the uniqueness of the accumulated skills in different majors

will be helpful for understanding various important issues, including the sources of wage differentials

across majors or students’ major choice.

This paper estimates skill growth by college major in a multi-dimensional skill framework. I assume

that each major increases two types of skills: general cognitive skill and a major-specific skill. The

general cognitive skill can increase in any major. This skill captures the similarity of skills accumulated

across majors. On the other hand, major-specific skill can be acquired only in its relevant major. This

skill captures uniqueness of skills acquired in each major. I allow for individual heterogeneity in skill

growth.

As in most datasets, my dataset has only cognitive test scores measured at a pre-college period,

which can be used as measures of general cognitive skill. Hence, I use an approach to identify general

cognitive skill growth by utilizing occupation choice. By assuming that high school graduates enter the

labour market with a skill level measured by pre-college cognitive tests, the effects of general cognitive

skill on occupation choice are estimated. Then, using these estimated effects, skill growth is implied

by the differences in occupation choice of college graduates from high school graduates for each college

major. Since high school graduates and college graduates tend to take different occupations and since

college majors and post-college occupations are closely related, I use a task-based approach to relate

occupations to each other. My dataset has measures of post-college major-specific skills, but does not

have measures of pre-college major-specific skills. Hence, I specify pre-college major-specific skills with

some assumptions.
36This type of skill, which is learned in college but is not be rewarded in the labour market, is called an academic skill

in some papers such as Kinsler and Pavan (2015) and Arcidiacono et al. (2016).
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I use US datasets, the NLSY97 and the O*NET. ASVAB scores and college GPA in the NLSY97

are used as pre-college general cognitive skill measures and post-college major-specific skill measures,

respectively. Instead of assuming they accurately measure the skills, I assume that they are noisy

measures and use a dynamic factor model to deal with the measurement errors.

The results show that all majors substantially increase general cognitive skill, but with large differ-

ences across majors. For students with a population average level of pre-college general cognitive skill,

STEM majors increase general cognitive skill by 16 log wage points more than Humanities & Social

Sciences majors. This comes from the fact that, given pre-college general cognitive skill levels, college

graduates tend to work in jobs involving much more intense general cognitive tasks than high school

graduates and that the difference in the task intensity from high school graduates varies by major.

The effects of pre-college general cognitive skill levels on skill growth are somewhat different by major.

Skill growth increases with pre-college skill levels in STEM majors, while it decreases in Humanities

& Social Sciences. Still, the effects are not large and people who choose another major would increase

their skill more in STEM majors. Indirect effects of general cognitive skill growth on wages through

occupation choice are smaller than the direct effects. The direct effects are about three times larger

than the indirect effects.

Wage returns to major-specific skills depend on whether the job is related to the corresponding

major or not. The returns are zero in unrelated jobs for all majors, but they are positive in related jobs

for Business & Economics and STEM majors. STEM majors show larger returns. However, the wage

growth effects of major-specific skill growth are only about one quarter of those from general cognitive

skill growth even for STEM majors whose potential post-college major-specific skill is 1.5 standard

deviation above the population average.

These results suggest that growth in the general cognitive skill is the main contributor to the wage

increase over high school graduation. The quantity of skill growth is substantially different across

majors, and that is a big factor in the observed large differences in wages across majors. My results

suggest that majoring in STEM will bring students a large monetary return in the labour market. I

cannot identify from my paper, but its large skill increase might mean a large study cost in STEM

majors. In fact, it is documented that STEM majors tend to study more hours than other majors

despite their high pre-college cognitive test scores. Also, although many students switch out STEM

majors to another major during college, only a small number of students switch into STEM majors from
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another major (see, e.g., Arcidiacono (2004) and Stinebrickner and Stinebrickner (2014)). This suggests

that STEM majors are more difficult than other majors. Therefore, improving general cognitive skill

and academic preparation in the pre-college stage may be an effective strategy to increase the number

of STEM majors.

I show that college students accumulate a large amount of general cognitive skill, but what else

they learn during college remains unclear. As shown above, the growth in major-specific skill does not

contribute to wages for Humanities & Social Sciences majors although the acquired major-specific skill

is an important factor of GPA. Why this is so remains an interesting question for future research. My

paper examines only skill growth during college, but on-the-job skill accumulation might be different

by major as well. This is another interesting topic for the future.
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Appendix

Identification of measurement system of general cognitive skill

I specify θmech = aθc + θomech and assume θc and θmech are orthogonal to each other. Using this

specification and skill equations (1) and (2), the skill measurement system, equations (3) to (10), can

be rewritten as follows:

WordKnowledgei = x′siα
c + θci + e1i

ParagraphComprehensioni = δ12(x
′
siα

c + θci ) + e2i

ArithmeticReasoningi = δ13(x
′
siα

c + θci ) + e3i

MathematicsKnowledgei = δ14(x
′
siα

c + θci ) + e4i

NumericalOperationi = δ15(x
′
siα

c + θci ) + e5i

MechanicalComprehensioni = δ16(x
′
siα

c + θci ) + δ26(x
′
siα

mech + aθci + θomechi ) + e6i

Auto&ShopInformationi = x′siα
mech + aθci + θomechi + e7i

ElectronicsInformationi = δ18(x
′
siα

c + θci ) + δ28(x
′
siα

mech + aθci + θomechi ) + e8i.

Since xs is orthogonal with θc, θomech, and e’s, the parameters on xs, that is, αc, δ1sαc, αmech, and

δ2sα
mech, s = 1, 2, · · · , 8, can be identified. Moving the identified terms into the left hand side gives

˜WordKnowledgei = θci + e1i (36)

˜ParagraphComprehensioni = δ12θ
c
i + e2i

˜ArithmeticReasoningi = δ13θ
c
i + e3i

˜MathematicsKnowledgei = δ14θ
c
i + e4i

˜NumericalOperationi = δ15θ
c
i + e5i

˜MechanicalComprehensioni = (δ16 + aδ26)θ
c
i + δ26θ

omech
i + e6i

˜Auto&ShopInformationi = aθci + θomechi + e7i (37)

˜ElectronicsInformationi = (δ18 + aδ28)θ
c
i + δ28θ

omech
i + e8i.
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This is a triangular form explained in Carneiro et al. (2003). There are five measures affected only by

θc and three measures affected by θc and θomech, and the factor loadings on θc in equation (36) and on

θomech in equation (37) are normalized to 1. Therefore, the factor loadings on θc and on θomech and the

distributions of θc, θomech, and e’s can be identified. Since a, δ26, δ28, δ16 + aδ26, and δ18 + aδ28 are

identified, δ16 and δ18 can be identified.

Derivation of linear task intensity choice

Individual i’s problem in period 2 is

max
τ

u(τ c, sci , ε
c
hi),

where εch is a working cost shock. Utility in period 2 is modeled as

u(τ ci , s
c
i , ε

c
hi) = logw(τ ci , s

c
i )− h(τ ci , s

c
i , ε

c
hi),

where h(·) is a working cost function. For simplicity, suppose that log wage equation is

logwi = π0 + π1s
c
i2 + π21τ

c
i + π22(τ

c
i )2.

Suppose working cost is

h(τ ci , s
c
i , εhi) = h1s

c
i2 + h2τ

c
i + h3(τ

c
i )2 + h4(s

c
iτ
c
i ) + τ ci ε

c
hi

The FOC for τ c is

π21 + 2π22τ
c
i = h2 + 2h3τ

c
i + h4s

c
i + εchi.

Hence, the optimal math task intensity given sc2 is

τ∗i =
π21 − h2 − h4sci − εchi

2(h3 − π22)
.

which is linear in sc.
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Equations rewritten using the assumptions on pre-college major-specific skills

Job type choice equation (18) is given by

Icm−,i =

ξc0 +
∑

m′∈{H,E,S}

ξc3m′s
m′
1

 + ξc1s
c
i + ξc2s

mech
i + x′ciβ

c
m− + εcm−,i

= ξ̃c0 + ξc1s
c
i + ξc2s

mech
i + x′ciβ

c
m− + εcm−,i. (38)

Education level choice equation (21) is rewritten as

Ili =

η0l +
∑

m′∈{H,E,S}

η3,l,m′s
m′
1

 + η1ls
c
1i + η2ls

mech
1i + x′diβl + zdliϕdl + εdli

= η̃0l + η1ls
c
1i + η2ls

mech
1i + x′diβl + zdliϕdl + εdli. (39)

College major choice equation (22) is rewritten as

Imi = (η0m + η3ms
m
1 ) + η1ms

c
1i + η2ms

m
2i + x′diβm + z′miϕm + εmi

= η̃0m + η1ms
c
1i + η2ms

m
2i + x′diβm + z′miϕm + εmi. (40)

Equations rewritten in terms of pre-college general cognitive skill

I suppose smech2,Some,i = λmech0,Some + λmech1Somes
mech
1i similar to general cognitive skill change. The job type

choice equation (38) for some college is rewritten as

IcSome,i = (ξ̃c0 + ξc1λ
c
0,Some + ξc2λ

mech
0,Some) + ξc1λ

c
1,Somes

c
1i + ξc2λ

mech
1,Somes

mech
1i + x′ciβ

c
Some + εcSome,i.

= ξ̃c0,Some + ξ̃c1s
c
1i + ξ̄mech2 smech1i + x′ciβ

c
Some + εcSome,i. (41)

Job relatedness choice equation (20) can be rewritten as

Irmi = (ξ0rm + ξ1rmλ
c
0m) + ξ1rmλ

c
1ms

c
1i + ξ2rms

m
2i + x′wiβrm + εrmi

= ξ̃0rm + ξ̃1rms
c
1i + ξ2rms

m
2i + x′wiβrm + εrmi. (42)
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Estimated equations

The first stage estimates the ASVAB equations (3) to (10), the education level choice equation (39),

and the job type choice, equation (38) for high school and equation (41) for some college. The second

stage estimates the GPA equations (32), (33), (14) and (15) and the college major choice (40). In the

third stage, the general cognitive task intensity choice, equation (23) for high school and equation (24)

for the other education groups, job relatedness choice (42), and log wage equations, equation (26) for

high school, equation (34) for some college, and equation (35) for major m = H,E, S, are estimated.

Parameter estimates

Table 1: Skill equation parameter estimates
Variables Cognitive (αc) Mechanical (αmech)
Constant -0.8231 (0.0542) -0.1389 (0.0526)
Female 0.0944 (0.0262) -0.5163 (0.0232)
Hispanic/Mixed race 0.3493 (0.0412) 0.2782 (0.0321)
Non-Black/Non-Hispanic 0.5917 (0.0329) 0.6341 (0.0294)
North central 1997 -0.0553 (0.0400) 0.1063 (0.0367)
South 1997 -0.1203 (0.0375) 0.0003 (0.0310)
West 1997 -0.1864 (0.0469) 0.0010 (0.0378)
Urban 1997 0.0464 (0.0316) -0.1983 (0.0264)
Broken home 1997 -0.0839 (0.0264) -0.0185 (0.0251)
Father’s education 0.0869 (0.0148) 0.0149 (0.0114)
Mother’s education 0.1229 (0.0170) 0.0394 (0.0133)
Household income (Quartile groups) 0.1091 (0.0116) 0.0447 (0.0109)
Number of siblings -0.0360 (0.0071) -0.0302 (0.0068)
Notes: General cognitive skill: sc1i = x′siα

c + θmechi and mechanical skill:

smech1i = x′siα
mech + θmechi , where xs is a vector of observed variables.

Standard errors are in parentheses.

Standard errors are calculated by bootstrap. The number of replication is 200.
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Table 2: ASVAB test score equations estimates
sc1 sc1 Error

WK 1 0 log(V ar(e1)) -1.1338
(0.0247)

PC (δ12 ) 1.0233 0 log(V ar(e2)) -1.2388
(0.0138) (0.0285)

AR (δ13) 1.0390 0 log(V ar(e3)) -1.3212
(0.0155) (0.0295)

MK (δ14) 1.0373 0 log(V ar(e4)) -1.3090
(0.0160) (0.0269)

NO (δ15) 0.7615 0 log(V ar(e5)) -0.5003
(0.0178) (0.0230)

MC (δ16) 0.5335 (δ26) 0.6397 log(V ar(e6)) -1.0773
(0.0218) (0.0287) (0.0285)

AI 1 1 log(V ar(e7)) -0.7482
(0.0319)

EI (δ18) 0.4850 (δ28) 0.6929 log(V ar(e8)) -1.0787
(0.0209) (0.0281) (0.0294)

log(V ar(θc)) -0.8618 log(V ar(θomech)) -1.5863 Corr(θc, θmech) (a) 0.5038
(0.0278) (0.0720) (0.0179)

Notes: Equations (3) to (10).

Standard errors are in parentheses.

Standard errors are calculated by bootstrap. The number of replication is 200.

Table 3: Parameter estimates of education level choice equation
High school Some college College

Const (η̃0HS) 0 (η̃0Some) -1.0765 (η̃0College) -0.9228
(0.3237) (0.4128)

sc1 (η1HS) 0 (η1Some) 0.7823 (η1College) 2.3326
(0.1020) (0.1509)

smech1 (η2HS) 0 (η2Some) -0.0791 (η2College) -0.9353
(0.1389) (0.1574)

LUR (ϕLUR,HS) -0.0077 (ϕLUR,Some) -0.0398 (ϕLUR,College) -0.4577
(0.0316) (0.0514) (0.1523)

Notes: Base group is high school. LUR: Local unemployment rates. Equation (39).

Other parameter estimates are omitted in this table.

Standard errors are in parentheses.

Standard errors are calculated by bootstrap. The number of replication is 200.
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Table 4: College major choice equation estimates
Humanities&SS Business&Econ STEM

Parameters
Const (η̃0H) 0 (η̃0E) -1.5149 (η̃0S) -2.2176

sc1 (η1H) 0 (η1E) -0.0928 (η1S) 1.0917

sm2 (η2H) 0.8398 (η2E) -0.6813 (η2S) 1.9520

Math relative score (ϕM,H) 0 (ϕM,E) 2.1878 (ϕM,S) 2.6633

Mechanical relative score (ϕM,echH) 0 (ϕMech,H) 0.2210 (ϕMech,H) 0.7569

Marginal effects at means*
sc1 -0.1434 -0.0164 0.1598
sm2 0.1512 -0.0376 0.2841
Notes: Base group is Humanities&SS. Base group is Humanities&SS. Equation (40).

*θc is set to one standard deviation above 0 and θm is set to 0.

Other parameter estimates are omitted in this table.

Table 5: Job type choice
High school Some college

sc1 (ξc1) 0.8991 (ξ̃c1) 0.6876
(0.1026) (0.2363)

smech1 (ξc2) -0.8371 (ξ̃c2) -0.6065
(0.1542) (0.2588)

Const (ξ̃c0) 0.6258 (ξ̃c0,Some) 0.8658
(0.2728) (0.4219)

Notes: Dependent variable = 0: Mechanical job; =1:

Cognitive job.

Equation (38) for high school and equation (41) for some

college.

Other parameter estimates are omitted in this table.

Standard errors are in parentheses.

Standard errors are calculated by bootstrap. The number of replication is 200.
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Table 6: Parameter estimates: latent GPA equations
Humanities&SS Business&Econ STEM

log V ar(sH2 ) -0.0366 log V ar(sE2 ) -0.1144 log V ar(sS2 ) -0.3363

GPA∗m1 Const (γ̃H01) -0.8868 (γ̃E01) 0.0272 (γ̃S01) -1.4647

sc1 (γ̃H11) 0.4675 (γ̃E11) 0.5077 (γ̃S11) 0.6538

sm2 1 1 1

Error (log V ar(eH1 )) -1.7119 (log V ar(eE1 )) -2.2157 (log V ar(eS1 )) -0.7235

GPA∗m2 Const (γ̃H02) -0.9830 (γ̃E02 ) -0.2183 (γ̃S02) -1.2845

sc1 (γ̃H12) 0.5599 (γ̃E12) 0.5842 (γ̃S12) 0.6864

sm2 (γH22) 0.6613 (γE22 ) 0.6888 (γS22) 1.0911

Error (log V ar(eH2 )) -0.6090 (log V ar(eE2 )) -0.7170 (log V ar(eS2 )) -1.1686

Notes: Equations (32) and (33).

Other parameter estimates are omitted in this table.

Table 7: Job relatedness choice
Humanities&SS Business&Econ STEM

sc1 (ξ̃1rH) -0.0950 (ξ̃1rE) 0.1419 (ξ̃1rS) 0.1402

sm2 (ξ2rH) 0.3108 (ξ2rE) 0.3588 (ξ2rS) 0.1678

Const (ξ̃0rH) -0.1280 (ξ̃0rH) 0.9856 (ξ̃0rH) -2.1851

Notes: Dependent variable = 0: Unrelated job; =1: Related job.

Equation (42).

Other parameter estimates are omitted in this table.
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Table 8: Cognitive skill growth parameter estimates; log wage point metric
Some college Business&Economics
Const (π1λc0Some) 0.1136 Const (π1λc0E) 0.3122

π1s
c
1 (λc1Some) 0.9827 π1s

c
1 (λc1E) 1.0188

Humanities&Social Sciences STEM
Const (π1λc0H) 0.2434 Const (π1λc0S) 0.3986

π1s
c
1 (λc1H) 0.0497 π1s

c
1 (λc1S) 1.5426

Notes: For m+ = Some,H,E, S, post-college general cognitive skill

in the log wage metric is π1s2m+,i = π1λc0m+
+ λc1m+

π1sc1i.

Table 9: Log wage equation estimates excluding task intensity
τ c (π21) 0

Business & Econ
(τ c)2 (π22) 0 sc1 (π1E) 0.0463

High school Unrelated
Const (π̃0) 1.8819 Const (π̇0E,nr) 2.4369

sc1 (π1) 0.0536 sE2 (πE3,nr) 0.0101

Some college Related
Const (π̇0Some) 2.1943 Const (π̇0E,r) 2.4957

sc1 (π1Some) 0.0608 sE2 (πE3,r) 0.0440

Humanities & SS STEM
sc1 (π1H) 0.0059 sc1 (π1S) 0.1030

Unrelated Unrelated
Const (π̇0H,nr) 2.3602 Const (π̇0S,nr) 2.4481

sH2 (πH3,nr) -0.0036 sS2 (πS3,nr) -0.0047

Related Related
Const (π̇0H,r) 2.2911 Const (π̇0S,r) 2.5723

sH2 (πH3,r) 0.0003 sS2 (πS3,r) 0.1076

Notes: Equation (26) for high school, equation (34) for

some college, and equation (35) for major m, m = H,E, S.

Other parameter estimates are omitted in this table.
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