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Finite Mixture Models

Given a latent variable Z ∗ ∈ {1,2, . . . ,M},

F (y |x) =
M∑

m=1

Pr(Z ∗ = m|X = x)︸ ︷︷ ︸
:=λm

F (y |x ,Z ∗ = m)︸ ︷︷ ︸
:=F m(y |x)

=
M∑

m=1

λm(x)F m(y |x)

• F is a cumulative distribution function (CDF) of an
observed random variable Y conditional on X = x .

• The superscript m represents the m-th component.

• {λm(·)}Mm=1 is called the mixing weights.

• {F m(·|·)}Mm=1 is called the component distributions.
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Non-parametric identification

• The parameter θ = {{λm(x),F m(y |x)}(x ,y)∈X×Y}Mm=1.

• θ is said to be nonparametrically identified (or identifiable)
if it is uniquely determined by the distribution function
F (y |x) without making any parametric assumption on
{λm(x),F m(y |x)}Mm=1.

• While we don’t impose parametric assumptions on
{λm(x),F m(y |x)}Mm=1, we consider various
non-parametric assumptions.
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Non-parametric identification is important!

• A finite mixture model provides a flexible way to
control for unobserved heterogeneity.

• Choosing a parametric family for the component
distributions is often difficult because of a lack of
guidance from economic theory.

• Even if you estimate a parametric mixture model,
understanding the source of non-parametric
identification is important.

• You don’t want to rely on parametric form assumption.

• The identification analysis of parametric finite mixture
models becomes transparent once mixing weights and
component distributions are nonparametrically identified.
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This presentation

• We review different approaches for establishing
non-parametric identification.

• We also discuss the identification of the number of
components.

• Empirical examples. (In progress: I really appreciate
if you suggest me empirical examples!)
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Example 1: Clinical tests (Hall and Zhou, 2003)

F (y1, y2, . . . , yJ) = λF 1(y1, y2, . . . , yJ) + (1− λ)F 2(y1, y2, . . . , yJ)

= λ

J∏
j=1

F 1
j (yj) + (1− λ)

J∏
j=1

F 2
j (yj)

• a patient has a disease (Z ∗ = 1) or not (Z ∗ = 2).
• λ = Pr(patient has a disease)
• Y = (Y1, . . . ,YJ): outcome of J clinical tests
• Conditional independence assumption (CI):

F (y1, y2, . . . , yJ |Z = z) =
J∏

j=1

Fj(yj |Z = z)

We are interested in identifying the model parameter
θ =

{
λ, {F 1

j (·)}Jj=1, {F
2
j (·)}Jj=1

}
from F (y1, y2, . . . , yJ). 6



Example 2: Endogeneity by unobserved ability

The model

Y = α(X ,U∗) + β(X ,U∗)T + ε, ε ⊥⊥ T |X ,U∗.

• Y : log-wage, T : education

• Unobserved ability U∗ ∈ U∗ := {u∗1,u∗2, . . . ,u∗M}.
• Two proxies for U∗: U1 and U2 (e.g., ASVAB of NLSY79).

Fix X . Assume: (Y ,T ) ⊥⊥ U1 ⊥⊥ U2 | U∗.
F (y , t ,u)

=
∑

u∗∈U∗

Pr(U∗ = u∗)Pr(Y ≤ y ,T ≤ t |u∗)Pr(U1 ≤ u1|u∗)Pr(U2 ≤ u2|u∗)

=
M∑

m=1

λmF m
y,t(y , t)F

m
u1
(u1)F m

u2
(u2).
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Example 3: Misclassified and endogenous regressor

Y = α(X ) + β(X )T ∗ + ε, ε ⊥⊥ Z |X ,T ∗

• Y : outcome (e.g., log-wage)
• T ∗: true years of education with Corr(T ∗, ε) 6= 0
• T : reported years of education
• Z : an instrument for T ∗ (e.g., college proximity)

Fix X . Assume (i) T ⊥⊥ Z |T ∗,X and (ii) Y ⊥⊥ Z |T ∗,X .

F (y , t , z) =
∑

t∗∈T ∗
Pr(T ∗ = t∗|z)︸ ︷︷ ︸

=λm(z)

Pr(Y ≤ y |t∗) Pr(T ≤ t |t∗)

=
M∑

m=1

λm(z)F m
y (y)F m

t (t)
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Example 4: Dynamic Panel Data Models (Kasahara and Shi-
motsu, 2009; Hu and Shum, 2012)

• Dynamic panel data: {y i ,x i} for y i = (yi1, . . . , yiT )′

and x i = (xi1, . . . , xiT )′. T fixed, N →∞.

• Non-stationarity is allowed.

• X i is exogenous to latent variable Z ∗i (or assume that
X follows the first order Markov process).

• Yit follows the first order Markov process:

F (y |x) =
M∑

m=1

λmF m
1 (y1|x)

T∏
t=2

F m
t (yt |{ys}t−1

s=1,x)

=
M∑

m=1

λmF m
1 (y1|x)

T∏
t=2

F m
t (yt |yt−1,x).
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Other Examples for Finite Mixtue Models

• Models with unobserved heterogeneity in which
multiple proxies for unobserved heterogeneity are
observed

• Structural dynamic programming models with
unobserved heterogeneity (e.g., Keane and Wolpin
(1997))

• Duration models with multiple spells

• Multiple equilibria in discrete game with incomplete
information

• Hidden Markov Models (Allman et al., 2009)

10



Approaches for establishing non-parametric identification of
finite mixture models

1. Solving a system of equations: Hall and Zhou (2003)
and Hall et al. (2005)

2. Kruskal’s theorem: Kruskal (1977), Sidiropoulos and
Bro (2000), Allman et al. (2009)

3. Eigen-decomposition: Green (1951), Anderson
(1954), Gibson (1955), Leurgans et al. (1993), Chang
(1996), De Lathauwer (2006), Hu (2008), Kasahara
and Shimotsu (2009), Carroll et al. (2010), Hu and
Shum (2012), Bonhomme et al. (2016)

4. Other identifying restrictions: exclusion restrictions,
tail conditions, support variation, symmetry.
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Hall and Zhou (2003)
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Hall and Zhou (2003): Two-components mixture under con-
ditional independence

F (y1, y2, . . . , yJ) = λ
J∏

j=1

F 1
j (yj) + (1− λ)

J∏
j=1

F 2
j (yj)

with y = (y1, . . . , yJ)′ ∈ YJ with Y = {1,2, . . . ., |Y|}.

• |Y|J − 1 restrictions for 1 + J(|Y| − 1) unknowns.

• When J = 1, identification is hopeless.

• When J = 2, |Y|2 − 1 > 1 + 2(|Y| − 1) when |Y| ≥ 3.

• Can we identify the model parameter when J = 2?
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Hall and Zhou (2003): Non-identification when J = 2

The mixture density and their marginal densities are

f (y1, y2) = λp1(y1)p2(y2) + (1− λ)q1(y1)q2(y2)

f1(y1) = λp1(y1) + (1− λ)q1(y1)

f2(y2) = λp2(y2) + (1− λ)q2(y2).

where pj := f 1
j and qj := f 2

j for j = 1,2.

Solving for p1, p2, q1, q2 gives a continuum of solutions
indexed by two scalar parameters.

⇒ Non-identification
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Hall and Zhou (2003): Identification when J = 3

The mixture density and their marginal densities are

f (y1, y2, y3) = λp1(y1)p2(y2)p3(y3) + (1− λ)q1(y1)q2(y2)q3(y2)

f (yj , yk ) = λpj(yj)pk (yk ) + (1− λ)qj(yj)qk (yk )

for (j , k) ∈ {(1,2), (1,3), (2,3)}
fj(yj) = λpj(yj) + (1− λ)qj(yj) for j = 1,2,3

We can uniquely solve for p1, p2, p3, q1, q2, q3, λ as
functionals of f (y1, y2, y3) under an irreducibility condition.

⇒ Identification
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Example 1: Clinical tests (Hall and Zhou, 2003)

F (y1, y2, . . . , yJ)= λ

J∏
j=1

F 1
j (yj) + (1− λ)

J∏
j=1

F 2
j (yj)

• a patient has a disease (Z ∗ = 1) or not (Z ∗ = 2).

• λ = Pr(patient has a disease)

• Y = (Y1, . . . ,YJ): outcome of J clinical tests

We can identify θ =
{
λ, {F 1

j (·)}Jj=1, {F
2
j (·)}Jj=1

}
from

F (y1, y2, . . . , yJ) when J ≥ 3.
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M-components finite mixture models under conditional inde-
pendence

F (y1, y2, . . . , yJ) =
M∑

m=1

λm
J∏

j=1

F m
j (yj) (1)

• Extending the identification argument of Hall and
Zhou (2003) to M-components mixture models is
difficult (Hall et al., 2005).

• We may identify (1) by Kruskal’s theorem and
eigen-decomposition
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Notations

• For the sake of clarity, we assume that the support of
Y is discrete.

y ∈ Y = {1,2, . . . ., |Y|}.

• M-components finite mixture models:

P(y1, y2, . . . , yJ) =
M∑

m=1

Pr(Z ∗ = m)︸ ︷︷ ︸
:=λm

J∏
j=1

Pr(Yj = yj |Z ∗ = m)︸ ︷︷ ︸
:=pm

j (yj )

=
M∑

m=1

λm
J∏

j=1

pm
j (yj).
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Kruskal’s theorem
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Kruskal’s theorem

Suppose that y = (y1, y2, y3)′ with yj ∈ {1,2, . . . ., |Yj |}.

A tensor representation of the probility mass function:

P =
M∑

m=1

λmpm
1 ⊗ pm

2 ⊗ pm
3 =

M∑
m=1

pm
1 ⊗ pm

2 ⊗ (λmpm
3 ),

where

pm
j :=

 pm
j (1)

...
pm

j (|Yj |)

 with pm
j (i) := Pr(Yj = i |Z ∗ = m).

Define, for j = 1,2,

Lj :=
[
p1

j · · · pM
j

]
, D =

[
λ1p1

3 · · · λMpM
3

]
.
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Kruskal’s theorem

Definition (Kruskal rank)
The Kruskal rank of matrix L, denoted by kL, is the largest
value of positive integer k such that every subset of k
columns of the matrix L is linearly independent.

Theorem (Kruskal’s Theorem (Kruskal, 1977))

Suppose that

kL1 + kL2 + kD ≥ 2M + 2. (2)

Then, L1, L2, D are uniquely identified from a
3-dimensional tensor P up to permutation and scaling of
columns.
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Kruskal’s theorem

• Because columns of stochastic matrices sum to 1,
θ = {λm,pm

1 ,p
m
2 ,p

m
3 }M

m=1 is uniquely identified (Allman
et al., 2009).

• Kruskal’s sufficient condition

kL1 + kL2 + kD ≥ 2M + 2

is also necessary when M = 2 or 3 but it is not
necessary when M > 3 (Ten Berge and Sidiropoulos,
2002; Stegeman and Ten Berge, 2006).

• The proof is not constructive.

• Sidiropoulos and Bro (2000) extends the Kruskal’s
sufficient condition for J > 3:

∑J
j=1 kLj ≥ 2M + (J − 1)
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Eigen-decomposition
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Eigen-decomposition

Consider the following matrix representation:

Pk (i , j) =
M∑

m=1

λmpm
1 (i)pm

2 (j)pm
3 (k), Q(i , j) =

M∑
m=1

λmpm
1 (i)pm

2 (j)

so that

Pk = L1DkΛ (L2)> , Q = L1Λ (L2)> ,

with

L` :=

 p1
` (1) . . . pM

` (1)
... . . . ...

p1
` (|Y`|) . . . pM

` (|Y`|)

 , Dk =

p1
3(k) 0

. . .
0 pM

3 (k)

 ,

Λ = diag(λ) =

λ
1 0

. . .
0 λM

 .
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Eigen-decomposition

Consider the case where |Y1| = |Y2| = M. Then,

Pk︸︷︷︸
observable

= L1DkΛ (L2)
> , Q︸︷︷︸

observable

= L1Λ (L2)
>

Then, when Q is non-singular

PkQ−1︸ ︷︷ ︸
observable

= L1DkL−1
1 .

The eigenvalues of PkQ−1 identify Dk and the eigenvectors of
PkQ−1 identify L1 up to a scaling and permutation.
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Eigen-decomposition

Theorem (Eigen-decomposition)

Suppose that

1. |Y1|, |Y2| ≥ M.

2. The column vectors of Lj = [p1
j , · · · ,pM

j ] are linearly
independent for j = 1,2

3. The elements of {pm
3 (k)}Mm=1 are distinct for some

k ∈ {1, . . . , κ3}.

Then, L1, L2, L3, and λ are uniquely determined from {Pk}κ3
k=1

and Q.
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Kruskal’s theorem vs. Eigen-decomposition

• For M = 2 or 3, Kruskal’s theorem provides necessary and
sufficient conditions while eigen-decomposition only
provides sufficient conditions.

• For M ≥ 4, they are complementary.

• The proof for Kruskal’s theorem is rather inaccessible while
the proof for eigen-decomposition is straightforward.

• Eigen-decomposition suggests an explicit algorithm for
identification (c.f., simultaneous matrix decomposition).

• Eigen-decomposition is useful for identifying models with
dependency as we discuss below.
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Generic Identifiability

• Sidiropoulos and Bro (2000)’s sufficient condition∑J
j=1 kLj ≥ 2M + (J − 1) implies that the number of

identifiable types M increases only linearly with the
dimension J of Y .

• We can identify more types by considering generic
identifiability (Allman et al., 2009).

• A property is called generic when it holds everywhere
except for a set of Lebesgue measure 0.

• For example, in the set of J × J matrices, the set of
singular matrices has Lebesgue measure 0.

• Using eigen-decomposition, we can show that the number
of generically identifiable types M increases exponentially
with J.
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Generic Identifiability

• Let

P(y1, y2, . . . , yJ) =
M∑

m=1

λm
J∏

j=1

pm
j (yj),

where yj ∈ Y = {1, . . . , |Y|}.

• Define Lj and λ as before.

• Suppose J is odd.

Theorem

Suppose that |Y|(J−1)/2 ≥ M. Then, L1, . . . ,LJ , and λ are
generically uniquely identified from P up to label swapping.

29



Examples
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Example 2: Endogeneity

The model

Y = α(X ,U∗) + β(X ,U∗)T + ε, ε ⊥⊥ T |X ,U∗.

• Y : log-wage, T : education

• The unobserved ability U∗ ∈ U∗ := {u∗1,u∗2, . . . ,u∗M}.

• Two test scores: U1 and U2 (e.g., ASVAB of NLSY79).

Assume: (Y ,T ) ⊥⊥ U1 ⊥⊥ U2 | X ,U∗. Then

P(y , t ,u|x) =
M∑

m=1

λmpm
y ,t(y , t |x)pm

u1
(u1|x)pm

u2
(u2|x).

⇒We can apply Kruskal’s theorem / eigen-decomposition
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Applying Kruskal’s theorem / eigen-decomposition

The key is to have a mathematical expression of the form:

P(x , y , z,w) =
M∑

m=1

qm
x (x ,w)qm

y (y ,w)qm
z (z,w).

⇒ 3 independent variations within each component.

Regularity conditions for eigen-decomposition:

1. |X |, |Y| ≥ M and |Z| ≥ 2.

2. Full column rank for Lx = [q1
x , . . . ,qM

x ] and Ly

⇒ e.g., we cannot have q1
x = πq2

x + (1− π)q3
x .

3. For some k ∈ Z, qm
z (k) 6= qm′

z (k) for all m 6= m′.

32



Applying Kruskal’s theorem / eigen-decomposition

Independent variation may come from
conditioning variables rather than outcome

variables.
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Example 3: Misclassified and endogenous regressor

Y = α(X ) + β(X )T ∗ + ε, ε ⊥⊥ Z |X ,T ∗

• Y : outcome (e.g., log-wage)
• T ∗: true years of education with Corr(T ∗, ε) 6= 0
• T : reported years of education
• Z : an instrument for T ∗ (e.g., college proximity)

Assume (i) T ⊥⊥ Z |T ∗,X and (ii) Y ⊥⊥ Z |T ∗,X .

P(y , t |z,x) =
∑

t∗∈T ∗
Pr(T ∗ = t∗|z,x)︸ ︷︷ ︸

:=λm(z,x)

Pr(Y = y |t∗,x) Pr(T = t |t∗,x)

=
M∑

m=1

λm(z,x)pm
y (y |x)pm

t (t |x)

⇒We can apply Kruskal’s theorem / eigen-decomposition 34



Example 3: Misclassified and endogenous regressor

• Suppose that T ⊥⊥ Z |T ∗ does not hold, e.g., your
incentive to lie about your education qualification
depends on college proximity.

P(y , t |z,x) =
M∑

m=1

λm(z ,x)pm
y (y |x)pm

t (t |z ,x)

⇒ z is in both λm and pm
t .

⇒We cannot apply Kruskal’s theorem /
eigen-decomposition
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Example 4: Dynamic Panel Data Models

• Dynamic panel data with T = 3: {y i ,x i} for
y i = (yi1, yi2, yi3)′ and x i = (xi1, xi2, xi3)′.

• Markovian assumption

P(y |x) =
M∑

m=1

λmpm
1 (y1|x)pm

2 (y2|y1,x)pm
3 (y3|y2,x).

⇒ y1 is in both pm
1 and pm

2 , and y2 is in both pm
2 and pm

3 .

⇒We cannot apply Kruskal’s theorem and/or
eigen-decomposition.
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Kasahara and Shimotsu (2009)

• Dynamic panel data with T = 5: {y i ,x i} for
y i = (yi1, . . . , yi5)′ and x i = (xi1, . . . , xi5)′.

• Fix y2 = ȳ2 and y4 = ȳ4. Fix and drop x .

P(y) =
M∑

m=1

λm pm
1 (y1)pm

2 (ȳ2|y1)︸ ︷︷ ︸
=pm

12(y1,ȳ2)

pm
3 (y3|ȳ2)pm

4 (ȳ4|y3)︸ ︷︷ ︸
=pm

34(y3,ȳ4|ȳ2)

pm
5 (y5|ȳ4)

=
M∑

m=1

λmpm
12(y1, ȳ2)pm

34(y3, ȳ4|ȳ2)pm
5 (y5|ȳ4)

⇒We can apply Kruskal’s theorem / eigen-decomposition
to establish identification
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Williams (2018)

• Dynamic panel data with T = 3: {y i ,x i}.

• Suppose that X i = (X̃
′
i ,V i)

′ with V i = (Vi1, . . . ,ViT )′.

• Vit ⊥⊥ Z ∗i |(Vi1, . . . ,Vit−1), X̃ i .

P(y |x̃ ,v i) =
M∑

m=1

λmpm
1 (y1, x̃ , v1)pm

2 (y2|y1, x̃ , v2)pm
3 (y3|y2, x̃ , v3)

⇒We can apply Kruskal’s theorem / eigen-decomposition
to establish identification
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Hu and Shum (2012)

• Dynamic panel data with T = 4 with discrete support.

• Fix (y2, y3) ∈ {(ȳ2, ȳ3), (y †2 , y
†
3), (y †2 , ȳ3), (ȳ2, y

†
3)}.

p(y1, ȳ2, ȳ3, y4) =
M∑

m=1

λm pm
12(y1, ȳ2)︸ ︷︷ ︸

ȳ3 is excluded

pm
3 (ȳ3|ȳ2) pm

4 (y4|ȳ3)︸ ︷︷ ︸
ȳ2 is excluded

.

Then,
P ȳ2,ȳ3 = L1,ȳ2D ȳ2,ȳ3Λ (L2,ȳ3)> ,

with

L1,ȳ2 :=


p1

12(1, ȳ2) . . . pM
12(1, ȳ2)

...
. . .

...
p1

12(M, ȳ2) . . . pM
12(M, ȳ2)

 ,D ȳ2,ȳ3 =


p1

3(ȳ3|ȳ2) . . . 0
...

. . .
...

0 . . . pM
3 (ȳ3|ȳ2)

 etc.
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Hu and Shum (2012)

Evaluating at (y2, y3) ∈ {(ȳ2, ȳ3), (y †2 , y
†
3), (y †2 , ȳ3), (ȳ2, y

†
3)},

P ȳ2,ȳ3 = L1,ȳ2D ȳ2,ȳ3Λ (L2,ȳ3)> , Py†2 ,y
†
3

= L1,y†2
Dy†2 ,y

†
3
Λ
(

L2,y†3

)>
,

Py†2 ,ȳ3
= L1,y†2

Dy†2 ,ȳ3
Λ (L2,ȳ3)> , P ȳ2,y

†
3

= L1,ȳ2D ȳ2,y
†
3
Λ
(

L2,y†3

)>
.

Then,

P ȳ2,ȳ3

(
Py†2 ,ȳ3

)−1
Py†2 ,y

†
3

(
P ȳ2,y

†
3

)−1

= L1,ȳ2

[
D ȳ2,ȳ3(Dy†2 ,ȳ3

)−1Dy†2 ,y
†
3
(D ȳ2,y

†
3
)−1
]

(L1,ȳ2)−1 .

⇒We may apply eigen-decomposition to identify L1,ȳ2

and D ȳ2,ȳ3(Dy†2 ,ȳ3
)−1Dy†2 ,y

†
3
(D ȳ2,y

†
3
)−1.
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Identification argument in Hu and Shum (2012) and Carroll
et al. (2010)

The key is to have a mathematical expression of the form:

P(x , y , z, v) =
M∑

m=1

qm
zv (z, v) qm

x (x , z)︸ ︷︷ ︸
v is excluded

qm
y (y , v)︸ ︷︷ ︸

z is excluded

.

2 independent variation (z and y ) and some exclusion
restrictions for other variables (z and v ).

Evaluating at (z, v) ∈ {(z̄, v̄), (z†, v †), (z̄, v †), (z†, v̄)}:

P z̄,v̄ = L1,z̄D z̄,v̄Λ (L2,v̄ )> , Pz†,v† = L1,z†Dz†,v†Λ
(
L2,v†

)>
,

P z̄,v† = L1,z̄D z̄,v†Λ
(
L2,v†

)>
, Pz†,v̄ = L1,z†Dz†,v̄Λ (L2,v̄ )> ,

Apply eigen-decomposition to

P z̄,v̄
(
Pz†,v̄

)−1 Pz†,v†
(
P z̄,v†

)−1
. 41



Example 3: Misclassified and endogenous regressor

Y = α(X ) + β(X )T ∗ + ε, ε ⊥⊥ Z |X ,T ∗

• Recall that, if T ⊥⊥ Z |T ∗ does not hold,

P(y , t |z,x) =
M∑

m=1

λm(z ,x)pm
y (y |x)pm

t (t |z ,x)

⇒ z is in both λm and pm
t .

⇒We cannot apply Kruskal’s theorem /
eigen-decomposition
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Example 3: Misclassified and endogenous regressor

• Now, suppose that X = (V , X̃ ) and V that does not
affect an incentive to lie (e.g., V = gender). Fix X̃ .

p(y , t |z, v , x̃) =
M∑

m=1

λm(z, v , x̃) pm
y (y |v , x̃)︸ ︷︷ ︸
z is excluded

pm
t (t |z, x̃)︸ ︷︷ ︸

v is excluded

.

Evaluating at (z, v) ∈ {(z̄, v̄), (z†, v †), (z̄, v †), (z†, v̄)}

⇒We can establish identification using the argument in
Hu and Shum (2012) and Carroll et al. (2010) (Kasahara
and Shimotsu, on-going project).
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Identification of the Number of Components
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Identification of the Number of Components (Kasahara and
Shimotsu, 2009, 2014)

• M-components finite mixture models with J = 2:

P(x , y) =
M∑

m=1

λmpm
x (x)pm

y (y).

⇒When J = 2, the mixture model is not identified
(Hall and Zhou, 2003).

• Can we identify the number of components M?
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Identification of the Number of Components

Collect the distribution of (X ,Y ) to a matrix:

Q
(|X |×|Y|)

=


Pr(X = 1,Y = 1) · · · Pr(X = 1,Y = |Y|)

...
. . .

...
Pr(X = |X |,Y = 1) · · · Pr(X = |X |,Y = |Y|)

 .
Define

pm
x

(|X |×1)

= (Pr(X = 1|Z ∗ = m), . . . ,Pr(X = |X ||Z ∗ = m))′,

pm
y

(|Y|×1)

= (Pr(Y = 1|Z ∗ = m), . . . ,Pr(Y = |Y||Z ∗ = m))′.

Then Q can be expressed as, for some M̃,

Q =
M̃∑

m=1

λmpm
x (p

m
y )
′, pm

x ,p
m
y ≥ 0, λm > 0,

M̃∑
m=1

λm = 1.
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Lower bound of the number of components

• Define the number of components in Q, denoted by
M, as the smallest integer M̃ such that the above
finite mixture representation is possible.

• M = rank+(Q), i.e., the nonnegative rank of Q

• For a nonnegative matrix A, its nonnegative rank
(rank+(A)) is the smallest number of nonnegative
rank-one matrices such that A equals their sum.
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Relation between rank and nonnegative rank

Proposition (Cohen and Rothblum (1993))

1. rank(Q) ≤ M ≤ min{|X |, |Y|}.
2. If rank(Q) ≤ 2, then M = rank(Q).

3. If |X | ≤ 3 or |Y| ≤ 3, then M = rank(Q).

Therefore,
rank(Q) = M if M ≤ 3.

In general, for M ≥ 4,

rank(Q) ≤ M
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Why does rank(Q) identify a lower bound?

Singular value decomposition of Q gives a representation:

Q =
M̃∑

m=1

λ̃mp̃m
x (p̃m

y )′,

• {λ̃m}M
m=1: non-zero singular values.

• {p̃m
x } and {p̃m

y }: left- and right- singular vectors.

• M̃ = rank(Q): the # of non-zero singular values.

Some elements of {p̃m
x } and {p̃m

y } may be negative.

⇒ the # of components M > rank(Q).
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Estimating the number of components

• Determining the nonnegative rank of a matrix is
computationally difficult (NP-hard).

• Testing the rank of Q via the singular value
decomposition (Kasahara and Shimotsu, 2014).

• Testing the number of components for parametric
finite mixture models: not easy, but many existing
papers, including Kasahara and Shimotsu (2015).

• Little existing work on testing the number of
components for finite mixture models without
imposing parametric assumption on components.
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Other topics on identification of mixture models

• Models with continuous variables / continuous mixtures
(Hu and Schennach, 2008; Allman et al., 2009; Hu and
Shum, 2012)).

• Other identifying strategies:

• exclusion restrictions: Compiani and Kitamura (2016),
Henry, Kitamura, and Salanie (2014, QE)

• tail conditions: Kitamura (2003), Henry, Kitamura, and
Salanie (2010, working paper), Hohmann and Holzmann
(2015), Jochmans, Henry, and Salanie (2017, ET)

• support variation: D’Haultfœuille and Février (2015)

• symmetry: Bordes, Mottelet, and Vandekerkhove (2006,
AS), Hunter, Wang, Hettmansperger (2007, AS)
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